1
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025; 17:1688-1710. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mahdavi V, Kazerani HR, Taghizad F, Balaei H. The effects of the gut bacterial product, gassericin A, on obesity in mice. Lipids Health Dis 2025; 24:3. [PMID: 39754090 PMCID: PMC11699767 DOI: 10.1186/s12944-024-02423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity. METHODS Fifty Swiss NIH mice were randomly assigned to five different groups. One group was given a standard diet, while the remaining groups were fed a diet high in fat and sugar. The test groups received gassericin A at doses of 0.75, 1.5, or 3 mIU/kg through intraperitoneal injection, daily for 10 weeks. Body weight, fasting blood sugar, serum lipid profile, and hepatic function indicators were then assessed. Additionally, the blood profile, markers of oxidative stress, and expression levels of specific genes associated with obesity, Zfp423, and Fabp4, were evaluated in abdominal adipose tissue. RESULTS A high-calorie diet negatively impacted abdominal fat, serum cholesterol, LDL, and hepatic enzymes. However, gassericin A significantly improved these effects, despite increasing weight gain and abdominal fat. Furthermore, it improved redox status, downregulated the Zfp423 gene, and enhanced the expression of the Fabp4 gene. Finally, the bacteriocin caused thrombocytopenia and mild decreases in erythrocytes, hematocrit, and hemoglobin levels. CONCLUSIONS These results suggest that, despite causing weight gain, gassericin A may improve obesity-related complications.
Collapse
Affiliation(s)
- Valeh Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Kazerani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fereidoun Taghizad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hedyeh Balaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Mihailovich M, Soković Bajić S, Dinić M, Đokić J, Živković M, Radojević D, Golić N. Cutting-Edge iPSC-Based Approaches in Studying Host-Microbe Interactions in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:10156. [PMID: 39337640 PMCID: PMC11432053 DOI: 10.3390/ijms251810156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota (GM), together with its metabolites (such as SCFA, tryptophan, dopamine, GABA, etc.), plays an important role in the functioning of the central nervous system. Various neurological and psychiatric disorders are associated with changes in the composition of GM and their metabolites, which puts them in the foreground as a potential adjuvant therapy. However, the molecular mechanisms behind this relationship are not clear enough. Therefore, before considering beneficial microbes and/or their metabolites as potential therapeutics for brain disorders, the mechanisms underlying microbiota-host interactions must be identified and characterized in detail. In this review, we summarize the current knowledge of GM alterations observed in prevalent neurological and psychiatric disorders, multiple sclerosis, major depressive disorder, Alzheimer's disease, and autism spectrum disorders, together with experimental evidence of their potential to improve patients' quality of life. We further discuss the main obstacles in the study of GM-host interactions and describe the state-of-the-art solution and trends in this field, namely "culturomics" which enables the culture and identification of novel bacteria that inhabit the human gut, and models of the gut and blood-brain barrier as well as the gut-brain axis based on induced pluripotent stem cells (iPSCs) and iPSC derivatives, thus pursuing a personalized medicine agenda for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
- Human Technopole, Palazzo Italia, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.S.B.); (M.D.); (J.Đ.); (M.Ž.); (D.R.)
| |
Collapse
|
4
|
Narang A, Rashid M, Thakur S, Jain SK, Kaur A, Kaur S. Acute Pre- and Post-administration of Lactiplantibacillus plantarum 2034 and Its Secretory Metabolites Ameliorates Hyperglycaemia, Hyperlipidaemia, and Oxidative Stress in Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10343-y. [PMID: 39150651 DOI: 10.1007/s12602-024-10343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The global prevalence rate of diabetes in 2021 was 6.1% making diabetes one of the top 10 causes of death. Prolonged use of antidiabetic medications is associated with various side effects; therefore, alternative treatment strategies for diabetes need exploration. The antidiabetic properties of Lactiplantibacillus plantarum 2034 was explored both in in vitro and in vivo studies. Secretory metabolites of probiotic L. plantarum 2034 exhibited alpha-glucosidase, alpha-amylase, and lipase inhibitory activities, in vitro. Further, the antidiabetic efficacy of 2034 was evaluated in streptozotocin-nicotinamide-induced diabetic rats. In the therapeutic model, oral administration of L. plantarum resulted in normalization of body weight, fasting blood glucose, total cholesterol (TC), and liver enzymes, and significant (p < 0.05) reduction in insulin and triglyceride (TG) levels. Histological evaluation of pancreas, liver, and kidney showed restoration of normal architecture in probiotic-treated group. Similarly, in a preventive + therapeutic model, 14 days of pre-administration of 2034 in pre, pre + post, and cell-free supernatant resulted in significant reduction in glucose, TG, TC, and liver biochemistry of diabetic rats as compared to untreated diabetic rats. An oral glucose tolerance test showed that the glucose levels normalized within 90 min in all the treated groups. Further, the oxidative stress parameters were also studied that showed that in all the treated groups, the concentration of antioxidant enzymes significantly (p < 0.05) increased as compared to diabetic untreated rats. Thus, administration of L. plantarum 2034 and its metabolites successfully ameliorated hyperglycaemia and hypercholesterolemia in both the models probably due to inhibition of gut enzymes and by increasing the concentration of liver antioxidant enzymes.
