1
|
Chóez-Guaranda I, Maridueña-Zavala M, Quevedo A, Quijano-Avilés M, Manzano P, Cevallos-Cevallos JM. Changes in GC-MS metabolite profile, antioxidant capacity and anthocyanins content during fermentation of fine-flavor cacao beans from Ecuador. PLoS One 2024; 19:e0298909. [PMID: 38427658 PMCID: PMC10906890 DOI: 10.1371/journal.pone.0298909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024] Open
Abstract
The fermentation of fine-flavor cacao beans is a key process contributing to the enhancement of organoleptic attributes and monetary benefits for cacao farmers. This work aimed to describe the dynamics of the gas chromatography-mass spectrometry (GC-MS) metabolite profile as well as the antioxidant capacity and anthocyanin contents during fermentation of fine-flavor cacao beans. Samples of Nacional x Trinitario cacao beans were obtained after 0, 24, 48, 72, 96, and 120 hours of spontaneous fermentation. Total phenolic content (TPC), ferric reducing antioxidant power (FRAP), and total anthocyanin content were measured by ultraviolet-visible (UV-Vis) spectrophotometry. Volatiles were adsorbed by headspace solid phase microextraction (HS-SPME) while other metabolites were assessed by an extraction-derivatization method followed by gas chromatography-mass spectrometry (GC-MS) detection and identification. Thirty-two aroma-active compounds were identified in the samples, including 17 fruity, and 9 floral-like volatiles as well as metabolites with caramel, chocolate, ethereal, nutty, sweet, and woody notes. Principal components analysis and Heatmap-cluster analysis of volatile metabolites grouped samples according to the fermentation time. Additionally, the total anthocyanin content declined during fermentation, and FRAP-TPC values showed a partial correlation. These results highlight the importance of fermentation for the improvement of the fine-flavor characteristics of cacao beans.
Collapse
Affiliation(s)
- Ivan Chóez-Guaranda
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - María Maridueña-Zavala
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Adela Quevedo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - María Quijano-Avilés
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Patricia Manzano
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Juan M. Cevallos-Cevallos
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| |
Collapse
|
2
|
Olivati C, Nishiyama-Hortense YP, Soares Janzantti N, da Silva R, Lago Vanzela ES, Gómez-Alonso S. Dark-Chocolate-Coated BRS Clara Raisins: Phenolic Composition and Sensory Attributes. Molecules 2023; 28:7006. [PMID: 37894486 PMCID: PMC10609335 DOI: 10.3390/molecules28207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Dark chocolate dragée confectionary was made with BRS Clara raisins pre-treated with extra virgin olive oil (EVOO). The evaluation of the changes in the phenolic composition (flavonols, hydrocinnamic acid derivatives (HCADs), stilbenes and flavan-3-ol monomers, dimers, and proanthocyanidins (PAs)) resulting from the covering process showed that the chocolate coating was responsible for an increase in the concentrations of flavan-3-ols and PAs when compared to just the raisins. For the flavonols and HCADs, a reduction in the total concentration of compounds was observed when comparing the dragées to the raisins. Furthermore, there was a strong influence of chocolate in the qualitative profile with the emergence of new compounds (quercetin-3-pentoside, kampfterol-3-rutinoside, p-coumaric acid, and caffeoyl-aspartate). The combination of these ingredients (raisins and chocolate) resulted in a dark chocolate coated raisin (DC) with good sensory acceptance and a more complex phenolic composition that may positively contribute to its functional quality.
