1
|
Rigotti M, Finger LF, Scariot FJ, Machado AK, de Avila E Silva S, Salvador M, Branco CS. Grape Seed Extract Pretreatment Prevents Mitochondrial Dysfunction and NLRP3 Inflammasome-Induced Inflammatory Response in Glial Cells Exposed to Paroxetine and Quinolinic Acid. Mol Neurobiol 2025; 62:7110-7123. [PMID: 39907901 DOI: 10.1007/s12035-025-04730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Depression is a neuropsychiatric disorder that affects thousands of people around the world. Drug therapy is the main approach for treating this disease, but its use can cause side effects on cells. This study aimed to examine the impact of antidepressant drugs from different classes on glial (BV-2) cells in the presence or absence of grape seed extract (GSE) and quinolinic acid (QA; 1.5 mM). Cells were treated with GSE (50 μg/mL; 23 h) and then exposed to non-cytotoxic concentrations of bupropion, imipramine, paroxetine, trazodone, and venlafaxine (27-181 µM; 1 h). Principal Component Analysis (PCA) was conducted to demonstrate the best combination of drug and extract treatment. Cell viability, adenosine triphosphate (ATP) production, reactive oxygen species (ROS) and nitric oxide (NO) levels, oxidative damage to lipids (TBARS), superoxide dismutase (SOD) activity, apoptosis, and NLR family pyrin domain containing 3 (NLRP3) genetic expression were evaluated by spectrophotometry, qRT-PCR, or flow cytometry. Mitochondrial markers (CI: NADH-CoQ reductase and CIV: cytochrome c oxidase) were also studied. GSE prevented the increment in levels of ROS (13.73-72.11%), TBARS (44.1-92.77%), NO (9.5-16%), SOD (68.44-212.29%) activity, and apoptosis (10.06-17.3%) caused by antidepressant drugs. Furthermore, it prevented impairments in complexes I (22-71.5%) and IV (7.5-92.5%) activities and ATP production (8-46%). GSE also prevented the NLRP3 overexpression in BV-2 activated by QA (62%), and paroxetine (46%), defined by PCA. Our study evidences that GSE can restore redox equilibrium and prevent inflammation caused by antidepressants and/or QA in a glial microenvironment.
Collapse
Affiliation(s)
- Marina Rigotti
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070 560, Brazil
| | - Laura Ferrazzi Finger
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070 560, Brazil
| | - Fernando Joel Scariot
- Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, Brazil
| | - Alencar Kolinski Machado
- Cell Culture and Bioactive Effects Laboratory, Universidade Franciscana (UFN), Santa Maria, RS, Brazil
| | - Scheila de Avila E Silva
- Laboratory of Computational Biology and Bioinformatics, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, Brazil
| | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070 560, Brazil
| | - Catia Santos Branco
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070 560, Brazil.
| |
Collapse
|
2
|
Davidson CB, El Sabbagh DES, Machado AK, Pappis L, Sagrillo MR, Somacal S, Emanuelli T, Schultz JV, Augusto Pereira da Rocha J, Santos AFD, Fagan SB, Silva IZD, Andreazza AC, Machado AK. Euterpe oleracea Mart. Bioactive Molecules: Promising Agents to Modulate the NLRP3 Inflammasome. BIOLOGY 2024; 13:729. [PMID: 39336156 PMCID: PMC11428631 DOI: 10.3390/biology13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Inflammation is a vital mechanism that defends the organism against infections and restores homeostasis. However, when inflammation becomes uncontrolled, it leads to chronic inflammation. The NLRP3 inflammasome is crucial in chronic inflammatory responses and has become a focal point in research for new anti-inflammatory therapies. Flavonoids like catechin, apigenin, and epicatechin are known for their bioactive properties (antioxidant, anti-inflammatory, etc.), but the mechanisms behind their anti-inflammatory actions remain unclear. This study aimed to explore the ability of various flavonoids (isolated and combined) to modulate the NLRP3 inflammasome using in silico and in vitro models. Computer simulations, such as molecular docking, molecular dynamics, and MM/GBSA calculations examined the interactions between bioactive molecules and NLRP3 PYD. THP1 cells were treated with LPS + nigericin to activate NLRP3, followed by flavonoid treatment at different concentrations. THP1-derived macrophages were also treated following NLRP3 activation protocols. The assays included colorimetric, fluorometric, microscopic, and molecular techniques. The results showed that catechin, apigenin, and epicatechin had high binding affinity to NLRP3 PYD, similar to the known NLRP3 inhibitor MCC950. These flavonoids, particularly at 1 µg/mL, 0.1 µg/mL, and 0.01 µg/mL, respectively, significantly reduced LPS + nigericin effects in both cell types and decreased pro-inflammatory cytokine, caspase-1, and NLRP3 gene expression, suggesting their potential as anti-inflammatory agents through NLRP3 modulation.
