1
|
Sharma P, Garg A, Nidhi, Sharma V. Amelioration of Ulcerative Colitis in BALB/c Mice by Probiotic-Fermented Aegle marmelos Juice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5288406. [PMID: 40206440 PMCID: PMC11981707 DOI: 10.1155/ijfo/5288406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/15/2025] [Indexed: 04/11/2025]
Abstract
Aegle marmelos has been used traditionally in folk medicine for the treatment of gastrointestinal (GI) disorders. Fermentation using probiotics is well established to positively modulate the GI system. This study investigated the therapeutic potential of probiotic-fermented Aegle marmelos juice for ulcerative colitis (UC), using a mouse model. UC was induced in mice with dextran sulphate sodium (DSS), leading to weight loss, increased disease activity, and lowered antioxidant defenses. In contrast, mice treated with probiotic-fermented Aegle marmelos juice showed improved body weight, reduced disease activity index, and mitigated colon damage. Inflammatory biomarkers were decreased, while antioxidant activity increased. High-performance liquid chromatography analysis of the fresh and probiotic-fermented Aegle marmelos juice revealed an increase in potential bioactive compounds compared to its unfermented counterpart. These findings suggest that probiotic-fermented Aegle marmelos juice could be a promising therapeutic option for UC, countering inflammation and displaying antioxidant properties.
Collapse
Affiliation(s)
- Pritika Sharma
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
| | - Aakriti Garg
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nidhi
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Vasudha Sharma
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Joung JY, Choi K, Lee JH, Oh NS. Protective Potential of Limosilactobacillus fermentum Strains and Their Mixture on Inflammatory Bowel Disease via Regulating Gut Microbiota in Mice. J Microbiol Biotechnol 2024; 35:e2410009. [PMID: 39849930 PMCID: PMC11813365 DOI: 10.4014/jmb.2410.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study is to investigate the protective potential of Limosilactobacillus fermentum IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells. Subsequently, the potential protective effects of each of these three strains, along with their mixture, were evaluated in a murine colitis model induced by dextran sodium sulfate (DSS). Noteworthy improvements in physiological parameters such as body weight, disease activity index, and colon length were observed in mice treated with the mixture followed by IR62. Additionally, administration of each strain and the mixture mitigated DSS-induced changes in gut microbiota composition with increased abundance of Lactobacillus, Bifidobacterium, Ruminococcus, and Muribaculum, compared to DSS-treated mice. Interestingly, the abundance of Muribaculum increased approximately 2.4-fold after administration of the mixture compared to before administration. Additionally, the concentration of short-chain fatty acids (SCFAs) was significantly reduced in DSS-treated group compared to the control group, while the mixture treatment group had the highest concentration of SCFAs. Furthermore, due to these changes in microbiota and the leading metabolites induced by treatment of the mixture, DSS-induced dysregulation of inflammationand barrier function-related mRNA expressions was significantly inhibited in the group fed with the mixture. Consequently, this study indicates that the multi-strain mixture of L. fermentum strains may play a crucial role in modulating gut microbiota, thereby alleviating IBD through the synergistic effect of the individual effects of the three strains.
Collapse
Affiliation(s)
- Jae Yeon Joung
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Kayoung Choi
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Liang M, Sun X, Guo M, Wu H, Zhao L, Zhang J, He J, Ma X, Yu Z, Yong Y, Gooneratne R, Ju X, Liu X. Baicalin methyl ester prevents the LPS - induced mice intestinal barrier damage in vivo and in vitro via P65/TNF-α/MLCK/ZO-1 signal pathway. Biomed Pharmacother 2024; 180:117417. [PMID: 39298909 DOI: 10.1016/j.biopha.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The effect of baicalin methyl ester (BME) on the regulation of mice intestinal barrier in the inflammatory response was studied in vivo and in vitro. Thirty six C57/BL mice were randomly divided into six groups (n = 6): control group; LPS group (LPS 3.5 mg/kg given intraperitoneal [ip] on day 7 of the study only), PBS group, and three BME groups (low: 50 mg/kg; medium: 100 mg/kg; high: 200 mg/kg) orally dosed with BME for 7d and LPS ip on day 7. All mice were sacrificed on day 8, and jejunum tissue collected for histopathology (H&E and PAS staining), protein expression of pro-inflammatory factors (TNF-α, IL-6, IL-8, IFN-γ) by ELISA, and intestinal tight junction proteins (ZO-1, occludin, claudin-1 and claudin-4) by Western Blot. Compared with the control group, LPS significantly increased the serum cytokines DAO (p < 0.01) and DLA (p < 0.01), upregulated the expression of pro-inflammatory factors, MLCK proteins (p <0.05) and increased the MLCK/ZO-1ratio (p <0.001). LPS also decreased the expression of claudin-4 (p < 0.01) in the jejunum and induced an inflammatory response damaging the jejunal mucosal barrier. Pretreatment with BME (100-200 mg/kg) significantly decreased the cytokines DAO (p < 0.05) and DLA (p < 0.01) in the serum, pro-inflammatory factors in the jejunum, significantly down-regulated the expression of MLCK (p <0.05) and the ratio of MLCK/ZO-1(p <0.001) but upregulated the expressions of ZO-1(p < 0.01), occludin (p < 0.05), claudin-1(p < 0.05) and claudin-4 (p < 0.05), and thereby restored the intestinal tissue structure, suggestive of alleviation of LPS-induced intestinal inflammation by BME. In vitro, MODE-K cells (derived from mice intestinal epithelium) were exposed to BME at 0 (control group-No LPS), 10, 20 and 40 μM BME for 24 h prior to LPS addition at 50 μg/mL for 2 h. LPS significantly increased the expression of pro-inflammatory factors, MLCK (p < 0.01) and the ratio of MLCK/ZO-1(p <0.001), decreased the expressions of ZO-1 (p < 0.05), occludin (p < 0.01), claudin-1 (p < 0.01) and claudin-4 (p < 0.01) in MODE-K cells compared with the control group. Compared with the LPS group, BME (10 - 40 μM) significantly decreased the expression of pro-inflammatory factors, MLCK (p < 0.05) and the ratio of MLCK/ZO-1(p <0.01) but increased the expressions of ZO-1(p < 0.01), occludin (p < 0.05) and claudin-4(p < 0.01) indicating an up-regulation of the expression of tight junction proteins by BME. On addition of extrinsic TNF-α plus LPS, the TNF- α level increased (p < 0.001) in MODE-K cells and the protein expression of MLCK (p < 0.01) was markedly up-regulated. Molecular docking predicted BME interacted with P65 by forming hydrogen bonds. IP-WB further confirmed that BME was directly bound to P65 protein in MODE-K cells. In conclusion, BME was able to restore the intestinal barrier through the P65 / TNF-α / MLCK / ZO-1 signaling pathway.