Collapse
Affiliation(s)
- Carolina Olivati
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo nº 2265, São José do Rio Preto 15054-000, Brazil
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Yara Paula Nishiyama-Hortense
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo nº 2265, São José do Rio Preto 15054-000, Brazil
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Natália Soares Janzantti
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo nº 2265, São José do Rio Preto 15054-000, Brazil
| | - Roberto da Silva
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo nº 2265, São José do Rio Preto 15054-000, Brazil
| | - Ellen Silva Lago Vanzela
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo State University (UNESP), Rua Cristóvão Colombo nº 2265, São José do Rio Preto 15054-000, Brazil
| | - Sergio Gómez-Alonso
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
3
|
Spada FP, Lazarini JG, Batista PS, de Oliveira Sartori AG, Saliba ASMC, Pedroso Gomes do Amaral JE, Purgatto E, de Alencar SM. Cocoa powder and fermented jackfruit seed flour: A comparative cell-based study on their potential antioxidant and anti-inflammatory activities after simulated gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4956-4965. [PMID: 36960787 DOI: 10.1002/jsfa.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Jackfruit seed flour can be used as a cocoa aroma replacer with similar technological properties. The purpose of this study was to investigate the in vivo toxicity and in vitro antioxidant activity of fermented jackfruit seed flour (Fjs) and non-alkaline cocoa powder (Nac). RESULTS Fjs and Nac extracts (Fjs-E and Nac-E) were produced and submitted to in vitro gastrointestinal digestion producing digested fractions named Fjs-D and Nac-D, respectively. Nac-E showed over two-fold higher oxygen radical absorbance capacity (ORAC) than Fjs-E. However, after simulated gastrointestinal digestion (in vitro), there were no significant differences between Nac-D and Fjs-D (P < 0.01). Similarly, the cellular antioxidant activity (CAA) of Nac-D and Fjs-D was not significantly different (P < 0.01). The anti-inflammatory assay in transgenic RAW 264.7 murine macrophages showed that Fjs-E did not affect cell viability up to 300 μg mL-1 (P > 0.05) and reduced by 15% the release of TNF-α (P < 0.05). Fjs-D did not affect cell viability up to 300 μg mL-1 (P > 0.05) and showed 58% reduction of NF-κB activation (P < 0.05), with no effects on TNF-α levels. Treatment with Nac-E up to 300 μg mL-1 did not decrease cell viability (P > 0.05) and reduced the release of TNF-α levels by 34% and 66% at 100 and 300 μg mL-1 , respectively (P < 0.05). Nac-D did not reduce the NF-κB activation or TNF-α levels at any tested concentration. CONCLUSION Collectively, these findings indicate that Fjs is a safe and promising functional ingredient with biological activities even after gastrointestinal digestion. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Papa Spada
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Faculty of Medicine, Anhembi Morumbi University, Piracicaba, Brazil
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| | | | | | - Eduardo Purgatto
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| |
Collapse
|
4
|
Cañas S, Rebollo-Hernanz M, Bermúdez-Gómez P, Rodríguez-Rodríguez P, Braojos C, Gil-Ramírez A, Benítez V, Aguilera Y, Martín-Cabrejas MA. Radical Scavenging and Cellular Antioxidant Activity of the Cocoa Shell Phenolic Compounds after Simulated Digestion. Antioxidants (Basel) 2023; 12:antiox12051007. [PMID: 37237874 DOI: 10.3390/antiox12051007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The cocoa industry generates a considerable quantity of cocoa shell, a by-product with high levels of methylxanthines and phenolic compounds. Nevertheless, the digestion process can extensively modify these compounds' bioaccessibility, bioavailability, and bioactivity as a consequence of their transformation. Hence, this work's objective was to assess the influence of simulated gastrointestinal digestion on the concentration of phenolic compounds found in the cocoa shell flour (CSF) and the cocoa shell extract (CSE), as well as to investigate their radical scavenging capacity and antioxidant activity in both intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CSF and the CSE exhibited a high amount of methylxanthines (theobromine and caffeine) and phenolic compounds, mainly gallic acid and (+)-catechin, which persisted through the course of the simulated digestion. Gastrointestinal digestion increased the antioxidant capacity of the CSF and the CSE, which also displayed free radical scavenging capacity during the simulated digestion. Neither the CSF nor the CSE exhibited cytotoxicity in intestinal epithelial (IEC-6) or hepatic (HepG2) cells. Moreover, they effectively counteracted oxidative stress triggered by tert-butyl hydroperoxide (t-BHP) while preventing the decline of glutathione, thiol groups, superoxide dismutase, and catalase activities in both cell lines. Our study suggests that the cocoa shell may serve as a functional food ingredient for promoting health, owing to its rich concentration of antioxidant compounds that could support combating the cellular oxidative stress associated with chronic disease development.