1
|
Liu Y, Zhu Y, Zhao Y, Wang J, Yu Y, Zhu J, Jin G. Bovine collagen peptides and peptide-calcium complexes inhibit RANKL-induced osteoclast differentiation in RAW 264.7 macrophages. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40312763 DOI: 10.1002/jsfa.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/09/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND This study aims to prepare collagen peptides from bovine bone meal using a combination of heat pretreatment and enzymatic digestion, and to chelate them with calcium chloride to form peptide-calcium chelates. The effects of both on the proliferation and differentiation of osteoclasts were investigated using cellular experiments (RAW 264.7 cells). RESULTS Both bovine collagen peptides and their calcium chelates (BPs, HBPs, BPs-Ca, and HBPs-Ca) can significantly inhibit the RANKL-induced differentiation of RAW 264.7 cells into osteoclasts. The preheating treatment before enzymatic hydrolysis of bone materials has an improving effect on the inhibition of RAW 264.7 differentiation into osteoblasts by collagen peptides and their peptide calcium chelates. HBP and HBPs-Ca could significantly activate the NF-κB signaling pathway, among which HBPs-Ca was the most effective, which could significantly downregulate the mRNA expression of genes related to osteoclast differentiation, such as AP-1, c-Fos, TRAP, and NFATc1. Additionally, the expression of NF-κB p65, c-Fos, IKK and IκBα were also significantly inhibited after treatment with HBPs-Ca, with IKK being the most significantly downregulated, with an 8.2-fold reduction compared to the control group. CONCLUSION HBPs and HBPs-Ca demonstrated stronger activity in inhibiting osteoclast formation compared to BPs and BPs-Ca. This enhanced activity is likely due to structural changes in the peptides caused by heat treatment, which increase their antioxidant properties and antagonistic effects on RANKL. These findings indicate that bovine collagen peptides and their calcium chelates can inhibit the formation of osteoclasts by activating the NF-κB pathway, thereby influencing bone metabolism and providing a theoretical basis for the treatment of osteoporosis. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| | - Yue Zhu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| | - Yixin Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| | - Jin Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| | - Yiying Yu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| | - Jin Zhu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| | - Guofeng Jin
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing of Technology and Business University, Beijing, 100048, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Zhuang X, Zhang Y, Fang B, Fu Y. Unraveling the Osteogenic Activity and Molecular Mechanism of an Antioxidant Collagen Peptide in MC3T3-E1 Cells. Nutrients 2025; 17:824. [PMID: 40077694 PMCID: PMC11902006 DOI: 10.3390/nu17050824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Osteoporosis has become an inevitable health issue with global aging, and the current drug treatments often have adverse side effects, highlighting the need for safer and more effective therapies. Collagen-derived peptides are promising alternatives due to their favorable safety profile and biological activity. This study aimed to investigate the osteogenic and anti-apoptotic properties of collagen peptide UU1 (GASGPMGPR) in addition to its antioxidant activity. Methods: The effects of UU1 were evaluated in MC3T3-E1 cells by assessing osteogenic markers, including alkaline phosphatase (ALP), Cyclin D1, runt-related transcription factor 2 (Runx2), and Akt/β-catenin signaling. Western blot analysis quantified collagen I, osteocalcin, and phosphorylated Akt levels. Anti-apoptotic effects were measured via p-Akt levels and the Bax/Bcl-2 ratio. Computational molecular docking was performed to explore the molecular mechanism of UU1 via its interaction with epidermal growth factor receptor (EGFR) and collagen-binding integrin. Results: UU1 treatment promoted cell differentiation, with elevated ALP, Cyclin D1, Runx2, and Akt/β-catenin signaling. Notably, at 0.025 mg/mL, UU1 upregulated the levels of collagen I, osteocalcin, and phosphorylated Akt by 2.14, 3.37, and 1.95 times, respectively, compared to the control. Additionally, UU1 exhibited anti-apoptotic effects, indicated by increased p-Akt levels and a reduced Bax/Bcl-2 ratio. Molecular docking analysis suggested that UU1 could assist the dimerization of EGFR, facilitating downstream signaling transductions and activating collagen-binding integrin. Conclusions: These findings highlight UU1 as a multifunctional peptide with antioxidant, osteogenic, and anti-apoptotic properties, positioning it as a promising candidate for anti-osteoporosis applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yue Wang
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital of Xiamen University, Xiamen 361005, China;
| | - Xiaoyan Zhuang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.Z.); (Y.Z.)
| | - Yonghui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.Z.); (Y.Z.)