Collapse
Affiliation(s)
- Carolina Bordin Davidson
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | | | - Amanda Kolinski Machado
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Lauren Pappis
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | | | - Sabrina Somacal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Júlia Vaz Schultz
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - João Augusto Pereira da Rocha
- Federal Institute of Pará, Bragança Campus, Computational Chemistry and Modeling Laboratory, Bragança 68600-000, PA, Brazil
| | | | - Solange Binotto Fagan
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ivana Zanella da Silva
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Alencar Kolinski Machado
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| |
Collapse
|
3
|
Lima LS, Ribeiro M, Cardozo LFMF, Moreira NX, Teodoro AJ, Stenvinkel P, Mafra D. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep 2024; 13:611-638. [PMID: 38916807 DOI: 10.1007/s13668-024-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential. RECENT FINDINGS Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications. Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.
Collapse
Affiliation(s)
- Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nara Xavier Moreira
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
| | - Anderson Junger Teodoro
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Unidade de Pesquisa Clínica-UPC. Rua Marquês de Paraná, Niterói-RJ, 303/4 Andar , Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
4
|
da Rocha ECM, da Rocha JAP, da Costa RA, da Costa ADSS, Barbosa EDS, Josino LPC, Brasil LDSNDS, Vendrame LFO, Machado AK, Fagan SB, Brasil DDSB. High-Throughput Molecular Modeling and Evaluation of the Anti-Inflammatory Potential of Açaí Constituents against NLRP3 Inflammasome. Int J Mol Sci 2024; 25:8112. [PMID: 39125681 PMCID: PMC11311378 DOI: 10.3390/ijms25158112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular docking, molecular dynamics simulation, binding free energy calculations (MM/GBSA), and in silico toxicology, we compared açaí compounds with known NLRP3 inhibitors, MCC950 and NP3-146 (RM5). The docking studies revealed significant interactions between açaí constituents and the NLRP3 protein, while molecular dynamics simulations indicated structural stabilization. MM/GBSA calculations demonstrated favorable binding energies for catechin, apigenin, and epicatechin, although slightly lower than those of MCC950 and RM5. Importantly, in silico toxicology predicted lower toxicity for açaí compounds compared to synthetic inhibitors. These findings suggest that açaí-derived compounds are promising candidates for developing new anti-inflammatory therapies targeting the NLRP3 inflammasome, combining efficacy with a superior safety profile. Future research should include in vitro and in vivo validation to confirm the therapeutic potential and safety of these natural products. This study underscores the value of computational approaches in accelerating natural product-based drug discovery and highlights the pharmacological promise of Amazonian biodiversity.
Collapse
Affiliation(s)
- Elaine Cristina Medeiros da Rocha
- Laboratory of Modeling and Computational Chemistry, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Bragança, Bragança 68600-000, PA, Brazil;
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
- Graduate Program in Chemistry, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - João Augusto Pereira da Rocha
- Laboratory of Modeling and Computational Chemistry, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Bragança, Bragança 68600-000, PA, Brazil;
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
- Graduate Program in Chemistry, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil
| | - Andreia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil
| | - Edielson dos Santos Barbosa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
| | - Luiz Patrick Cordeiro Josino
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Luciane do Socorro Nunes dos Santos Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
| | - Laura Fernanda Osmari Vendrame
- Graduate Program in Nanosciences, Franciscana University, Santa Maria 97010-032, RS, Brazil; (L.F.O.V.); (A.K.M.); (S.B.F.)
| | - Alencar Kolinski Machado
- Graduate Program in Nanosciences, Franciscana University, Santa Maria 97010-032, RS, Brazil; (L.F.O.V.); (A.K.M.); (S.B.F.)
| | - Solange Binotto Fagan
- Graduate Program in Nanosciences, Franciscana University, Santa Maria 97010-032, RS, Brazil; (L.F.O.V.); (A.K.M.); (S.B.F.)
| | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (R.A.d.C.); (A.d.S.S.d.C.); (E.d.S.B.); (L.d.S.N.d.S.B.); (D.d.S.B.B.)
| |
Collapse
|
5
|
Lais Alves Almeida Nascimento A, Sampaio da Silveira de Souza M, Lorrane Rodrigues Borges L, Renon Eller M, Augusto Ribeiro de Barros F, Correa Mendonça A, Azevedo L, Araújo Vieira do Carmo M, Dos Santos Lima A, da Silva Cruz L, Abranches Dias Castro G, Antonio Fernandes S, Cesar Stringheta P. Influence of spontaneous and inoculated fermentation of açai on simulated digestion, antioxidant capacity and cytotoxic activity. Food Res Int 2023; 173:113222. [PMID: 37803540 DOI: 10.1016/j.foodres.2023.113222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
This work describes the kinetic study of different types (spontaneous, lactic and alcoholic) of açai fermentation in terms of total phenolics and total anthocyanins, as well as antioxidant capacity, before and after simulated digestion (SD). Cytotoxicity (A549, HCT8 and IMR90 cells) and formation of reactive oxygen species (A549 cells) were also evaluated. The results revealed that spontaneous fermentation (SF) for 24 h, followed by SD, generated a product with greater bioaccessibility of phenolics (52.68%) and cyanidin-3-glucoside (27.01%) than unfermented açai. Likewise, lactic fermentation (LF) for 72 h improved the bioavailability of phenolics (64.49%) and cyanidin-3-rutinoside (20.00%). On the other hand, alcoholic fermentation (AF) decreased the bioaccessibility of phenolic compounds and anthocyanins after SD. The SF 24 h (10.16 ± 1.25 μmol Trolox /g) and LF 72 h (15.90 ± 0.51 μmol Trolox /g) significantly increased the antioxidant capacity after SD, when compared to unfermented açai (SF 0 h, 4.00 ± 0.09 μmol Trolox /g; LF 0 h, 10.57 ± 0.91 μmol Trolox /g). It was concluded that the samples did not show cytotoxicity in the cell lines tested and, in addition, AF 24 h showed antioxidant and antimutagenic effects in vitro, reducing about 40% of chromosomal aberrations. The results obtained provide important information that can be used to produce foods with greater bioaccessibility of bioactive compounds.