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Patricia Bermúdez-Gómez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Balcázar-Zumaeta CR, Castro-Alayo EM, Medina-Mendoza M, Muñoz-Astecker LD, Torrejón-Valqui L, Rodriguez-Perez RJ, Rojas-Ocampo E, Cayo-Colca IS. Physical and Chemical Properties of 70% Cocoa Dark Chocolate Mixed with Freeze-Dried Arazá ( Eugenia stipitata) Pulp. Prev Nutr Food Sci 2022; 27:474-482. [PMID: 36721755 PMCID: PMC9843710 DOI: 10.3746/pnf.2022.27.4.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 01/04/2023] Open
Abstract
This work aimed to determine the chemical and physical properties of 70% dark cocoa chocolate, including freeze-dried Arazá (Eugenia stipitata) pulp (FDAP). We studied chocolates incorporating three FDAP concentrations (1.0, 1.5, and 2.0%). No statistical differences were found in total polyphenol content, antioxidant capacity, and total catechin and epicatechin content. The dark chocolates' moisture and texture were unaffected by the FDAP. The Casson yield stress increased to 19.67±1.35 Pa, while the Casson plastic viscosity reduced to 1.68±0.03 Pa·s, Also, the particle size increased. The dark chocolates' flow behavior corresponded to a non-Newtonian fluid. Finally, the dark chocolate's properties were unaffected by a 2% FDAP concentration.
Collapse
Affiliation(s)
- César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú,
Correspondence to César R. Balcázar-Zumaeta, E-mail:
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Lucas D. Muñoz-Astecker
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Roxana J. Rodriguez-Perez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Elizabeth Rojas-Ocampo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| |
Collapse
|
6
|
Lokapirnasari W, Al Arif M, Maslachah L, Kirana A, Suryandari A, Yulianto A, Sherasiya A. The potency of <i>Lactobacillus acidophillus</i> and <i>L. lactis</i> probiotics
and <i>Guazuma ulmifolia</i> Lam. extract as feed additives
with different application times to improve nutrient intake
and feed efficiency in <i>Coturnix coturnix japonica</i> females. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/156018/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Exploring a cocoa–carob blend as a functional food with decreased bitterness: Characterization and sensory analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Siow CS, Chan EWC, Wong CW, Ng CW. Antioxidant and sensory evaluation of cocoa (Theobroma cacao L.) tea formulated with cocoa bean hull of different origins. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2021.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Torres EAFS, Pinaffi-Langley ACDC, Figueira MDS, Cordeiro KS, Negrão LD, Soares MJ, da Silva CP, Alfino MCZ, Sampaio GR, de Camargo AC. Effects of the consumption of guarana on human health: A narrative review. Compr Rev Food Sci Food Saf 2021; 21:272-295. [PMID: 34755935 DOI: 10.1111/1541-4337.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Guarana (Paullinia cupana) is a plant from the Amazon region with cultural importance. Despite its early ancestral use by indigenous tribes, the first reports regarding the benefits of guarana consumption for human health were published in the 19th century. Since then, the use of guarana seed in powder and extract forms has been studied for its diverse effects on human health, such as stimulating, anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and anti-obesity effects. These effects are attributed to the high content of bioactive compounds found in guarana seeds, especially methylxanthines and flavonoids. In fact, the Brazilian Food Supplement Law has officially acknowledged guarana as a source of bioactive compounds. The number and diversity of studies focused on guarana and human health are increasing; thus, organizing and describing the available evidence on guarana and its applications is necessary to provide a framework for future studies. In this narrative review, we have organized the available information regarding guarana and its potential effects on human health. Guarana produces unique fruits with great potential for human health applications. However, the available evidence lacks human studies and mechanistic investigations. Future studies should be designed considering its applicability to human health, including intake levels and toxicity studies.