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
- The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Wang Z, Liu L, Jiang H, Li L, Yang M, Dai J, Tao L, Sheng J, Tian Y. Glycated walnut meal peptide‑calcium chelates (COS-MMGGED-Ca): Preparation, characterization, and calcium absorption-promoting. Food Chem 2025; 462:140975. [PMID: 39197240 DOI: 10.1016/j.foodchem.2024.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
This study isolated a novel peptide MMGGED with strong calcium-binding capacity from defatted walnut meal and synthesized a novel peptide‑calcium chelate COS-MMGGED-Ca with high stability via glycation. Structural characterization and computer simulation identified binding sites, while in vitro digestion stability and calcium transport experiments explored the chelate's properties. Results showed that after glycation, COS-MMGGED bound Ca2+ with 88.75 ± 1.75 %, mainly via aspartic and glutamic acids. COS-MMGGED-Ca released Ca2+ steadily (60.27 %), with thermal denaturation temperature increased by 18 °C and 37 °C compared to MMGGED-Ca, indicating good processing performance. Furthermore, COS-MMGGED significantly enhanced Ca2+ transport across Caco-2 monolayers, 1.13-fold and 1.62-fold higher than CaCl2 and MMGGED, respectively, at 240 h. These findings prove glycation enhances structural properties, stability, calcium loading, and transport of peptide‑calcium chelates, providing a scientific basis for developing novel efficient calcium supplements and high-value utilization of walnut meal.
Collapse
Affiliation(s)
- Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Litong Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Haifen Jiang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China.
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Puer University, Puer 665000, China.
| |
Collapse
|
4
|
Cao Z, Zhu Y, Li Y, Yuan Z, Han B, Guo Y. The mechanical regulatory role of ATP13a3 in osteogenic differentiation of pre-osteoblasts. Adv Med Sci 2024; 69:339-348. [PMID: 39004219 DOI: 10.1016/j.advms.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE The process of osteogenic differentiation hinges upon the pivotal role of mechanical signals. Previous studies found that mechanical tensile strain of 2500 microstrain (με) at a frequency of 0.5 Hz promoted osteogenesis in vitro. However, the mechanism of the mechanical strain influencing osteogenesis at the cellular and molecular levels are not yet fully understood. This study aimed to explore the mechanism of mechanical strain on osteogenic differentiation of MC3T3-E1 cells. MATERIALS AND METHODS Proteomics analysis was conducted to explore the mechanical strain that significantly impacted the protein expression. Bioinformatics identified important mechanosensitive proteins and the expression of genes was investigated using real-time PCR. The dual-luciferase assay revealed the relationship between the miRNA and its target gene. Overexpression and downexpression of the gene, to explore its role in mechanically induced osteogenic differentiation and transcriptomics, revealed further mechanisms in this process. RESULTS Proteomics and bioinformatics identified an important mechanosensitive lowexpression protein ATP13A3, and the expression of Atp13a3 gene was also reduced. The dual-luciferase assay revealed that microRNA-3070-3p (miR-3070-3p) targeted the Atp13a3 gene. Furthermore, the downexpression of Atp13a3 promoted the expression levels of osteogenic differentiation-related genes and proteins, and this process was probably mediated by the tumor necrosis factor (TNF) signaling pathway. CONCLUSION Atp13a3 responded to mechanical tensile strain to regulate osteogenic differentiation, and the TNF signaling pathway regulated by Atp13a3 was probably involved in this process. These novel insights suggested that Atp13a3 was probably a potential osteogenesis and bone formation regulator.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China; Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Yingwen Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Yanan Li
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Zijian Yuan
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
| | - Biao Han
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China.