Collapse
Affiliation(s)
- Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
4
|
Ebrahiminejad A, Sepahi AA, Yadegar A, Meyfour A. Pasteurized form of a potential probiotic lactobacillus brevis IBRC-M10790 exerts anti-inflammatory effects on inflammatory bowel disease in vitro. BMC Complement Med Ther 2024; 24:258. [PMID: 38987744 PMCID: PMC11234635 DOI: 10.1186/s12906-024-04576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal system. So far, no treatment has been identified that can completely cure IBD. Lactobacillus brevis is hypothesized to be beneficial in preventing inflammation. This study aimed to evaluate the potential probiotic effects of live and pasteurized L. brevis IBRC-M10790 on the in vitro cell co-culture model of IBD. METHODS An in vitro intestinal model was established using a transwell co-culture system of Caco-2 intestinal epithelial cells and RAW264.7 macrophages. Inflammatory conditions were induced in RAW264.7 cells using lipopolysaccharide. The effects of live and pasteurized L. brevis IBRC-M10790 on inflammatory mediators and epithelial barrier markers were investigated. RESULTS L. brevis IBRC-M10790 was able to significantly decrease the proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and increase the anti-inflammatory cytokine (IL-10) in the in vitro co-culture system. In addition, L. brevis increased adherens and tight junction (TJ) markers (ZO-1, E-cadherin, and Occludin) in Caco-2 intestinal epithelial cells. Based on the results, pasteurized L. brevis showed a higher protective effect than live L. brevis. CONCLUSIONS Our findings suggest that live and pasteurized forms of L. brevis possess probiotic properties and can mitigate inflammatory conditions in IBD.
Collapse
Affiliation(s)
- Ardeshir Ebrahiminejad
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
De Simone N, Rocchetti MT, la Gatta B, Spano G, Drider D, Capozzi V, Russo P, Fiocco D. Antimicrobial Properties, Functional Characterisation and Application of Fructobacillus fructosus and Lactiplantibacillus plantarum Isolated from Artisanal Honey. Probiotics Antimicrob Proteins 2023; 15:1406-1423. [PMID: 36173591 PMCID: PMC10491547 DOI: 10.1007/s12602-022-09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Honey is a valuable reservoir of lactic acid bacteria (LAB) and, particularly, of fructophilic LAB (FLAB), a relatively novel subgroup of LAB whose functional potential for human and food application has yet to be explored. In this study, FLAB and LAB strains have been isolated from honeys of different floral origins and selected for their broad antimicrobial activity against typical foodborne pathogenic bacteria and spoilage filamentous fungi. The best candidates, two strains belonging to the species Lactiplantibacillus plantarum and Fructobacillus fructosus, were submitted to partial characterisation of their cell free supernatants (CFS) in order to identify the secreted metabolites with antimicrobial activity. Besides, these strains were examined to assess some major functional features, including in vitro tolerance to the oro-gastrointestinal conditions, potential cytotoxicity against HT-29 cells, adhesion to human enterocyte-like cells and capability to stimulate macrophages. Moreover, when the tested strains were applied on table grapes artificially contaminated with pathogenic bacteria or filamentous fungi, they showed a good ability to antagonise the growth of undesired microbes, as well as to survive on the fruit surface at a concentration that is recommended to develop a probiotic effect. In conclusion, both LAB and FLAB honey-isolated strains characterised in this work exhibit functional properties that validate their potential use as biocontrol agents and for the design of novel functional foods. We reported antimicrobial activity, cytotoxic evaluation, probiotic properties and direct food application of a F. fructosus strain, improving the knowledge of this species, in particular, and on FLAB, more generally.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, via Pinto 1, 71122, Foggia, Italy
| | - Barbara la Gatta
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, ICV-Institut Charles Viollette, 59000, Lille, France
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
6
|
Elkholy SE, Maher SA, Abd El-Hamid NR, Elsayed HA, Hassan WA, Abdelmaogood AKK, Hussein SM, Jaremko M, Alshawwa SZ, Alharbi HM, Imbaby S. The immunomodulatory effects of probiotics and azithromycin in dextran sodium sulfate-induced ulcerative colitis in rats via TLR4-NF-κB and p38-MAPK pathway. Biomed Pharmacother 2023; 165:115005. [PMID: 37327586 DOI: 10.1016/j.biopha.2023.115005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Ulcerative colitis (UC), a chronic autoimmune disease of the gut with a relapsing and remitting nature, considers a major health-care problem. DSS is a well-studied pharmacologically-induced model for UC. Toll-Like Receptor 4 (TLR4) and its close association with p-38-Mitogen-Activated Protein Kinase (p-38 MAPK) and nuclear factor kappa B (NF-κB) has important regulatory roles in inflammation and developing UC. Probiotics are gaining popularity for their potential in UC therapy. The immunomodulatory and anti-inflammatory role of azithromycin in UC remains a knowledge need. In the present rats-established UC, the therapeutic roles of oral probiotics (60 billion probiotic bacteria per kg per day) and azithromycin (40 mg per kg per day) regimens were evaluated by measuring changes in disease activity index, macroscopic damage index, oxidative stress markers, TLR4, p-38 MAPK, NF-κB signaling pathway in addition to their molecular downstream; tumor necrosis factor alpha (TNFα), interleukin (IL)1β, IL6, IL10 and inducible nitric oxide synthase (iNOS). After individual and combination therapy with probiotics and azithromycin regimens, the histological architecture of the UC improved with restoration of intestinal tissue normal architecture. These findings were consistent with the histopathological score of colon tissues. Each separate regimen lowered the remarkable TLR4, p-38 MAPK, iNOS, NF-κB as well as TNFα, IL1β, IL6 and MDA expressions and elevated the low IL10, glutathione and superoxide dismutase expressions in UC tissues. The combination regimen possesses the most synergistic beneficial effects in UC that, following thorough research, should be incorporated into the therapeutic approach in UC to boost the patients' quality of life.