Collapse
Affiliation(s)
- Elizabeth A F S Torres
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Karina Silva Cordeiro
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Dias Negrão
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Maiara Jurema Soares
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Cintia Pereira da Silva
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Mudenuti NVDR, de Camargo AC, de Alencar SM, Danielski R, Shahidi F, Madeira TB, Hirooka EY, Spinosa WA, Grossmann MVE. Phenolics and alkaloids of raw cocoa nibs and husk: The role of soluble and insoluble-bound antioxidants. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Febrianto NA, Wang S, Zhu F. Chemical and biological properties of cocoa beans affected by processing: a review. Crit Rev Food Sci Nutr 2021; 62:8403-8434. [PMID: 34047627 DOI: 10.1080/10408398.2021.1928597] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cocoa (Theobroma cacao L.) is widely cultivated in tropical countries. The cocoa beans are a popular ingredient of confectionery. Cocoa beans contain various chemicals that contribute to their bioactivity and nutritional properties. There has been increasing interest in developing cocoa beans for "healthy" food products. Cocoa beans have special combination of nutrients such as lipids, carbohydrates, proteins and other compounds of biological activities. The bioactive phytochemicals include methylxanthines, polyphenols, biogenic amines, melanoidins, isoprostanoids and oxalates. These phytochemicals of cocoa are related to various in vivo and in vitro biological activities such as antioxidation, anti-cancer, anti-microbial, anti-inflammation, anti-diabetes, cardiovascular protection, physical improvement, anti-photoaging, anti-depression and blood glucose regulation. The potential of bioactive compounds in cocoa remains to be maximized for food and nutritional applications. The current processing technology promotes the degradation of beneficial bioactive compounds, while maximizing the flavors and its precursors. It is not optimized for the utilization of cocoa beans for "healthy" product formulations. Modifications of the current processing line and non-conventional processing are needed to better preserve and utilize the beneficial bioactive compounds in cocoa beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia
| | - Sunan Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Canadian Food and Wine Institute, Niagara College, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. BIOSENSORS-BASEL 2021; 11:bios11030091. [PMID: 33810105 PMCID: PMC8004623 DOI: 10.3390/bios11030091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = −0.152 * (catechin) − 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = −0.0415 * (gallic acid) − 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.
Collapse
|
13
|
de Camargo AC, de Souza Silva AP, Soares JC, de Alencar SM, Handa CL, Cordeiro KS, Figueira MS, Sampaio GR, Torres EAFS, Shahidi F, Schwember AR. Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules 2021; 26:molecules26020463. [PMID: 33477281 PMCID: PMC7830396 DOI: 10.3390/molecules26020463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| | - Anna Paula de Souza Silva
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Jackeline Cintra Soares
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Severino Matias de Alencar
- Departament of Agri-Food Industry, Food & Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, P.O. Box 9, Piracicaba, SP CEP 13418-900, Brazil; (A.P.d.S.S.); (J.C.S.); (S.M.d.A.)