Collapse
Affiliation(s)
- Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Muzamil Rashid
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
5
|
Mihailović M, Soković Bajić S, Arambašić Jovanović J, Brdarić E, Dinić S, Grdović N, Uskoković A, Rajić J, Đorđević M, Tolinački M, Golić N, Živković M, Vidaković M. Beneficial Effects of Probiotic Lactobacillus paraplantarum BGCG11 on Pancreatic and Duodenum Function in Diabetic Rats. Int J Mol Sci 2024; 25:7697. [PMID: 39062940 PMCID: PMC11277547 DOI: 10.3390/ijms25147697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, as a chronic metabolic disorder, significantly impacts the pancreas and among other organs, affects duodenal function. Emerging evidence suggests that probiotics can exert beneficial effects on gut health and metabolism. In our previous research, we evaluated the probiotic Lactobacillus paraplantarum BGCG11 primarily for its protective properties against diabetic rats' damaged liver and kidneys. In this work, we further examined the effects of probiotic strain BGCG11 on the function of the duodenum and pancreas in diabetic rats. We explored the potential mechanisms underlying the probiotic's effects, focusing on general indicators of diabetes, the architecture and morphology of pancreatic islets, duodenal integrity (measuring the transfer of fluid and serum zonulin level), and the modulation of gut microbiota composition. Our findings reveal the protective and regulatory roles of L. paraplantarum BGCG11 in mitigating diabetes-induced pancreatic and duodenal dysfunction regardless of its application time (pre- or post-treatment), highlighting its therapeutic potential in managing diabetes-related gastrointestinal complications.
Collapse
Affiliation(s)
- Mirjana Mihailović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Jelena Arambašić Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Emilija Brdarić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Svetlana Dinić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Nevena Grdović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Aleksandra Uskoković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Jovana Rajić
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Marija Đorđević
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Nataša Golić
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Milica Živković
- Institute of Molecular Genetics and Genetics Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia (E.B.); (M.T.); (N.G.)
| | - Melita Vidaković
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar Despota Stefana 142, 10060 Belgrade, Serbia; (M.M.); (J.A.J.); (S.D.); (N.G.); (A.U.); (J.R.); (M.Đ.)
| |
Collapse
|
6
|
Vinothkanna A, Shi‐Liang X, Karthick Rajan D, Prathiviraj R, Sekar S, Zhang S, Wang B, Liu Z, Jia A. Feasible mechanisms and therapeutic potential of food probiotics to mitigate diabetes‐associated cancers: A comprehensive review and in silico validation. FOOD FRONTIERS 2024; 5:1476-1511. [DOI: 10.1002/fft2.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractPeople with diabetes mellitus (DM) and hyperglycemia are linked with cancer risk. Diabetes and cancer have been corroborated by high morbidity and mortality rates. Studies revealed that elevated levels of insulin secretions trigger insulin‐like growth factor 1 (IGF‐1) production. Moreover, IGF‐1 is a key regulator involved in promoting cancer cell progression and is linked with DM. Cancer drug resistance and ototoxic effects can adversely affect the health and lifespan of an individual. However, naturally derived bioactive compounds are gaining attention for their nontoxic properties and specific behavior. Likewise, probiotics have also been regarded as safe and successful alternatives to treat DM‐linked cancers. The present review aims to highlight the therapeutic potential and feasible functions of probiotics to mitigate or inhibit DM‐associated cancers. Meanwhile, the intracellular signaling cascades involved in promoting DM‐linked cancer are enumerated for future prospective research. However, metabolomics interactions and protein–protein interactions are to be discussed for deeper insights into affirmative principles in diabetic‐linked cancers. Drug discovery and innovative preclinical evaluation need further adjuvant and immune‐enhancement therapies. Furthermore, the results of the in silico assessment could provide scientific excellence of IGF‐1 in diabetes and cancer. Overall, this review summarizes the mechanistic insights and therapeutic targets for diabetes‐associated cancer.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- School of Life and Health Sciences Hainan University Haikou China