Collapse
Affiliation(s)
- Shereen E Elkholy
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Shymaa Ahmad Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Noura R Abd El-Hamid
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Genetics unit, Histology and cell biology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba A Elsayed
- Microbiology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Wael Abdou Hassan
- Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Basic Sciences, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah 52726, Saudi Arabia
| | - Asmaa K K Abdelmaogood
- Clinical Pathology Department, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Samar M Hussein
- Physiology Department, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
7
|
Wang R, Kuerman M, Cui Q, Tian X, Zhou Y, Yi H, Gong P, Lin K, Zhang Z, Liu T, Zhang L. Protective effects of Bifidobacterium bifidum FL-228.1 on dextran sulfate sodium-induced intestinal damage in mice. Eur J Nutr 2023; 62:1267-1280. [PMID: 36520190 DOI: 10.1007/s00394-022-03064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Numerous studies have found that probiotics benefit the intestinal barrier. However, the prophylactic effects of probiotics on the intestinal barrier, i.e., if probiotics exert protective effects in healthy individuals to defend them against harmful elements, have seldomly been reported. The present study aimed to investigate the possible mechanisms of potential strains with the function of preventing intestinal barrier damage. METHODS This study investigated nine potential probiotic strains using in vitro and in vivo models on their intestinal barrier-protecting properties. Transcriptomic was then employed to decipher the underlying mechanisms of action of the strains. RESULTS The results showed that the strains, to varying degrees, regulated the ratio of interleukin (IL)-10 and IL-12 in peripheral blood mononuclear cells (PBMCs), increased the transepithelial electrical resistance (TEER) values, and decreased Caco-2 cell monolayers permeability. Correspondingly, the strains showed different prophylactic efficacies in protecting mice from dextran sulfate sodium (DSS)-induced intestinal barrier damage. Remarkably, Bifidobacterium bifidum FL-228.1 (FL-228.1) showed the best prophylactic efficacies in protecting mice from DSS-induced intestinal barrier damage. Further research suggested that FL-228.1 exerted its prophylactic effects by enhancing mucin 2 (Muc2) production and Claudin (Cldn)-4 in the colon. Furthermore, the transcriptomic and protein-protein interactions (PPI) analyses indicated that the inhibition of NLRP3 and the activation of PPARγ and TLR2 could be involved in protecting the intestinal barrier by FL-228.1. CONCLUSION Bifidobacterium bifidum FL-228.1 may be developed as a promising probiotic for the prevention of intestinal barrier damage via PPARγ/NLRP3/ TLR2 pathways by enhancing Muc2 and Cldn-4.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Malina Kuerman
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Yu Zhou
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
8
|
Poaty Ditengou JIC, Ahn SI, Chae B, Choi NJ. Are heat-killed probiotics more effective than live ones on colon length shortness, disease activity index, and the histological score of an inflammatory bowel disease-induced murine model? A meta-analysis. J Appl Microbiol 2023; 134:6988181. [PMID: 36646433 DOI: 10.1093/jambio/lxad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
This study was conducted to compare the efficiency of heat-killed and live probiotics against colon length shortness, disease activity index (DAI), and the histological score of an inflammatory bowel disease (IBD) via a meta-analysis. In February 2022, the eligible papers were collected from four databases (Google Scholar, PubMed, ScienceDirect, and Scopus). Using common- and random-effects models, the effect sizes were estimated throughout the standardized mean difference. Forty-three papers were recorded for our meta-analysis, and the heterogeneity of the effect sizes was determined with Cochran's Q test, followed by meta-ANOVA and meta-regression analyses. The probiotics (live and heat-killed) had globally an improving or preventive effect on colon length shortness, DAI, and histological score. The sub-group analysis revealed that the heat-killed probiotics had statistically (P > .05) the same improving effect on colon length shortness, DAI, and histological score as live probiotics. In conclusion, this study suggested that live and heat-killed probiotics had a similar impact on IBD symptoms investigated in this study. The present outcomes would be a good base for researchers willing to further compare the effects of live and heat-killed probiotics on IBD.