Collapse
Affiliation(s)
| | | | | | - Monique Renon Eller
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | | | - Adriana Correa Mendonça
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Luciana Azevedo
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Mariana Araújo Vieira do Carmo
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Amanda Dos Santos Lima
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Laura da Silva Cruz
- Universidade Federal de Alfenas, Nutrition Faculty, Rua Gabriel Monteiro da Silva, 700. Centro - Alfenas, MG 37130-001, Brazil
| | - Gabriel Abranches Dias Castro
- Universidade Federal de Viçosa, Department of Chemistry, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Sergio Antonio Fernandes
- Universidade Federal de Viçosa, Department of Chemistry, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Paulo Cesar Stringheta
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
6
|
Impellizzeri D, Siracusa R, D'Amico R, Fusco R, Cordaro M, Cuzzocrea S, Di Paola R. Açaí berry ameliorates cognitive impairment by inhibiting NLRP3/ASC/CASP axis in STZ-induced diabetic neuropathy in mice. J Neurophysiol 2023; 130:671-683. [PMID: 37584088 DOI: 10.1152/jn.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Garcia-Vallejo MC, Poveda-Giraldo JA, Cardona Alzate CA. Valorization Alternatives of Tropical Forest Fruits Based on the Açai ( Euterpe oleracea) Processing in Small Communities. Foods 2023; 12:foods12112229. [PMID: 37297474 DOI: 10.3390/foods12112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many plant species characterize tropical forests, and a small fraction has been studied to favor small communities in the food and medicinal fields. The high biodiversity of these regions allows for the proposed alternatives for the valorization of exotic fruits due to their rich content of value-added compounds that benefit human health. This work focuses on improving the nutritional characteristics of the açai production chain by mixing it with noni and araza. As a main result, it was possible to enhance the organoleptic and nutritional characteristics of the fruits after freeze-drying. Then, the seeds and peels of the fruits were valorized by the extraction of bioactive compounds with conventional methods and biogas production by anaerobic digestion. The best compositions of antioxidant capacity and total phenolic compounds were obtained for the extracts based on the araza peel, with values of 116.4 µmol and 276.6 mg of gallic acid per 100 g of raw material, respectively. Regarding biogas production, the anaerobic digestion performance was influenced by the C/N ratio. The experimental results were used as input to simulate small-scale processes. From a technical point of view, the scheme of açai, noni, and araza mixture (Sc. 4) showed the highest mass yields (0.84 kg products/kg RM) and energy requirement (2.54 kW/kg RM). On the other hand, the processing of single açai (Sc. 1) presented the lowest capital costs (1.37 M-USD) and operating costs (0.89 M-USD/year). However, all scenarios showed techno-economic feasibility and demonstrated the potential of these fruits to valorize the açai market.