| | - Xiang Shi‐Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | | | - Soundarapandian Sekar
- Department of Biotechnology Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | - Bo Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| | - Zhu Liu
- School of Life and Health Sciences Hainan University Haikou China
| | - Ai‐Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| |
Collapse
|
7
|
Wang G, Song J, Wang C, Chen X, Suo H. Metabolomics reveals the role of Lactobacillus plantarum SHY130 in hepatic metabolic regulation in a mouse model of type 2 diabetes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6406-6415. [PMID: 37209399 DOI: 10.1002/jsfa.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Among type 2 diabetes (T2D) patients, the incidence rate of liver metabolic disorders is much higher than that in healthy subjects. It was observed in our previous research that diabetic symptoms were improved by Lactobacillus plantarum SHY130 (LPSHY130) isolated from yak yogurt in a murine model of T2D. This study sought to investigate the LPSHY130-mediated hepatic metabolic regulation in a murine model of T2D. RESULTS Treatment with LPSHY130 improved liver function and pathological damage in diabetic mice. Untargeted metabolome analysis revealed that T2D-induced changes in 11 metabolites were regulated after LPSHY130 treatment, mainly involving purine metabolism, amino acid metabolism, and choline metabolism and pantothenate and coenzyme A biosynthesis pathways. In addition, correlation analysis indicated that hepatic metabolic changes can be adjusted by the intestinal microbiota. CONCLUSION Overall, this study suggests that treatment with LPSHY130 relieves liver injury and regulates liver metabolism in a murine model of T2D, thus providing a theoretical basis for the use of probiotics as dietary supplements to regulate hepatic metabolic disorders associated with T2D. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangqi Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Xiang Z, Wu J, Li J, Zheng S, Wei X, Xu X. Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation. ENGINEERING 2023; 29:59-72. [DOI: 10.1016/j.eng.2022.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
9
|
Effects of Lactobacillus acidophilus administration to anorexigenic neuropeptides and some biochemical parameters on rats fed with a high-fat diet. Prostaglandins Other Lipid Mediat 2023; 166:106729. [PMID: 36914021 DOI: 10.1016/j.prostaglandins.2023.106729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
AIM One of the rapidly rising global public health concern is obesity. Over the past three decades, the prevalence of obesity has doubled/tripled in several nations around the world, most likely as a result of urbanization, sedentary lifestyles, and increased intake of high-calorie processed foods. In this study, it was aimed to investigate the effects of Lactobacillus acidophilus administration on rats exposed to high-fat diet experimentally on anorexigenic peptides in the brain and some biochemical parameters in the serum. METHODS In the study, 4 different experimental groups were formed. Group 1 was designated as the control group and fed with a standard rat chow (SD). Group 2 was designated as the high-fat diet (HFD) fed group. Group 3 fed with SD and L. acidophilus probiotic administered. Group 4 fed with HFD and L. acidophilus probiotic administered. At the end of the experiment, leptin, serotonin, glucagon-like peptide-1 (GLP-1) levels were measured in the brain tissue and serum. Glucose, total cholesterol (TC), triglyceride (TG), total protein (TP), albumin, uric acid, aspartate transaminase (AST), alanine aminotransferase (ALT) levels were determined in the serum. RESULTS At the end of the study, it was found that there was an increase in body weight and body mass index in Group 2 compared to Group 1. It was determined that the levels of AST, ALT, TG, TC, glucose, leptin in the serum were significantly high (P < 0.05). The levels of GLP-1 and serotonin in the serum and in the brain were significantly low (P < 0.05). There was a significant decrease in TG and TC in Groups 3 and 4 compared to Group 2 (P < 0.05). The leptin hormone levels in serum and brain were significantly higher in Group 2 than in other groups (P < 0.05). GLP-1 and serotonin levels were found to be significantly low (P < 0.05). The leptin levels in the serum of Groups 3 and 4 decreased significantly compared to Group 2 (P < 0.05). CONCLUSION It was found that probiotic supplementation in high-fat diet had positive effects on anorexigenic peptides. It was concluded that L. acidophilus probiotic can be recommended as a food supplement in the treatment of obesity.