Collapse
Affiliation(s)
| | - Sung-Il Ahn
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Byungho Chae
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
9
|
Xue Z, Li R, Liu J, Zhou J, Zhang X, Zhang T, Zhang M, Yang Y, Chen H. Preventive and synbiotic effects of the soluble dietary fiber obtained from Lentinula edodes byproducts and Lactobacillus plantarum LP90 against dextran sulfate sodium-induced colitis in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:616-626. [PMID: 36054505 DOI: 10.1002/jsfa.12173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soluble dietary fiber (SDF) obtained from Lentinula edodes byproducts has beneficial effects on human intestinal health. This study aimed to examine the combined preventive and ameliorative effects of a kind of synbiotic (SDF with a molecular weight of 1.58 × 102 kDa and Lactobacillus plantarum LP90 (LP) at 1 × 109 CFU kg-1 ) on dextran sulfate sodium-induced colitis mice. RESULTS The results demonstrated that synbiotic treatment could alleviate weight loss, decrease the disease activity index level and cause histological amelioration. Synbiotic treatment also promoted the production of goblet cells, increased the expression of tight junction proteins, and adjusted the production of myeloperoxidase, malondialdehyde and superoxide dismutase to repair intestinal epithelial injury. Clinical symptoms were alleviated by maintaining Th17/Treg balance, increasing interleukin 10 and immunoglobulin A levels, reducing interleukin 17a and tumor necrosis factor α production, and promoting mRNA to highly express of Foxp3 and vitamin D receptors. Moreover, synbiotic treatment could upregulate butyric acid production (4.71 ± 0.46 mol g-1 feces, P < 0.05) and diversity of intestinal microbial to maintain intestinal homeostasis. CONCLUSION This study suggested that the combination of LP and SDF as a synbiotic has the potential for use as a nutritional supplement to alleviate colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
10
|
Bozzi Cionci N, Reggio M, Baffoni L, Di Gioia D. Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:219-250. [DOI: 10.1007/978-3-031-19564-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Alloo J, Leleu I, Grangette C, Pied S. Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Front Immunol 2022; 13:1024998. [PMID: 36569929 PMCID: PMC9772015 DOI: 10.3389/fimmu.2022.1024998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur de Lille, Univ. Lille, Lille, France
| |
Collapse
|
12
|
Kim DH, Kim SA, Jo YM, Seo H, Kim GY, Cheon SW, Yang SH, Jeon CO, Han NS. Probiotic potential of Tetragenococcus halophilus EFEL7002 isolated from Korean soy Meju. BMC Microbiol 2022; 22:149. [PMID: 35668352 PMCID: PMC9169274 DOI: 10.1186/s12866-022-02561-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Probiotic starters can improve the flavor profile, texture, and health-promoting properties of fermented foods. Tetragenococcus halophilus is a halophilic lactic acid bacterium that is a candidate starter for high-salt fermented foods. However, the species is known to produce biogenic amines, which are associated with neurotoxicity. Here, we report a probiotic starter strain of T. halophilus, EFEL7002, that is suitable for use in high-salt fermentation. RESULTS EFEL7002 was isolated from Korean meju (fermented soybean) and identified as T. halophilus, with 99.85% similarity. The strain is safe for use in food as it is a non-hemolytic and non-biogenic amine producer. EFEL7002 is tolerant to gastrointestinal conditions and can adhere to Caco-2 cells. This strain showed antioxidant, anti-inflammatory, and protective effects against the human gut epithelial barrier. EFEL7002 grew well in media containing 0-18% NaCl showing maximum cell densities in 6% or 12% NaCl. CONCLUSIONS T. halophilus EFEL7002 can be used as a health-promoting probiotic starter culture for various salty fermented foods.
Collapse
Affiliation(s)
- Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yu Mi Jo
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hee Seo
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Su Hwi Yang
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
13
|
Rodrigues F, Cedran M, Pereira G, Bicas J, Sato H. Effective encapsulation of reuterin-producing Limosilactobacillus reuteri in alginate beads prepared with different mucilages/gums. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00737. [PMID: 35686007 PMCID: PMC9171447 DOI: 10.1016/j.btre.2022.e00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
The mainly aim of this study was to use mucilaginous solutions obtained from tamarind, mutamba, cassia tora, psyllium and konjac powdered to encapsulate reuterin-producing Limosilactobacillus reuteri in alginate beads by extrusion technique. In the particles were determined the bacterial encapsulation efficiency, cell viability during storage and survival under simulated gastric and intestinal conditions. Moreover, the reuterin production, its entrapment into the beads and the influence on viability of encapsulated microorganism were evaluated. Scanning electron microscopy and Fourier Transform Infrared spectroscopy were employed to characterize the produced particles. The beads showed a relatively spherical shape with homogenous distribution of L. reuteri. The use of gums and mucilages combined with alginate improved the encapsulation efficiency (from 93.2 to 97.4%), the viability of encapsulated bacteria during refrigerated storage (especially in prolonged storage of 20, 30 and 60 days) and the survival after exposure to gastric and enteric environments (from 67.7 to 76.6%). The L. reuteri was able to produce reuterin via bioconversion of glycerol in the film-forming solutions, and the entrapment of the metabolite was improved using konjac, mutamba and tamarind mucilaginous solutions in the encapsulation process (45, 44.57 and 41.25%, respectively). Thus, our findings confirm the great potential of these hydrocolloids to different further purposes, enabling its application as support material for delivery of chemical or biological compounds.