Collapse
Affiliation(s)
- Maria Camila Garcia-Vallejo
- Institute of Biotechnology and Agribusiness, Department of Chemical Engineering, Universidad Nacional de Colombia sede Manizales, Manizales 170001, Colombia
| | - Jhonny Alejandro Poveda-Giraldo
- Institute of Biotechnology and Agribusiness, Department of Chemical Engineering, Universidad Nacional de Colombia sede Manizales, Manizales 170001, Colombia
| | - Carlos Ariel Cardona Alzate
- Institute of Biotechnology and Agribusiness, Department of Chemical Engineering, Universidad Nacional de Colombia sede Manizales, Manizales 170001, Colombia
| |
Collapse
|
8
|
Custódio Neto da Silva MA, Araújo Souza Wolff L, Assunção Borges KR, Alvares Marques Vale A, Silva de Azevedo-Santos AP, Pascoal Xavier MA, Lacerda Barbosa MDC, Soares Brandão Nascimento MDD, Ernesto de Carvalho J. Açaí (Euterpe oleracea Mart.) byproduct reduces tumor size and modulates inflammation in Ehrlich mice model. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
|
9
|
Silva Junior ZS, Dos Santos LAD, Gonçalves MLL, Gallo JMAS, da Silva T, Motta LJ, Santos EM, Horliana ACRT, Fernandes KPS, Mesquita-Ferrari RA, Bussadori SK. Photodynamic therapy with acai (Euterpe oleracea) and blue light in oral cells: A spectroscopic and cytotoxicity analysis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200259. [PMID: 36349809 DOI: 10.1002/jbio.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate the potential of photodynamic therapy (PDT) with blue light-emitting diode (LED) 460 nm at 25, 50 and 100 J/cm2 using three concentrations of acai extracts (100, 40, and 10 mg/ml), in the proliferation and viability of head and neck tumor lines (SCC9). METHODS Three groups of cells were analyzed for 3 days in an in vitro assay with MTT (3- (4,5-dimethylthiazol-2-yl) -2,5, -diphenyltetrazolium bromide) and crystal violet: cells in the absence of acai extract and PDT (control group); cells in the presence of acai extract and no light; and cells in the presence of acai extract and LED blue light (PDT groups). RESULTS When using acai as a PS combined with blue LED (460 nm, 0.7466 cm2 , 1000 mW/cm2 ) and irradiation at 25, 50, and 100 J/cm2 , after 72 h, cell viability (p < 0.0001 vs. control, p = 0.0027 vs. 100 mg/ml açai group, p = 0.0039 vs. 40 mg/ml açai group, p = 0.0135 vs. 10 mg/ml açai group; One-Way ANOVA/Tukey) and proliferation (p < 0.05, One-Way ANOVA/Tukey) decreased. CONCLUSION The acai in question is a potential photosensitizer (PS), with blue light absorbance and efficacy against head and neck tumor lines (SCC9).
Collapse
Affiliation(s)
- Zenildo Santos Silva Junior
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Lucas Andreo Dias Dos Santos
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Tamiris da Silva
- Postgraduation Program in Rehabilitation Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Lara Jansiski Motta
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Elaine Marcílio Santos
- Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos, Santos, SP, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
11
|
Ethyl Acetate Fraction of Harpagophytum procumbens Prevents Oxidative Stress In Vitro and Amphetamine-Induced Alterations in Mice Behavior. Neurochem Res 2023; 48:1716-1727. [PMID: 36648708 DOI: 10.1007/s11064-022-03846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Microglial activation has been associated to the physiopathology of neurodegenerative diseases, such as schizophrenia, and can occur during inflammation and oxidative stress. Pharmacological treatment is associated with severe side effects, and studies for use of plant extracts may offer alternatives with lower toxicity. Harpagophytum procumbens (HP) is a plant known for its anti-inflammatory properties. In the present study, we characterized the ethyl acetate fraction of HP (EAF HP) by ESI-ToF-MS and investigated the effects EAF HP in a lipopolysaccharide (LPS) induced inflammation model on microglial cells (BV-2 lineage). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DCFH-DA (2',7'-dichlorofluorescein diacetate) and cell cycle flow cytometer analysis were performed. In vivo was investigated the amphetamine-induced psychosis model through behavioral (locomotor and exploratory activities, stereotypies and working memory) and biochemical (DCFH-DA oxidation and protein thiols) parameters in cortex and striatum of mice. EAF HP reduced activation and proliferation of microglial cells in 48 h (300 µg/mL) and in 72 h after treatments (50-500 µg/mL). Reactive oxygen species levels were lower at the concentration of 100 µg/mL EAF HP. We detected a modulatory effect on the cell cycle, with reduction of cells in S and G2/M phases. In mice, the pre-treatment with EAF HP, for 7 days, protected against positive and cognitive symptoms, as well as stereotypies induced by amphetamine. No oxidative stress was observed in this amphetamine-induced model of psychosis. Such findings suggest that EAF HP can modulate the dopaminergic neurotransmission and be a promising adjuvant in the treatment of locomotor alterations, cognitive deficits, and neuropsychiatric disorders.
Collapse
|
12
|
Santos OVD, Pinaffi Langley ACDC, Mota de Lima AJ, Vale Moraes VS, Dias Soares S, Teixeira-Costa BE. Nutraceutical potential of Amazonian oilseeds in modulating the immune system against COVID-19 - A narrative review. J Funct Foods 2022; 94:105123. [PMID: 35634457 PMCID: PMC9127052 DOI: 10.1016/j.jff.2022.105123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/31/2023] Open
Abstract
Since the outbreak of COVID-19 disease, medical and scientific communities are facing a challenge to contain its spread, develop effective treatments, and reduce its sequelae. Together with the therapeutical treatments, the use of dietary bioactive compounds represents a promising and cost-effective strategy to modulate immunological responses. Amazonian oilseeds are great sources of bioactive compounds, thus representing not only a dietary source of nutrients but also of substances with great interest for human health. This narrative review compiled the available evidence regarding the biochemical properties of some Amazonian oilseeds, especially Brazil nut, Açaí berry, Bacaba, Peach palm, Sapucaya and Tucuma fruits, on human health and its immune system. These effects were discussed from an etiological and pathophysiological perspective, emphasizing their potential role as a co-adjuvant strategy against COVID-19. Besides this, the cost associated with these strategies hinders their applicability in many nations, especially low-income countries and communities living in social insecurity.