Collapse
|
10
|
Elnagar A, El-Dawy K, El-Belbasi HI, Rehan IF, Embark H, Al-Amgad Z, Shanab O, Mickdam E, Batiha GE, Alamery S, Fouad SS, Cavalu S, Youssef M. Ameliorative Effect of Oxytocin on FBN1 and PEPCK Gene Expression, and Behavioral Patterns in Rats' Obesity-Induced Diabetes. Front Public Health 2022; 10:777129. [PMID: 35462799 PMCID: PMC9021505 DOI: 10.3389/fpubh.2022.777129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Amelioration of hyperinsulinemia and insulin resistance associated with obesity is a cardinal target for therapeutics. Therefore, we investigated the relation of Fibrilln-1 (FBN1) mRNA expression and hepatic phosphoenolpyruvate caboxykinase (PEPCK) enzyme to the ameliorative impact of oxytocin on obesity-induced diabetes, suggesting glycogenolysis markers in diabetic models. Four groups of forty male Wistar rats were formed (n = 10): a control group fed basal diet and intraperitoneal injections of saline; an oxytocin-injected group; a diet-induced obese group fed a high-fat/high-sugar diet and injected with saline; a diet-induced obese group injected with oxytocin. Depending on blood glucose levels, obese groups were further sub-grouped into prediabetic, and diabetic rats, with 5 rats each, at the ninth and the 16th week of the feeding period, respectively. FBN1 expression and PEPCK activity were determined using the qPCR technique and some biochemical parameters (glycemic, lipid profile, kidney, and liver functions) were determined using kits. Obese groups showed an elevation of brain FBN1 expression, high serum lipid profile, high glucose level, and a deleterious impact on liver and kidney functions. Obese groups showed the stimulator effect of the PEPCK enzyme and time-dependent pathological changes in renal and hepatic tissues. The motor activities were negatively correlated with FBN1 gene expression in prediabetic and diabetic rats. In addition to our previous review of the crucial role of asprosin, here we showed that oxytocin could ameliorate obesity-induced diabetes and decrease FBN1 gene expression centrally to block appetite. Oxytocin caused decreases in PEPCK enzyme activity as well as glycogenolysis in the liver. Therefore, oxytocin has a potential effect on FBN1 expression and PEPCK enzyme activity in the obesity-induced diabetic-rat model.
Collapse
Affiliation(s)
- Asmaa Elnagar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khalifa El-Dawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hussein I El-Belbasi
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shebin Alkom, Egypt
| | - Hamdy Embark
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Ph.D in Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Elsayed Mickdam
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samer S Fouad
- Qena University Hospital, Ph.D in Veterinary Clinical Pathology, South Valley University, Qena, Egypt
| | - Simona Cavalu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohammed Youssef
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
11
|
Zha H, Si G, Wang C, Lv J, Zhang H, Li L. Characteristics of the gut microbiota in Bifidobacterium catenulatum LI10 pre-treated rats with lower levels of D-galactosamine-induced liver damage. J Appl Microbiol 2022; 133:375-384. [PMID: 35365858 DOI: 10.1111/jam.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
AIMS Liver damage has caused great illness in human beings. Bifidobacterium catenulatum LI10 has been determined with protective effect against D-galactosamine-induced liver damage. However, due to the sample limitation, the individual difference in its protective effect was not determined. The current study was designed to characterise the gut microbiota of LI10-pretreated rats with lower levels of liver damage. METHODS AND RESULTS A series of experiments and bioinformatic analyses were carried out. Two rat cohorts with different levels of liver damage were determined, i.e., Non-Severe and Severe cohorts. Six out of the seven measured liver function variables were lower in the Non-Severe cohort, while four cytokine variables also yielded differences between the two cohorts. The Non-Severe and Severe cohorts were determined with distinct gut microbiota, among which, ASV14_Parabacteroides and ASV7_Bacteroides were most associated with Non-Severe and Severe cohorts, respectively. Five phylotypes were determined as structural gatekeepers in the microbiota network of Non-Severe cohort, ASV135_Lachnospiraceae_NK4A136 of which contributed most to the stability of the network. CONCLUSIONS The relevant findings suggest that some gut bacteria could benefit the protective effect of LI10 on lowering the severity of rat liver damage. SIGNIFICANCE AND IMPACT OF THE STUDY The bacteria benefiting the protective effects of potential probiotics could be further investigated for future clinical application.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Guinian Si
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, China
| | - Chenyu Wang
- Department of Rehabilitation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
12
|
Kerry RG, Das G, Golla U, Del Pilar Rodriguez-Torres M, Shin HS, Patra JK. Engineered Probiotic and Prebiotic Nutraceutical Supplementations in Combating Non-communicable Disorders: A Review. Curr Pharm Biotechnol 2022; 23:72-97. [PMID: 33050862 DOI: 10.2174/1389201021666201013153142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Nutritional supplementations are a form of nutrition sources that may help in improving the health complexities of a person throughout his or her life span. Being also categorized as food supplementations, nutraceuticals are products that are extracted from edible sources with medical benefits as well as primary nutritional values. Nutraceuticals can be considered as functional foods. There are evidences that nutraceutical supplementations can alter the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults, including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson's disease [PD], Multiple sclerosis [MS]) and metabolic disorders (Type-II diabetes, obesity and non-alcoholic fatty liver disease). They can even lessen the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) as well as bronchopulmonary dysplasia. Molecular perception of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. In this study, the pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways in the above non-communicable diseases is briefly described. This work also gives an overall introduction of the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks.