Collapse
Affiliation(s)
- F.J. Rodrigues
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M.F. Cedran
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - G.A. Pereira
- School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - J.L. Bicas
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - H.H. Sato
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
14
|
Ong JS, Lew LC, Hor YY, Liong MT. Probiotics: The Next Dietary Strategy against Brain Aging. Prev Nutr Food Sci 2022; 27:1-13. [PMID: 35465109 PMCID: PMC9007707 DOI: 10.3746/pnf.2022.27.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022] Open
Abstract
Owing to their long history of safe use, probiotic microorganisms, typically from the genus Lactobacillus, have long been recognized, especially in traditional and fermented food industries. Although conventionally used for dairy, meat, and vegetable fermentation, the use of probiotics in health foods, supplements, and nutraceuticals has gradually increased. Over the past two decades, the importance of probiotics in improving gut health and immunity as well as alleviating metabolic diseases has been recognized. The new concept of a gut-heart-brain axis has led to the development of various innovations and strategies related to the introduction of probiotics in food and diet. Probiotics influence gut microbiota profiles, inflammation, and disorders and directly impact brain neurotransmitter pathways. As brain health often declines with age, the concept of probiotics being beneficial for the aging brain has also gained much momentum and emphasis in both research and product development. In this review, the concept of the aging brain, different in vivo aging models, and various aging-related benefits of probiotics are discussed.
Collapse
Affiliation(s)
- Jia-Sin Ong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lee-Ching Lew
- Probionic Corporation, Jeonbuk Institute for Food-Bioindustry, Jeonbuk 54810, Korea
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, Gyeongbuk 38541, Korea
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
15
|
Vetuschi A, Battista N, Pompili S, Cappariello A, Prete R, Taticchi A, Selvaggini R, Latella G G, Corsetti A, Sferra R. The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis. Nutrition 2022; 94:111511. [PMID: 34813981 DOI: 10.1016/j.nut.2021.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofibroblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflammatory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)-induced chronic colitis. METHODS Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with standard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated. RESULTS The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a significant decrease in the expression of inflammatory cytokines and profibrotic molecules. CONCLUSIONS The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Latella G
- Department of Life, Health and Environmental Sciences-Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, L'Aquila, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
16
|
Song X, Pi S, Gao Y, Zhou F, Yan S, Chen Y, Qiao L, Dou X, Shao D, Xu C. The Role of Vasoactive Intestinal Peptide and Mast Cells in the Regulatory Effect of Lactobacillus casei ATCC 393 on Intestinal Mucosal Immune Barrier. Front Immunol 2021; 12:723173. [PMID: 34899686 PMCID: PMC8657605 DOI: 10.3389/fimmu.2021.723173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) plays an important role in the neuro-endocrine-immune system. Mast cells (MCs) are important immune effector cells. This study was conducted to investigate the protective effect of L. casei ATCC 393 on Enterotoxigenic Escherichia coli (ETEC) K88-induced intestinal mucosal immune barrier injury and its association with VIP/MC signaling by in vitro experiments in cultures of porcine mucosal mast cells (PMMCs) and in vivo experiments using VIP receptor antagonist (aVIP) drug. The results showed that compared with the ETEC K88 and lipopolysaccharides (LPS)-induced model groups, VIP pretreatment significantly inhibited the activation of MCs and the release of β-hexosaminidase (β-hex), histamine and tryptase. Pretreatment with aVIP abolished the protective effect of L. casei ATCC 393 on ETEC K88-induced intestinal mucosal immune barrier dysfunction in C57BL/6 mice. Also, with the blocking of VIP signal transduction, the ETEC K88 infection increased serum inflammatory cytokines, and the numbers of degranulated MCs in ileum, which were decreased by administration of L. casei ATCC 393. In addition, VIP mediated the regulatory effect of L. casei ATCC 393 on intestinal microbiota in mice. These findings suggested that VIP may mediate the protective effect of L.casei ATCC 393 on intestinal mucosal immune barrier dysfunction via MCs.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yueming Gao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fengxia Zhou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
17
|
Jo YM, Kim GY, Kim SA, Cheon SW, Kang CH, Han NS. Limosilactobacillus fermentum MG7011: An Amylase and Phytase Producing Starter for the Preparation of Rice-Based Probiotic Beverages. Front Microbiol 2021; 12:745952. [PMID: 34659181 PMCID: PMC8511794 DOI: 10.3389/fmicb.2021.745952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The goal of this study was to develop a starter strain of Limosilactobacillus fermentum which is beneficial for human health and suitable for rice fermentation. To achieve the goal, the characteristics of 25 strains of L. fermentum were compared in terms of health promoting potentials and rice fermenting abilities. L. fermentum MG7011 was selected as a superior strain to meet the required properties. First, as probiotic traits, the strain had tolerance to gastrointestinal conditions and ability to adhere to Caco-2 and HT-29 cells. The strain showed the antioxidative activity, anti-inflammatory activity, and a protective effect on the epithelial barrier. Next, as starter traits for rice fermentation, MG7011 exhibited proper fermentation profiles in rice solution, such as fast growth rate, pH and metabolite changes, amylase and phytase activities, and optimal viscosity changes for beverage. In conclusion, L. fermentum MG7011 has excellent probiotic activities and proper starter traits in rice, thereby it can be used as a suitable probiotic starter for rice fermentation.
Collapse
Affiliation(s)
- Yu Mi Jo
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
18
|
Identification of New Potential Biotherapeutics from Human Gut Microbiota-Derived Bacteria. Microorganisms 2021; 9:microorganisms9030565. [PMID: 33803291 PMCID: PMC7998412 DOI: 10.3390/microorganisms9030565] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
The role of the gut microbiota in health and disease is well recognized and the microbiota dysbiosis observed in many chronic diseases became a new therapeutic target. The challenge is to get a better insight into the functionality of commensal bacteria and to use this knowledge to select live biotherapeutics as new preventive or therapeutic products. In this study, we set up a screening approach to evaluate the functional capacities of a set of 21 strains isolated from the gut microbiota of neonates and adults. For this purpose, we selected key biological processes involved in the microbiome-host symbiosis and known to impact the host physiology i.e., the production of short-chain fatty acids and the ability to strengthen an epithelial barrier (Caco-2), to induce the release of the anti-inflammatory IL-10 cytokine after co-culture with human immune cells (PBMC) or to increase GLP-1 production from STC-1 endocrine cell line. This strategy highlighted fifteen strains exhibiting beneficial activities among which seven strains combined several of them. Interestingly, this work revealed for the first time a high prevalence of potential health-promoting functions among intestinal commensal strains and identified several appealing novel candidates for the management of chronic diseases, notably obesity and inflammatory bowel diseases.