Collapse
Affiliation(s)
| | | | - Ana Júlia Mota de Lima
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | - Vinícius Sidonio Vale Moraes
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | - Stephanie Dias Soares
- Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará, Belém 66075-900, Pará, Brazil
| | | |
Collapse
|
13
|
Food sustainability trends - How to value the açaí production chain for the development of food inputs from its main bioactive ingredients? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
ALNasser MN, Mellor IR. Neuroprotective activities of acai berries (Euterpe sp.): A review. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary interventions rich in fruits and vegetables in aging people can reverse or mitigate age-related cognitive declines, delay the onset of neurodegenerative diseases (NDDs), and provide long-term health dividends. The novel food, popularly known as "Acai", is a berry belonging to the Euterpe genus of tropical palms trees and natively found in South America. Euterpe oleracea has been given much attention among scientists due to its high antioxidant capacity compared to other fruits and berries. Additionally, acai pulp composition analysis found that it contains various biologically active phytochemicals. In this review, we focused on current evidence relating to acai berry neuroprotection mechanisms and its efficacy in preventing or reversing neurodegeneration and age-related cognitive decline. A number of studies have illustrated the potential neuroprotective properties of acai berries. They have shown that their chemical extracts have antioxidant and anti-inflammatory properties and maintain proteins, calcium homeostasis, and mitochondrial function. Moreover, acai berry extract offers other neuromodulatory mechanisms, including anticonvulsant, antidepressant, and anti-aging properties. This neuromodulation gives valuable insights into the acai pulp and its considerable pharmacological potential on critical brain areas involved in memory and cognition. The isolated chemical matrix of acai berries could be a new substitute in research for NDD medicine development. However, due to the limited number of investigations, there is a need for further efforts to establish studies that enable progressing to clinical trials to consequently prove and ratify the therapeutic potential of this berry for several incurable NDDs.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Perez JL, Shivanagoudra SR, Perera WH, Kim DM, Wu CS, Sun Y, Jayaprakasha G, Patil BS. Bitter melon extracts and cucurbitane-type triterpenoid glycosides antagonize lipopolysaccharide-induced inflammation via suppression of NLRP3 inflammasome. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Pan D, Machado L, Bica CG, Machado AK, Steffani JA, Cadoná FC. In Vitro Evaluation of Antioxidant and Anticancer Activity of Lemongrass ( Cymbopogon citratus (D.C.) Stapf). Nutr Cancer 2021; 74:1474-1488. [PMID: 34282694 DOI: 10.1080/01635581.2021.1952456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cancer is considered a multifactorial disease and its development could be associated with several factors, for example, rotenone exposition. Unfortunately, many cancers are resistant to chemotherapy, as cervical cancer. Regarding this, lemongrass is a remarkable natural product that presents antioxidant and anticancer activities, which could show therapeutic action against rotenone and cervical cancer. Thus, this study aimed to investigate the antioxidant and anticancer action of lemongrass. An in vitro study was conducted using VERO (kidney cells) and SiHa cell lines (cervical cancer cells). VERO cells were exposed to rotenone and lemongrass extract for 24 and 72 h. While SiHa cells were exposed to lemongrass isolated and associated to chemotherapy, 5-fluorouracil, during 24 and 48 h. After, levels of viability, proliferation, and oxidative metabolism were determined. The results showed that lemongrass presents antioxidant activity on VERO cells by increasing cell viability and proliferation and decreasing oxidative stress caused by rotenone. Moreover, lemongrass showed anticancer activity by decreasing cell viability and increasing oxidative stress parameters on SiHa. Besides, lemongrass had no alteration in the chemotherapy activity. Therefore, this study revealed that lemongrass presents antioxidant and anticancer activity since it can protect against the cytotoxicity of rotenone and reduce the cell viability of cervical cancer.
Collapse
Affiliation(s)
- Daiane Pan
- Health Sciences, University of West Santa Catarina, Joaçaba, Brazil
| | - Larissa Machado
- Biological Sciences, University of West Santa Catarina, Joaçaba, Brazil
| | - Claudia Giuliano Bica
- Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
17
|
Xu JJ, Gong LL, Li YY, Zhou ZB, Yang WW, Wan CX, Zhang WN. Anti-inflammatory effect of a polysaccharide fraction from Craterellus cornucopioides in LPS-stimulated macrophages. J Food Biochem 2021; 45:e13842. [PMID: 34189750 DOI: 10.1111/jfbc.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Immunocytes-involved inflammation is considered to modulate the damage in various diseases. Oxidative stress is initiated by oxidative agents such as LPS and ROS, which are strongly involved in chronic inflammation. Our previous study found that a polysaccharide fraction from Craterellus cornucopioides (CCPP-1) showed good antioxidant activity. However, the anti-inflammatory effect of CCPP-1 was still elusive. The objective of this study was to evaluate the anti-inflammatory activity of CCPP-1 and its potential mechanism in LPS-stimulated RAW264.7 macrophages. The results showed that CCPP-1 could inhibit LPS-induced ROS and NO accumulation. Additionally, CCPP-1 could decrease pro-inflammatory cytokines production (TNF-α, IL-1β, and IL-18) and inflammatory mediator (iNOS) expression, which might be associated with its capacity to inhibit NF-κB signaling pathway and NLRP3 inflammasome activation. Therefore, this study suggested that CCPP-1 had an ameliorative effect on the inflammation response and was potential to develop into functional food for treating chronic inflammation. PRACTICAL APPLICATIONS: Craterellus cornucopioides is an edible fungus widely distributed in Southwestern China. It was reported that C. cornucopioides polysaccharide (CCPP-1), as important active ingredient, showed good antioxidant activity. However, the anti-inflammatory effect was still elusive. This study showed that CCPP-1 possessed anti-inflammatory activity. The molecular mechanism might be associated with its capacity to inhibit NF-κB signaling pathway and NLRP3 inflammasome activation. Therefore, polysaccharides from C. cornucopioides have potential to develop into functional food to combat inflammatory condition and thus indirectly halt the progression of various inflammatory response-related chronic diseases.