Collapse
Affiliation(s)
- Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha,India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326,Korea
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, PA 17033,United States
| | - Maria Del Pilar Rodriguez-Torres
- Departamento de Ingenieria Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autonoma de Mexico, Campus UNAM Juriquilla Boulevard Juriquilla no. 3001, Santiago de Queretaro, Qro., C.P. 76230,Mexico
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi 10326,Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326,Korea
| |
Collapse
|
13
|
Wang L, Jiao T, Yu Q, Wang J, Wang L, Wang G, Zhang H, Zhao J, Chen W. Bifidobacterium bifidum Shows More Diversified Ways of Relieving Non-Alcoholic Fatty Liver Compared with Bifidobacterium adolescentis. Biomedicines 2021; 10:biomedicines10010084. [PMID: 35052765 PMCID: PMC8772902 DOI: 10.3390/biomedicines10010084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
The occurrence of non-alcoholic fatty liver disease (NAFLD) is closely related to intestinal microbiota disturbance, and probiotics has become a new strategy to assist in alleviating NAFLD. In order to investigate the effect of Bifidobacterium on NAFLD and the possible pathway, a NAFLD model was established by using a high-fat diet (HFD) for 18 weeks. Fourteen strains of Bifidobacterium were selected (seven Bifidobacterium adolescentis and seven Bifidobacterium bifidum) for intervention. The effects of different bifidobacteria on NAFLD were evaluated from liver cell injury, liver fat deposition, liver inflammatory state and liver histopathology, and were taken as entry points to explore the mitigation approaches of bifidobacteria through energy intake, lipid metabolism, glucose metabolism and intestinal permeability. The results showed that Bifidobacterium exerts species-specific effects on NAFLD. B. bifidum exerted these effects mainly through regulating the intestinal microbiota, increasing the relative abundance of Faecalibaculum and Lactobacillus, decreasing the relative abundance of Tyzzerella, Escherichia-Shigella, Intestinimonas, Osillibacter and Ruminiclostridium, and further increasing the contents of propionic acid and butyric acid, regulating lipid metabolism and intestinal permeability, and ultimately inhibiting liver inflammation and fat accumulation to alleviate NAFLD. B. adolescentis exerted its effects mainly through changing the intestinal microbiota, increasing the content of propionic acid, regulating lipid metabolism and ultimately inhibiting liver inflammation to alleviate NAFLD.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Ting Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute, Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: ; Tel./Fax: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (T.J.); (Q.Y.); (J.W.); (L.W.); (G.W.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Singh D, Khan MA, Siddique HR. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sci 2021; 285:120008. [PMID: 34606851 DOI: 10.1016/j.lfs.2021.120008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
The microbiota plays an important role in maintaining the body's homeostasis. Imbalance in the microbiota is referred to as microbiota dysbiosis. Microbiota dysbiosis leads to pro-inflammatory immune response and progression of cancer- one of the leading causes of mortality globally. Accumulating evidence suggest the role of microbiota-dysbiosis in the liver and oral carcinogenesis and the therapeutic role of probiotic strains against these diseases. Probiotics are active microbial strains that have recently gained clinical importance due to their beneficial effects on the human body associated with the prevention and treatment of different diseases, including cancer. Multiple researchers have reported the use of probiotic strains in the modulation of microbiota and immune responses for cancer prevention and management. Clinical trials have also highlighted the efficacy of probiotic strains in reducing the side effects of microbiota dysbiosis related to cancer. In this context, the probiotic-mediated modulation to reverse microbiota dysbiosis is now considered one of the possible novel strategies for cancer prevention and management. In this article, we review the association between microbiota dysbiosis and liver/oral cancer. This review highlights the research advances on the anti-cancer activity of probiotic strains and their metabolites in the management of liver and oral cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
Bacterial communities associated with Zeldia punctata, a bacterivorous soil-borne nematode. Int Microbiol 2021; 25:207-216. [PMID: 34553287 DOI: 10.1007/s10123-021-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Soil inhabiting organisms are important determinants of agroecosystem productivity. Understanding the composition, the abundance, and the type of interactions established by soil microorganisms is therefore crucial to design strategies to improve agricultural practices and agroecosystem management. In this study, we collected Zeldia punctata nematodes in maize fields in South Africa and profiled their associated bacterial communities using next-generation sequencing. We observed that Z. punctata nematodes establish associations with ecologically diverse bacterial species. The most abundant species observed are Pseudomonas syringae, a phytopathogenic bacterial complex; Lactobacillus paraplantarum, a broadly distributed bacterial species that is present in soils, water bodies, and animal intestinal tracts and has certain probiotic and antimicrobial properties; and Melissococcus plutonius, a serious pathogenic bacterial species that causes brood disease in honeybees. Our study contributes to a better understanding of the soil bacterial communities associated with nematodes in maize agricultural soils in South Africa and unravels the presence of diverse detrimental and beneficial nematode-associated bacteria.