Collapse
|
19
|
In Vitro Anti-staphylococcal and Anti-inflammatory Abilities of Lacticaseibacillus rhamnosus from Infant Gut Microbiota as Potential Probiotic Against Infectious Women Mastitis. Probiotics Antimicrob Proteins 2021; 13:970-981. [PMID: 33649898 DOI: 10.1007/s12602-021-09755-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
Infectious mastitis is the major cause of early weaning, depriving infants of breastfeeding benefits. It is associated with an inflammatory condition of the breast and lowered resistance to infection. Drug administration during lactation often being contra-indicated, it is therefore important to consider safe therapeutic alternatives to antibiotic and anti-inflammatory therapies, such as probiotics. In this study, we investigated in vitro the probiotic potential of thirteen Lacticaseibacillus (formerly Lactobacillus) rhamnosus strains isolated from the gut microbiota of breastfed healthy infants. Strains were assessed for their β-hemolytic activity, their resistance to antibiotics, and their antimicrobial activities against strains of Staphylococcus and Streptococcus, most often involved in women mastitis. Their immunomodulating abilities were also studied using in vitro stimulation of human immune cells. None of the strains exhibited β-hemolytic activity, and all of them were sensitive to ampicillin, penicillin, tetracycline, rifampicin, erythromycin, chloramphenicol, and imipenem but showed resistance to ceftazidime, trimethoprim/sulfamethoxazole, vancomycin, and cefotaxime, reported to be chromosomally encoded and not inducible or transferable. Four L. rhamnosus strains were selected for their large anti-staphylococcal spectrum: L. rhamnosus VR1-5 and L. rhamnosus VR3-1 inhibiting S. aureus, S. epidermis, and S. warneri and L. rhamnosus CB9-2 and L. rhamnosus CB10-5 exerting antagonistic effect against S. aureus and S. epidermis strains. Antimicrobial compounds released in cell-free supernatant showed proteinaceous nature and were thermoresistant. The immune modulatory analysis of the L. rhamnosus strains revealed two strains with significant anti-inflammatory potential, highlighted by strong induction of IL-10 and a weak pro-Th1 cytokine secretion (IL-12 and IFN-γ). L. rhamnosus CB9-2 combined a large anti-staphylococcal activity spectrum and a promising anti-inflammatory profile. This strain, used individually or in a mixture, can be considered as a probiotic candidate for the management of infectious mastitis during lactation.
Collapse
|
20
|
Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Kaur J, Singh BP, Chaudhary V, Elshaghabee FMF, Singh J, Singh A, Rokana N, Panwar H. Probiotics as Live Bio-therapeutics: Prospects and Perspectives. MICROORGANISMS FOR SUSTAINABILITY 2021:83-120. [DOI: 10.1007/978-981-15-6795-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Al Kassaa I, Mechmchani S, Zaylaa M, Bachar Ismail M, El Omari K, Dabboussi F, Hamze M. Enterococcus faecium CMUL1216 an Immunobiotic Strain with a Potential Application in Animal Sector. Biocontrol Sci 2021; 26:75-84. [PMID: 34092717 DOI: 10.4265/bio.26.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Antibiotic misuse in the animal sector is the first cause of the emergence and spreading of MDR bacteria. Prevention of infectious diseases and enhancement of animal growth are the main effects of antibiotics that push farmers and veterinarians to use this molecule in animal farms. Thus, the use of alternative solutions such as natural antimicrobial substances as well as probiotic strains is a crucial need in this sector. Enterococcus faecium CMUL1216 was isolated from healthy human baby's feces. This strain was assessed in vitro for probiotic properties including activity against many pathogens isolated from animal, human, and soil samples. CMUL1216 strain exhibits good antimicrobial activity against indicator pathogens in both planktonic and biofilm forms. In addition, CMUL1216 strain showed a strong biofilm formation. Furthermore, CMUL1216 exhibits a good anti-inflammatory effect by inducing the secretion of IL-10 in vitro. Moreover, this strain did not show any pathogenic characteristics such as hemolytic effect, presence of virulence genes as well as susceptibility to the majority of antibiotic families. E. faecium CMUL1216 could be a good candidate to be used a probiotic strain in the animal sector in order to maintain animal health and therefore reduce antibiotic resistance caused by the excessive use in this sector.