| | - Cíntia Ladeira Handa
- Minas Gerais State University, R. Ver. Geraldo Moisés da Silva 308-434, Ituiutaba, MG CEP 38302-182, Brazil;
| | - Karina Silva Cordeiro
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Marcela Souza Figueira
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Geni R. Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Elizabeth A. F. S. Torres
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP CEP 01246-904, Brazil; (K.S.C.); (M.S.F.); (G.R.S.); (E.A.F.S.T.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7830490, Chile
- Correspondence: (A.C.d.C); (A.R.S)
| |
Collapse
|
14
|
Cielecka-Piontek J, Dziedziński M, Szczepaniak O, Kobus-Cisowska J, Telichowska A, Szymanowska D. Survival of commercial probiotic strains and their effect on dark chocolate synbiotic snack with raspberry content during the storage and after simulated digestion. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
16
|
Total and Sustainable Valorisation of Olive Pomace Using a Fractionation Approach. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olive pomace management represents a great concern to the olive oil industry. This work focused on the development of a “zero waste” strategy for olive pomace based on a fractionation approach resulting in the obtention of different value-added fractions. The physicochemical composition of edible fractions obtained (liquid and pulp) was analysed. The potential use as a solid biofuel of the non-edible fraction (stones) was evaluated. High amounts of hydroxytyrosol (513.61–625.76 mg/100 g dry weight) were present in the liquid fraction. Pulp fraction was demonstrated to be a good source of fibre (53–59% dry weight) with considerable antioxidant activity both from free and bound phenolics. The stones fraction exhibited substantial high heating values (18.65–18.94 megajoule (MJ/kg). All these results support the added value of the olive pomace fractions combining the biofuel potential from the stones fraction and the functional food ingredients’ potential both from liquid and pulp fractions. The present methodology seems to be a feasible whole valorisation approach to achieve the circularity in the olive oil sector, prioritising obtaining high over low added-value products.
Collapse
|
17
|
Godočiková L, Ivanišová E, Zaguła G, Noguera-Artiaga L, Carbonell-Barrachina ÁA, Kowalczewski PŁ, Kačániová M. Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules 2020; 25:E3648. [PMID: 32796548 PMCID: PMC7463549 DOI: 10.3390/molecules25163648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/27/2023] Open
Abstract
The biological activity of chocolates gains more and more attention of consumers. Its antioxidant properties depend, among other factors, mainly on the origin of cocoa and the characteristics that this origin gives to the final product. Therefore, the aim of the study was to measure and compare the total content of polyphenols, antioxidant activity, and key odorants of commercial chocolates made from blend cocoa with single-origin ones. The highest content of polyphenols was found in 90% blend cocoa chocolate and single-origin samples, while the lowest content was exhibited by 100% chocolate from blend cocoa mass. The highest antioxidant activity measured by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferric reducing antioxidant power (FRAP) assays was observed in the sample of chocolate with 90% cocoa solids from blend mass, followed by single-origin chocolates. A high positive correlation between ABTS assay and the total polyphenol and phenolic acids' content, as well as among the total content of polyphenols, flavonoids, and phenolic acids was found. Mineral composition analysis showed that dark chocolate is a valuable source of some elements, especially Mg, Fe, and Zn. Potentially toxic elements were not detected or below permitted limits. Moreover, it was noticed that the main volatile compound in all tested samples was acetic acid, but pyrazines were considered the most important group of chocolate odorants.
Collapse
Affiliation(s)
- Lucia Godočiková
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Eva Ivanišová
- Department of Technology and Quality of Plant Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Grzegorz Zaguła
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35601 Rzeszow, Poland; (G.Z.); (M.K.)
| | - Luis Noguera-Artiaga
- Research Group “Food Quality and Safety”, Department of Agro-Food Technology, Miguel Hernández University of Elche, Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (L.N.-A.); (Á.A.C.-B.)
| | - Ángel A. Carbonell-Barrachina
- Research Group “Food Quality and Safety”, Department of Agro-Food Technology, Miguel Hernández University of Elche, Carretera de Beniel, km 3.2, 03312 Orihuela, Alicante, Spain; (L.N.-A.); (Á.A.C.-B.)
| | - Przemysław Łukasz Kowalczewski
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Miroslava Kačániová
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35601 Rzeszow, Poland; (G.Z.); (M.K.)
- Department of Fruit Sciences, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
18
|
Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109643] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Wang X, Contreras MDM, Xu D, Xing C, Wang L, Yang D. Different distribution of free and bound phenolic compounds affects the oxidative stability of tea seed oil: A novel perspective on lipid antioxidation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chem 2020; 310:125857. [DOI: 10.1016/j.foodchem.2019.125857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/09/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
|