Collapse
|
16
|
Zhang Y, Wu T, Li W, Zhao Y, Long H, Liu R, Sui W, Zhang M. Lactobacillus casei LC89 exerts antidiabetic effects through regulating hepatic glucagon response and gut microbiota in type 2 diabetic mice. Food Funct 2021; 12:8288-8299. [PMID: 34308462 DOI: 10.1039/d1fo00882j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous study suggests that Lactobacillus casei exhibits antihyperglycemic activity, however, the molecular mechanism of this has yet to be elucidated. Here, the anti-diabetic effects and underlying mechanisms of Lactobacillus casei LC89 are investigated in type 2 diabetes mellitus (T2DM) mice, which was induced by a high-fat diet (HFD) with streptozotocin (100 mg per kg BW). The results show that LC89 at a dose of 109 CFU day-1 decreases fasting blood glucose (FBG) and insulin levels by 35.12% and 28.37%, respectively, compared to the diabetes control (DC) group. Moreover, LC89 treatment improved the insulin resistance index (HOMA-IR), serum lipid profiles and inflammation cytokines. The real-time polymerase chain reaction indicated that LC89 markedly downregulates the mRNA expression of hepatic glucagon (GCG), glucagon receptor (GCGR), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Meanwhile, LC89 significantly decreases the abundance of Odoribacter, but increases the Alloprevotella, Bacteroides, Parabacteroides and Ruminococcus content. Therefore, LC89 plays a positive role in alleviating T2DM by regulating gut microbiota and glucagon signal pathway-related genes, and it may be a beneficial dietary supplement to regulate glucose metabolism in T2DM.
Collapse
Affiliation(s)
- Yongli Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wen Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yunjiao Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hairong Long
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. and Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. and Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
17
|
Temraz S, Nassar F, Kreidieh F, Mukherji D, Shamseddine A, Nasr R. Hepatocellular Carcinoma Immunotherapy and the Potential Influence of Gut Microbiome. Int J Mol Sci 2021; 22:ijms22157800. [PMID: 34360566 PMCID: PMC8346024 DOI: 10.3390/ijms22157800] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Disruptions in the human gut microbiome have been associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. Evidence suggests that the gut microbiota can promote the development of hepatocellular carcinoma through the persistence of this inflammation by inducing genetic and epigenetic changes leading to cancer. As the gut microbiome is known for its effect on host metabolism and immune response, it comes as no surprise that the gut microbiome may have a role in the response to therapeutic strategies such as immunotherapy and chemotherapy for liver cancer. Gut microbiota may influence the efficacy of immunotherapy by regulating the responses to immune checkpoint inhibitors in patients with hepatocellular carcinoma. Here, we review the mechanisms by which gut microbiota influences hepatic carcinogenesis, the immune checkpoint inhibitors currently being used to treat hepatocellular carcinoma, as well as summarize the current findings to support the potential critical role of gut microbiome in hepatocellular carcinoma (HCC) immunotherapy.
Collapse
Affiliation(s)
- Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
- Correspondence: (S.T.); (R.N.)
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Firas Kreidieh
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon
- Correspondence: (S.T.); (R.N.)
| |
Collapse
|
18
|
Mechanisms by Which Probiotic Bacteria Attenuate the Risk of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22052606. [PMID: 33807605 PMCID: PMC7961993 DOI: 10.3390/ijms22052606] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second leading cause of cancer-related deaths worldwide. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcoholic liver disease (ALD), and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are the major extrinsic risk factors of HCC development. Genetic background is pivotal in HCC pathogenesis, and both germline mutations and single nucleotide polymorphism (SNP) are intrinsic risk factors of HCC. These HCC risk factors predispose to hepatic injury and subsequent activation of fibrogenesis that progresses into cirrhosis and HCC. Probiotic bacteria can mitigate HCC risk by modulating host gut microbiota (GM) to promote growth of beneficial microbes and inhibit HCC-associated dysbiosis, thus preventing pathogen-associated molecular patterns (PAMPs)-mediated hepatic inflammation. Probiotics have antiviral activities against HBV and HCV infections, ameliorate obesity and risk of NAFLD/NASH, and their antioxidant, anti-proliferative, anti-angiogenic, and anti-metastatic effects can prevent the HCC pathogenesis. Probiotics also upregulate the expression of tumor suppressor genes and downregulate oncogene expression. Moreover, metabolites generated by probiotics through degradation of dietary phytochemicals may mitigate the risk of HCC development. These multiple anticancer mechanisms illustrate the potential of probiotics as an adjuvant strategy for HCC risk management and treatment.