Collapse
Affiliation(s)
- Imad Al Kassaa
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University.,Faculty of Public Health, Lebanese University
| | - Samah Mechmchani
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University
| | - Mazen Zaylaa
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University
| | - Mohamad Bachar Ismail
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University
| | - Khaled El Omari
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University.,Faculty of Public Health, Lebanese University.,Quality Control Center Laboratories at the Chamber of Commerce, Industry Agriculture of Tripoli and North Lebanon
| | - Fouad Dabboussi
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University.,Faculty of Public Health, Lebanese University
| | - Monzer Hamze
- Laboratoire de Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University.,Faculty of Public Health, Lebanese University
| |
Collapse
|
23
|
Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int 2020; 137:109682. [DOI: 10.1016/j.foodres.2020.109682] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
|
24
|
Prete R, Garcia-Gonzalez N, Di Mattia CD, Corsetti A, Battista N. Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis. Sci Rep 2020; 10:16340. [PMID: 33004903 PMCID: PMC7529774 DOI: 10.1038/s41598-020-73201-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Food-associated Lactiplantibacillus plantarum (Lpb. plantarum) strains, previously classified as Lactobacillus plantarum, are a promising strategy to face intestinal inflammatory diseases. Our study was aimed at clarifying the protective role of food-borne Lpb. plantarum against inflammatory damage by testing the scavenging microbial ability both in selected strains and in co-incubation with normal mucosa intestinal cells (NCM460). Here, we show that Lpb. plantarum endure high levels of induced oxidative stress through partially neutralizing reactive oxygen species (ROS), whereas they elicit their production when co-cultured with NCM460. Moreover, pre-treatment with food-borne Lpb. plantarum significantly reduce pro-inflammatory cytokines IL-17F and IL-23 levels in inflamed NCM460 cells. Our results suggest that food-vehicled Lpb. plantarum strains might reduce inflammatory response in intestinal cells by directly modulating local ROS production and by triggering the IL-23/IL-17 axis with future perspectives on health benefits in the gut derived by the consumption of functional foods enriched with selected strains.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carla D Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
25
|
Cuffaro B, Assohoun ALW, Boutillier D, Súkeníková L, Desramaut J, Boudebbouze S, Salomé-Desnoulez S, Hrdý J, Waligora-Dupriet AJ, Maguin E, Grangette C. In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice. Cells 2020; 9:cells9092104. [PMID: 32947881 PMCID: PMC7565435 DOI: 10.3390/cells9092104] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Alterations in the gut microbiota composition and diversity seem to play a role in the development of chronic diseases, including inflammatory bowel disease (IBD), leading to gut barrier disruption and induction of proinflammatory immune responses. This opens the door for the use of novel health-promoting bacteria. We selected five Parabacteroides distasonis strains isolated from human adult and neonates gut microbiota. We evaluated in vitro their immunomodulation capacities and their ability to reinforce the gut barrier and characterized in vivo their protective effects in an acute murine model of colitis. The in vitro beneficial activities were highly strain dependent: two strains exhibited a potent anti-inflammatory potential and restored the gut barrier while a third strain reinstated the epithelial barrier. While their survival to in vitro gastric conditions was variable, the levels of P. distasonis DNA were higher in the stools of bacteria-treated animals. The strains that were positively scored in vitro displayed a strong ability to rescue mice from colitis. We further showed that two strains primed dendritic cells to induce regulatory T lymphocytes from naïve CD4+ T cells. This study provides better insights on the functionality of commensal bacteria and crucial clues to design live biotherapeutics able to target inflammatory chronic diseases such as IBD.
Collapse
Affiliation(s)
- Bernardo Cuffaro
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
| | - Aka L. W. Assohoun
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
- Laboratoire de Biotechnologie et Microbiologie des Aliments, UFR en Sciences et Technologies des Aliments, Université Nangui Abrogoua, Abidjan 00225, Côte d’Ivoire
| | - Denise Boutillier
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (J.H.)
| | - Jérémy Desramaut
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
| | - Samira Boudebbouze
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
| | - Sophie Salomé-Desnoulez
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, 59000 Lille, France;
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (J.H.)
| | | | - Emmanuelle Maguin
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
- Correspondence: (E.M.); (C.G.); Tel.: +33-681-151-925 (E.M.); +33-320-877-392 (C.G.)
| | - Corinne Grangette
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
- Correspondence: (E.M.); (C.G.); Tel.: +33-681-151-925 (E.M.); +33-320-877-392 (C.G.)
| |
Collapse
|
26
|
Shang J, Wan F, Zhao L, Meng X, Li B. Potential Immunomodulatory Activity of a Selected Strain Bifidobacterium bifidum H3-R2 as Evidenced in vitro and in Immunosuppressed Mice. Front Microbiol 2020; 11:2089. [PMID: 32983062 PMCID: PMC7491056 DOI: 10.3389/fmicb.2020.02089] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/08/2020] [Indexed: 12/30/2022] Open
Abstract
The microbiota is directly involved in the development and modulation of the intestinal immune system. In particular, members of the genus Bifidobacterium play a primary role in immune regulation. In the present study, Bifidobacterium bifidum H3-R2 was screened from 15 bifidobacterium strains by in vitro experiment, showing a positive tolerance to digestive tract conditions, adhesion ability to intestinal epithelial cells and a regulatory effect on immune cell activity. Immunostimulatory activity of B. bifidum H3-R2 was also elucidated in vivo in cytoxan (CTX)-treated mice. The results showed that the administration of B. bifidum H3-R2 ameliorated the CTX-induced bodyweight loss and imbalanced expression of inflammatory cytokines, enhanced the production of secretory immunoglobulin A (SIgA), and promoted splenic lymphocyte proliferation, natural killer (NK) cell activity and phagocytosis of macrophages in immunosuppressed mice. In addition, B. bifidum H3-R2 restored injured intestinal mucosal, and increased the villus length and crypt depth in CTX-treated mice. The results could be helpful for understanding the functions of B. bifidum H3-R2, supporting its potential as a novel probiotic for immunoregulation.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Feng Wan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
Lactobacillus reuteri 5454 and Bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses. Sci Rep 2020; 10:5345. [PMID: 32210304 PMCID: PMC7093418 DOI: 10.1038/s41598-020-62161-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease is linked to a decreased diversity in gut microbiota composition as a potential consequence of an impaired anti-microbial response and an altered polarization of T helper cells. Here, we evaluated the immunomodulatory properties of two potential probiotic strains, namely a Bifidobacterium animalis spp. lactis Bl 5764 and a Lactobacillus reuteri Lr 5454 strains. Both strains improved colitis triggered by either 2,4,6-trinitrobenzenesulfonic acid (TNBS) or Citrobacter rodentium infection in mice. Training of dendritic cells (DC) with Lr 5454 efficiently triggered IL-22 secretion and regulatory T cells induction in vitro, while IL-17A production by CD4+ T lymphocytes was stronger when cultured with DCs that were primed with Bl 5764. This strain was sufficient for significantly inducing expression of antimicrobial peptides in vivo through the Crohn’s disease predisposing gene encoding for the nucleotide-binding oligomerization domain, containing protein 2 (NOD2). In contrast, NOD2 was dispensable for the impact on antimicrobial peptide expression in mice that were monocolonized with Lr 5454. In conclusion, our work highlights a differential mode of action of two potential probiotic strains that protect mice against colitis, providing the rational for a personalized supportive preventive therapy by probiotics for individuals that are genetically predisposed to Crohn’s disease.