Collapse
Affiliation(s)
- Jia-Jia Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Li-Li Gong
- School of Life Sciences, Anhui University, Hefei, China
| | - Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Zhong-Bo Zhou
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Wei-Wei Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Chuan-Xing Wan
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, China
| |
Collapse
|
18
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Cadoná FC, de Souza DV, Fontana T, Bodenstein DF, Ramos AP, Sagrillo MR, Salvador M, Mota K, Davidson CB, Ribeiro EE, Andreazza AC, Machado AK. Açaí (Euterpe oleracea Mart.) as a Potential Anti-neuroinflammatory Agent: NLRP3 Priming and Activating Signal Pathway Modulation. Mol Neurobiol 2021; 58:4460-4476. [PMID: 34021869 DOI: 10.1007/s12035-021-02394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Neurological disorders have been demonstrated to be associated with mitochondrial dysfunction. This impairment may lead to oxidative stress and neuroinflammation, specifically promoted by NLRP3 expression. Açaí (Euterpe oleracea Mart.) has been studied in this field, since it presents important biological activities. We investigated açaí extract's anti-neuroinflammatory capacity, through NLRP3 inflammasome modulation. Microglia (EOC 13.31) were exposed to LPS and nigericin, as agents of inflammatory induction, and treated with açaí extract. Additionally, we used lithium (Li) as an anti-inflammatory control. Three different experiment models were conducted: (1) isolated NLRP3 priming and activation signals; (2) combined NLRP3 priming and activation signals followed by açaí extract as a therapeutic agent; and (3) combined NLRP3 priming and activation signals with açaí extract as a preventive agent. Cells exposed to 0.1 µg/mL of LPS presented high proliferation and increased levels of NO, and ROS, while 0.1 µg/mL of açaí extract was capable to reduce cellular proliferation and recover levels of NO and ROS. Primed and activated cells presented increased levels of NLRP3, caspase-1, and IL-1β, while açaí, Li, and orientin treatments reversed this impairment. We found that açaí, Li, and orientin were effective prophylactic treatments. Preventative treatment with Li and orientin was unable to avoid overexpression of IL-1β compared to the positive control. However, orientin downregulated NLRP3 and caspase-1. Lastly, primed and activated cells impaired ATP production, which was prevented by pre-treatment with açaí, Li, and orientin. In conclusion, we suggest that açaí could be a potential agent to treat or prevent neuropsychiatric diseases related to neuroinflammation.
Collapse
Affiliation(s)
- Francine Carla Cadoná
- Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, RS, Brazil
| | - Diulie Valente de Souza
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - Tuyla Fontana
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - David Frederick Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | | | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Kennya Mota
- Third Age Open University Foundation, University of Amazonas State, Manaus, AM, Brazil
| | | | - Euler Esteves Ribeiro
- Third Age Open University Foundation, University of Amazonas State, Manaus, AM, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
20
|
Inhibitory Effect of Catechin-Rich Açaí Seed Extract on LPS-Stimulated RAW 264.7 Cells and Carrageenan-Induced Paw Edema. Foods 2021; 10:foods10051014. [PMID: 34066479 PMCID: PMC8148186 DOI: 10.3390/foods10051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Açaí berry is a fruit from the tree commonly known as açaízeiro (Euterpe oleracea Mart.) originated from the Amazonian region and widely consumed in Brazil. There are several reports of the anti-inflammatory activity of its pulp and few data about the seed's potential in inflammation control. This work aimed to evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and carrageenan-induced paw edema. The treatment with E. oleracea ethyl acetate extract (EO-ACET) was used in an in vitro model performed with macrophages stimulated by LPS, in which pro-inflammatory markers were evaluated, and in an in vivo model of acute inflammation, in which edema inhibition was evaluated. EO-ACET showed an absence of endotoxins, and did not display cytotoxic effects in RAW 264.7 cells. LPS-stimulated cells treated with EO-ACET displayed low levels of nitrite and interleukins (IL's), IL-1β, IL-6 and IL-12, when compared to untreated cells. EO-ACET treatment was able to inhibit carrageenan-induced paw edema at 500 and 1000 mg/kg, in which no acute inflammatory reaction or low mast cell counts were observed by histology at the site of inoculation of λ-carrageenan. These findings provide more evidence to support further studies with E. oleracea seeds for the treatment of inflammation.