Collapse
|
19
|
Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Sci Rep 2020; 10:21829. [PMID: 33311536 PMCID: PMC7732981 DOI: 10.1038/s41598-020-78920-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
In recent years the role of extracellular vesicles (EVs) of Gram-positive bacteria in host-microbe cross-talk has become increasingly appreciated, although the knowledge of their biogenesis, release and host-uptake is still limited. The aim of this study was to characterize the EVs released by the dairy isolate Lactiplantibacillus plantarum BGAN8 and to gain an insight into the putative mechanism of EVs uptake by intestinal epithelial cells. The cryo-TEM observation undoubtedly demonstrated the release of EVs (20 to 140 nm) from the surface of BGAN8, with exopolysaccharides seems to be part of EVs surface. The proteomic analysis revealed that the EVs are enriched in enzymes involved in central metabolic pathways, such as glycolysis, and in membrane components with the most abundant proteins belonging to amino acid/peptide ABC transporters. Putative internalization pathways were evaluated in time-course internalization experiments with non-polarized HT29 cells in the presence of inhibitors of endocytic pathways: chlorpromazine and dynasore (inhibitors of clathrin-mediated endocytosis—CME) and filipin III and nystatin (disrupting lipid rafts). For the first time, our results revealed that the internalization was specifically inhibited by dynasore and chlorpromazine but not by filipin III and nystatin implying that one of the entries of L. plantarum vesicles was through CME pathway.
Collapse
|
20
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
21
|
Guilbaud A, Howsam M, Niquet-Léridon C, Delguste F, Fremont M, Lestavel S, Maboudou P, Garat A, Schraen S, Onraed B, Foligné B, Boulanger É, Tessier FJ. The Effect of Lactobacillus fermentum ME-3 Treatment on Glycation and Diabetes Complications. Mol Nutr Food Res 2020; 64:e1901018. [PMID: 31991062 DOI: 10.1002/mnfr.201901018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Type 2 diabetes (T2D) induces organ damage associated with glycation, among other metabolic pathways. While therapeutic strategies have been tested to reduce the formation and impact of glycation products, results remain equivocal. Anti-diabetic therapies using probiotics have been proposed, but their effect upon glycation has not been reported. Here, the effects of the bacterial strain Lactobacillus fermentum ME-3 on glycation and T2D-related complications in a mouse model of T2D are investigated. METHODS & RESULTS Wild-type LepRdb/+ and diabetic LepRdb/db littermates receive a daily gavage of either water or the probiotic ME-3 strain (1010 CFU). Glycation markers, fructoselysine-derived furosine (FL-furosine) and carboxymethyllysine (CML), are quantified in four major organs and plasma using stable-isotope dilution LC-MS/MS. After 12 weeks of ME-3 treatment, diabetic mice gain less weight and exhibit an apparently improved glucose tolerance. The ME-3 treatment reduces median renal levels of FL-furosine in both genotypes by 12-15%, and renal and pulmonary free-CML in diabetic mice by 30% and 18%, respectively. Attenuated hepatic steatosis and an improved plasma lipid profile are also observed with treatment in both genotypes, while the gut microbiota profile is unchanged. CONCLUSION L. fermentum ME-3 has therapeutic potential for reducing the formation/accumulation of some glycation products in kidneys and attenuating some common diabetes-related complications.
Collapse
Affiliation(s)
- Axel Guilbaud
- Univ. Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000, Lille, France.,VF Bioscience SAS, Parc Eurasanté, 310 rue Jules Vallès, 59120, Loos-lez-Lille, France.,Francophone Maillard Reaction Society (FMaRS), Lille, France
| | - Michael Howsam
- Univ. Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000, Lille, France.,Francophone Maillard Reaction Society (FMaRS), Lille, France
| | - Céline Niquet-Léridon
- Francophone Maillard Reaction Society (FMaRS), Lille, France.,Transformations & Agro-ressources Unit, Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Florian Delguste
- Univ. Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000, Lille, France
| | - Marc Fremont
- VF Bioscience SAS, Parc Eurasanté, 310 rue Jules Vallès, 59120, Loos-lez-Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1011 - EGID, F-59000, Lille, France
| | - Patrice Maboudou
- Laboratory of Biochemistry, Centre de Biologie-Pathologie Pierre-Marie Degand, CHRU Lille, bd. du professeur Leclercq, 59037, Lille Cedex
| | - Anne Garat
- Univ. Lille, CHU Lille, Pasteur Institute of Lille, EA 4483 - IMPECS, F-59000, Lille, France
| | - Susanna Schraen
- Laboratory of Biochemistry, Centre de Biologie-Pathologie Pierre-Marie Degand, CHRU Lille, bd. du professeur Leclercq, 59037, Lille Cedex
| | - Brigitte Onraed
- Laboratory of Biochemistry, Centre de Biologie-Pathologie Pierre-Marie Degand, CHRU Lille, bd. du professeur Leclercq, 59037, Lille Cedex
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE, F-59000, Lille, France
| | - Éric Boulanger
- Univ. Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000, Lille, France.,Francophone Maillard Reaction Society (FMaRS), Lille, France
| | - Frédéric J Tessier
- Univ. Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000, Lille, France.,Francophone Maillard Reaction Society (FMaRS), Lille, France
| |
Collapse
|
22
|