Collapse
|
28
|
Cordeiro BF, Lemos L, Oliveira ER, Silva SH, Savassi B, Figueiroa A, Faria AMC, Ferreira E, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, do Carmo FLR, Azevedo V. Prato cheese containing Lactobacillus casei 01 fails to prevent dextran sodium sulphate-induced colitis. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacol Res 2019; 148:104461. [DOI: 10.1016/j.phrs.2019.104461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
|
30
|
Yoon JW, Ahn SI, Jhoo JW, Kim GY. Antioxidant Activity of Yogurt Fermented at Low Temperature and Its Anti-inflammatory Effect on DSS-induced Colitis in Mice. Food Sci Anim Resour 2019; 39:162-176. [PMID: 30882084 PMCID: PMC6411250 DOI: 10.5851/kosfa.2019.e13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023] Open
Abstract
This study was performed to evaluate the antioxidant activity of yogurt fermented
at low temperature and the anti-inflammatory effect it has on induced colitis
with 2.5% dextran sodium sulfate (DSS) in Balb/c mice. Yogurt premix were
fermented with a commercial starter culture containing Lactobacillus
acidophilus, Bifidobacterium lactis,
Streptococcus thermophilus, and Lactobacillus
delbrueckii subsp. bulgaricus at different
temperatures: 22°C (low fermentation temperature) for 27 h and
37°C (general fermentation temperature) for 12 h. To measure antioxidant
activity of yogurt samples, DPPH, ABTS+ and ferric reducing
antioxidant potential (FRAP) assays were conducted. For animal experiments,
inflammation was induced with 2.5% DSS in Balb/c mice. Yogurt fermented
at low temperature showed higher antioxidant activity than that of the yogurt
fermented at general temperature. In the inflammatory study, IL-6 (interleukin
6) was decreased and IL-4 and IL-10 increased significantly in DSS group with
yogurt fermented at general temperature (DYG) and that with yogurt fermented at
low temperature (DYL) compared to that in DSS-induced colitic mice (DC),
especially DYL had higher concentration of cytokines IL-4, and IL-10 than DYG.
MPO (myeloperoxidase) tended to decrease more in treatments with yogurt than DC.
Additionally, yogurt fermented at low temperature had anti-inflammatory
activity, although there was no significant difference with general
temperature-fermented yogurt (p>0.05).
Collapse
Affiliation(s)
- Ji-Woo Yoon
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung-Il Ahn
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Jin-Woo Jhoo
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Gur-Yoo Kim
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
31
|
Alagón Fernández Del Campo P, De Orta Pando A, Straface JI, López Vega JR, Toledo Plata D, Niezen Lugo SF, Alvarez Hernández D, Barrientos Fortes T, Gutiérrez-Kobeh L, Solano-Gálvez SG, Vázquez-López R. The Use of Probiotic Therapy to Modulate the Gut Microbiota and Dendritic Cell Responses in Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2019; 7:medsci7020033. [PMID: 30813381 PMCID: PMC6410300 DOI: 10.3390/medsci7020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Recent investigations have shown that different conditions such as diet, the overuse of antibiotics or the colonization of pathogenic microorganisms can alter the population status of the intestinal microbiota. This modification can produce a change from homeostasis to a condition known as imbalance or dysbiosis; however, the role-played by dysbiosis and the development of inflammatory bowel diseases (IBD) has been poorly understood. It was actually not until a few years ago that studies started to develop regarding the role that dendritic cells (DC) of intestinal mucosa play in the sensing of the gut microbiota population. The latest studies have focused on describing the DC modulation, specifically on tolerance response involving T regulatory cells or on the inflammatory response involving reactive oxygen species and tissue damage. Furthermore, the latest studies have also focused on the protective and restorative effect of the population of the gut microbiota given by probiotic therapy, targeting IBD and other intestinal pathologies. In the present work, the authors propose and summarize a recently studied complex axis of interaction between the population of the gut microbiota, the sensing of the DC and its modulation towards tolerance and inflammation, the development of IBD and the protective and restorative effect of probiotics on other intestinal pathologies.
Collapse
Affiliation(s)
- Pablo Alagón Fernández Del Campo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Alejandro De Orta Pando
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Juan Ignacio Straface
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - José Ricardo López Vega
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Toledo Plata
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Sebastian Felipe Niezen Lugo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Alvarez Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Tomás Barrientos Fortes
- Director Facultad de Ciencias de la Salud, Universidad Anáhuac México, 52786 Cuidad de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez," Mexico City 14080, Mexico.
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| |
Collapse
|