Collapse
|
21
|
Lavorato VN, Miranda DCD, Isoldi MC, Drummond FR, Soares LL, Reis ECC, Pelúzio MDCG, Pedrosa ML, Silva ME, Natali AJ. Effects of aerobic exercise training and açai supplementation on cardiac structure and function in rats submitted to a high-fat diet. Food Res Int 2021; 141:110168. [PMID: 33642024 DOI: 10.1016/j.foodres.2021.110168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 01/25/2023]
Abstract
This study evaluated the effect of aerobic exercise training (AET) and supplementation with açai on cardiac structure and function in rats submitted to a high-fat diet. Two-month old Fischer male rats were divided into 5 groups: Control (C), High-fat Diet (H), High-fat Diet + Açai (HA), High-fat Diet + AET (HT), High-fat Diet + Açai + AET (HAT). The high-fat diet had 21.8% lard and 1% cholesterol (H and HT), or supplemented with 1% lyophilized açai pulp (HA and HAT). The HT and HAT groups performed AET on a treadmill (5 days/week, 1 h/day, 60% of the maximum running speed) for 8 weeks. Exercise tolerance test were performed, and adiposity index calculated. After euthanasia, the left ventricle (LV) was dissected and processed for histological, single myocyte intracellular calcium ([Ca2+]i) transient and contractility, oxidative stress and gene expression analysis. AET improved running capacity and reduced the adiposity index. Both AET and açai supplementation inhibited the increase in the LV collagen content, the deleterious effects on the [Ca2+]i transient and contractility in cardiomyocytes and the increment in oxidative stress, caused by the consumption of a high-fat diet. Aerobic exercise training and açai supplementation can mitigate damage caused by high-fat diet in cardiac structure and function, though the combination of treatments had no additional effects.
Collapse
Affiliation(s)
- Victor Neiva Lavorato
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | | | - Mauro César Isoldi
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Filipe Rios Drummond
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | | - Maria Lúcia Pedrosa
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
22
|
de Souza DV, Pappis L, Bandeira TT, Sangoi GG, Fontana T, Rissi VB, Sagrillo MR, Duarte MM, Duarte T, Bodenstein DF, Andreazza AC, Cruz IBMD, Ribeiro EE, Antoniazzi A, Ourique AF, Machado AK. Açaí ( Euterpe oleracea Mart.) presents anti-neuroinflammatory capacity in LPS-activated microglia cells. Nutr Neurosci 2020; 25:1188-1199. [PMID: 33170113 DOI: 10.1080/1028415x.2020.1842044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Neuropsychiatric diseases are responsible for one of the highest burden of morbidity and mortality worldwide. These illnesses include schizophrenia, bipolar disorder, and major depression. Individuals affected by these diseases may present mitochondrial dysfunction and oxidative stress. Additionally, patients also have increased peripheral and neural chronic inflammation. The Brazilian fruit, açaí, has been demonstrated to be a neuroprotective agent through its recovery of mitochondrial complex I activity. This extract has previously shown anti-inflammatory effects in inflammatory cells. However, there is a lack of understanding of potential anti-neuroinflammatory mechanisms, such as cell cycle involvement. OBJECTIVE The objective of this study is to evaluate the anti-neuroinflammatory potential of an açaí extract in lipopolysaccharide-activated BV-2 microglia cells. METHODS Açaí extract was produced and characterized through high performance liquid chromatography. Following açaí extraction and characterization, BV-2 microglia cells were activated with LPS and a dose-response curve was generated to select the most effective açaí dose to reduce cellular proliferation. This dose was then used to assess reactive oxygen species (ROS) production, double-strand DNA release, cell cycle modulation, and cytokine and caspase protein expression. RESULTS Characterization of the açaí extract revealed 10 bioactive molecules. The extract reduced cellular proliferation, ROS production, and reduced pro-inflammatory cytokines and caspase 1 protein expression under 1 μg/mL in LPS-activated BV-2 microglia cells but had no effect on double strand DNA release. Additionally, açaí treatment caused cell cycle arrest, specifically within synthesis and G2/Mitosis phases. CONCLUSION These results suggest that the freeze-dried hydroalcoholic açaí extract presents high anti-neuroinflammatory potential.