Lactobacillus rhamnosus Reduces Blood Glucose Level through Downregulation of Gluconeogenesis Gene Expression in Streptozotocin-Induced Diabetic Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:6108575. [PMID: 32399477 PMCID: PMC7201496 DOI: 10.1155/2020/6108575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Some lactic acid bacteria (LAB) are observed to be potential probiotics with functional properties such as lowering fasting blood glucose (FBG), as a promising hyperglycemia management. This study investigated the ability and mechanism of Lactobacillus rhamnosus BSL and Lactobacillus rhamnosus R23 on lowering FBG in diabetic rats induced by streptozotocin (STZ). The rats were orally administered with L. rhamnosus BSL and L. rhamnosus R23 by giving 1 mL cell suspension (109 CFU/mL) daily for 30 days. The body weight (BW) was recorded once in three days, and FBG was recorded once in six days. An oral glucose tolerance test (OGTT) was measured 1 week after injection with STZ and before sacrifice. Fecal samples were collected on days 0, 15, and 30 for LAB population and identification, performed by PCR detecting 16S rRNA. Oral administration of L. rhamnosus BSL and L. rhamnosus R23 decreased FBG and improved glucose tolerance via downregulation of glucose-6-phosphatase (G6pc) expression by 0.57- and 0.60-fold change, respectively (P < 0.05). The lipid profiles, BUN, creatinine, SGOT, and SGPT were significantly (P < 0.05) different between normal and diabetic rats, but they were not significantly (P > 0.05) different among diabetic rats. Both strains were effective in increasing fecal LAB population. Molecular identification of the isolated LAB from fecal sample indicated that they were able to survive and pass through the digestive tract. These results suggested that both strains have the ability to manage blood glucose level and become a promising agent to manage hyperglycemia and diabetes.
Collapse
|
23
|
Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9361614. [PMID: 29998137 PMCID: PMC5994577 DOI: 10.1155/2018/9361614] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Lactobacillus plantarum (widespread member of the genus Lactobacillus) is one of the most studied species extensively used in food industry as probiotic microorganism and/or microbial starter. The exploitation of Lb. plantarum strains with their long history in food fermentation forms an emerging field and design of added-value foods. Lb. plantarum strains were also used to produce new functional (traditional/novel) foods and beverages with improved nutritional and technological features. Lb. plantarum strains were identified from many traditional foods and characterized for their systematics and molecular taxonomy, enzyme systems (α-amylase, esterase, lipase, α-glucosidase, β-glucosidase, enolase, phosphoketolase, lactase dehydrogenase, etc.), and bioactive compounds (bacteriocin, dipeptides, and other preservative compounds). This review emphasizes that the Lb. plantarum strains with their probiotic properties can have great effects against harmful microflora (foodborne pathogens) to increase safety and shelf-life of fermented foods.
Collapse
Affiliation(s)
- Sudhanshu S. Behera
- Department of Fisheries and Animal Resources Development, Government of Odisha, Bhubaneswar, India
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Ramesh C. Ray
- Centre for Food Biology Studies, 1071/17 Jagamohan Nagar, Khandagiri PO, Bhubaneswar 751 030, Odisha, India
| | - Nevijo Zdolec
- Department of Hygiene, Technology and Food Safety, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Yin P, Wang Y, Yang L, Sui J, Liu Y. Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules 2018; 23:molecules23051046. [PMID: 29710864 PMCID: PMC6100579 DOI: 10.3390/molecules23051046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Our previous reports showed that crude extract prepared with 50% ethanol (ethanol crude extract, ECE) from Mongolian oak cups possessed excellent in vitro antioxidant capacities as well as inhibitory activities against α-glucosidase, α-amylase and protein glycation caused by its enrichment in phenolics, including mainly ellagic acid, kaempferol and their derivatives. Nevertheless, few in vivo studies on antidiabetic activities of these phenolics were conducted. The present study investigated hypoglycemic effects with normal and diabetic rats being administrated orally without or with ECE at 200 and 800 mg/kg for 15 days. In normal rats, no significant differences were exhibited after ECE administration in body weight, fasting blood glucose level, levels of cholesterol, triglyceride, LDL and AST in serum, organ indexes, and levels of GSH and MDA in organs. In diabetic rats, the fasting blood glucose level, indexes of heart and liver, and levels of cholesterol and triglyceride in serum and MDA in heart tissue were significantly decreased. Moreover, HDL levels in serum and SOD activities in the four organs of diabetic rats were significantly improved after ECE administration at 800 mg/kg. Thus, in addition to inhibiting α-glucosidase, α-amylase and protein glycation reported previously, oak cups might contain novel dietary phytonutrients in preventing abnormal changes in blood glucose and lipid profile and attenuating oxidant stress in vivo. The results also implied that it is ellagic acid, kaempferol and their derivatives enriched in ECE that might play vital roles in managing type 1 as well as type 2 diabetes.
Collapse
Affiliation(s)
- Peipei Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yu Wang
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Lingguang Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinling Sui
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|