Collapse
Affiliation(s)
- Diulie Valente de Souza
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil.,Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - Lauren Pappis
- Graduate Program of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | - Tuyla Fontana
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - Vitor Braga Rissi
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Michele Rorato Sagrillo
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil.,Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - Marta Maria Duarte
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Duarte
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Alfredo Antoniazzi
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil.,Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
23
|
de Souza FG, de Araújo FF, de Paulo Farias D, Zanotto AW, Neri-Numa IA, Pastore GM. Brazilian fruits of Arecaceae family: An overview of some representatives with promising food, therapeutic and industrial applications. Food Res Int 2020; 138:109690. [PMID: 33292959 DOI: 10.1016/j.foodres.2020.109690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
The Arecaceae family is widely distributed and comprises about 2600 species, in which 48 of them are native to Brazil and occurs in transition biomes between the Amazon, Cerrado and Caatinga. In addition to being used as a source of food and subsistence, they are also rich in lipophilic bioactive compounds, mainly carotenoids, polyunsaturated fatty acids, tocopherols and vitamin A. Moreover, they have considerable content of phenolic compounds, fibers and minerals. Therefore, the objective of this review is to present the physical-chemical and nutritional aspects, the main bioactive compounds, the biological properties and the innovative potential of four Brazilian palm-tree fruits of the Arecaceae family. Due to the presence of bioactive compounds, these fruits have the potential to promote health and can be used to prevent chronic non-communicable diseases, such as obesity, type 2 diabetes and others. Furthermore, these raw materials and their by-products can be used in the development of new food, chemical, pharmaceutical and cosmetic products. To ensure better use of these crops, promote their commercial value, benefit family farming and contribute to the country's sustainable development, it is necessary to implement new cultivation, post-harvest and processing techniques. Investing in research to publicize their potential is equally important, mainly of the ones still little explored, such as the buritirana.
Collapse
Affiliation(s)
| | | | - David de Paulo Farias
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Aline Wasem Zanotto
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
24
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
25
|
Li Z, Wang J, Zheng B, Guo Z. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. ULTRASONICS SONOCHEMISTRY 2020; 65:105063. [PMID: 32199256 DOI: 10.1016/j.ultsonch.2020.105063] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 05/13/2023]
Abstract
The effects of microwave, ultrasound and combined ultrasound-microwave (UM) treatment with different intensities on structural and hydrolysis properties of myofibrillar protein (MP) were investigated. Freeradical scavenging ability, angiotensin-I-converting enzyme (ACE) inhibitory activity, and cellular antioxidant and anti-inflammatory abilities of the related bioactive peptides were also evaluated. Raman spectroscopic analysis indicated that MP molecule tended to unfold and stretch with increasing in β-turn and random coil content under mild microwave (100 W), ultrasound (100-200 W) and combined UM treatments. Meanwhile, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed these treatments could also improve the thermal stability against heat-induced denaturation and degeneration. The 200 W ultrasound treatment clearly increased MP solubility by disrupting the highly-ordered aggregates into smaller filament and fragment structures. The 300 W ultrasound coupled with 100 W microwave treatment further enhanced these effects. The resulting partially denatured structure induced by suitable ultrasound and combined UM treatments increased the susceptibility of MP to exogenous enzymes, thereby accelerating hydrolytic process and yielding a high peptide concentration in MP hydrolysates. MP peptides could effectively inhibit free radical and ACE activity, which also improved the ability of antioxidant defence system, and suppressed the production of proinflammatory cytokines in RAW 264.7 cells stimulated by H2O2. The combination of 100 W microwave and 300 W ultrasound treatment was optimal method for generating bioactive MP peptides with the strongest multi-activity effects against H2O2-induced cell damage.
Collapse
Affiliation(s)
- Zhiyu Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianyi Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory of Food Safety and Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
26
|
de Almeida Magalhães TSS, de Oliveira Macedo PC, Converti A, Neves de Lima ÁA. The Use of Euterpe oleracea Mart. As a New Perspective for Disease Treatment and Prevention. Biomolecules 2020; 10:biom10060813. [PMID: 32466439 PMCID: PMC7356995 DOI: 10.3390/biom10060813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Euterpe oleracea Mart. (EO), popularly known as açaí, belongs to the Arecaceae family and grows abundantly in Brazil. The fruit of this palm tree is widely used because of its anti-inflammatory and antioxidant properties. In this review, a search for literature and patent technological prospecting has been performed on the use of EO to treat and prevent diseases as well as to prepare pharmaceutical formulations. EO leaves, fruits, and oil stand out for their large number of pharmacological activities such as anti-inflammatory, antioxidant, antimicrobial, antinociceptive, anticancer, anti-atherogenic, and healing activities, protection against metabolic syndromes such as diabetes, hypertension, and hyperlipidemia, and protection of organs such as lung, kidney, liver, heart, and nervous system. While the phytochemical composition is intrinsically linked to identified biological activities, discoveries of the past decade concerning the use of this species have shown pharmacological alternatives mainly in the treatment and prevention of breast cancer and metabolic syndromes. Although studies and inventions on the use of EO though are believed to have been important in light of the pharmacological activities found, few clinical and toxicity tests have been performed. Nevertheless, with the increase of interest in EO, this species is believed to be only at the beginning of the breakthroughs in the development of promising products for the pharmaceutical industry.
Collapse
Affiliation(s)
- Thalita Sévia Soares de Almeida Magalhães
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
| | - Pollyana Cristina de Oliveira Macedo
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, I-16145 Genoa, Italy;
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
- Correspondence: ; Tel.: +55-(84)-99928-8864
| |
Collapse
|
27
|
Major, minor and trace elements composition of Amazonian foodstuffs and its contribution to dietary intake. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|