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Zhang C, Du B, Deng G, Zhang S, Yu T, Guan Y, Huang Y. Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice. Chin Med J (Engl) 2024; 137:1762-1764. [PMID: 38057164 PMCID: PMC11268816 DOI: 10.1097/cm9.0000000000002877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Chao Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bowei Du
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiya Deng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuai Zhang
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100160, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yaqin Huang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Han L, Li Y, Hu B, Wang W, Guo J, Yang J, Dong N, Li Y, Li T. Enhancement of Calcium Chelating Activity in Peptides from Sea Cucumber Ovum through Phosphorylation Modification. Foods 2024; 13:1943. [PMID: 38928883 PMCID: PMC11202592 DOI: 10.3390/foods13121943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, phosphorylation has been applied to peptides to enhance their physiological activity, taking advantage of its modification benefits and the extensive study of functional peptides. In this study, water-soluble peptides (WSPs) of sea cucumber ovum were phosphorylated in order to improve the latter's calcium binding capacity and calcium absorption. Enzymatic hydrolysis methods were screened via ultraviolet-visible absorption spectroscopy (UV-Vis), the fluorescence spectrum, and calcium chelating ability. Phosphorylated water-soluble peptides (P-WSPs) were characterized via high-performance liquid chromatography, the circular dichroism spectrum, Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, surface hydrophobicity, and fluorescence spectroscopy. The phosphorus content, calcium chelation rate and absorption rate were investigated. The results demonstrated that phosphorylation enhanced the calcium chelating capacity of WSPs, with the highest capacity reaching 0.96 mmol/L. Phosphate ions caused esterification events, and the carboxyl, amino, and phosphate groups of WSPs and P-WSPs interacted with calcium ions to form these bonds. Calcium-chelated phosphorylated water-soluble peptides (P-WSPs-Ca) demonstrated outstanding stability (calcium retention rates > 80%) in gastrointestinal processes. Our study indicates that these chelates have significant potential to develop into calcium supplements with superior efficacy, bioactivity, and stability.
Collapse
Affiliation(s)
- Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (Y.L.); (B.H.); (N.D.)
| | - Yaoyao Li
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (Y.L.); (B.H.); (N.D.)
| | - Bing Hu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (Y.L.); (B.H.); (N.D.)
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Jianming Guo
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK;
| | - Nuo Dong
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (Y.L.); (B.H.); (N.D.)
| | - Yingmei Li
- Linghai Dalian Seafoods Breeding Co., Ltd., Jinzhou 121209, China;
| | - Tingting Li
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (Y.L.); (B.H.); (N.D.)
| |
Collapse
|
7
|
Zhu Y, Li Y, Cao Z, Xue J, Wang X, Hu T, Han B, Guo Y. Mechanically strained osteocyte-derived exosomes contained miR-3110-5p and miR-3058-3p and promoted osteoblastic differentiation. Biomed Eng Online 2024; 23:44. [PMID: 38705993 PMCID: PMC11070085 DOI: 10.1186/s12938-024-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS A mechanical tensile strain of 2500 με at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS In osteocytes, a mechanical tensile strain of 2500 με at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.
Collapse
Affiliation(s)
- Yingwen Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Yanan Li
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Zhen Cao
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Jindong Xue
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Xiaoyan Wang
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Tingting Hu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Biao Han
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| |
Collapse
|
8
|
Gu Y, Zhang J, Niu Y, Sun B, Liu Z, Mao X, Zhang Y. Virtual screening and characteristics of novel umami peptides from porcine type I collagen. Food Chem 2024; 434:137386. [PMID: 37716151 DOI: 10.1016/j.foodchem.2023.137386] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to rapidly and precisely discover novel umami peptides from porcine type I collagen using virtual screening, sensory evaluation and molecular docking simulation. Porcine type I collagen was hydrolyzed in silico and six umami peptide candidates (CN, SM, CRD, GESMTDGF, MS, DGC) were shortlisted via umami taste, bioactivity, toxicity, allergenicity, solubility and stability predictions. The sensory evaluation confirmed that these peptides exhibited umami taste, with CRD, GESMTDGF and DGC displaying higher umami intensity and significant umami-enhancing effects in 0.35% sodium glutamate solution. Molecular docking predicted that Ser 276/384/385 of T1R1 and Asn68, Val277, Thr305, Ser306, Leu385 of T1R3 may also play critical roles in binding umami peptides. The umami taste of peptides may be perceived mainly through the formation of hydrogen bonds with the hydrophilic amino acids of T1R1/T1R3. This work provided a robust procedure and guidance to develop novel umami peptides from food byproducts.
Collapse
Affiliation(s)
- Yuxiang Gu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yajie Niu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
9
|
Qi L, Zhang H, Guo Y, Zhang C, Xu Y. Novel Calcium-Binding Peptide from Bovine Bone Collagen Hydrolysates and Its Potential Pro-Osteogenic Activity via Calcium-Sensing Receptor (CaSR). Mol Nutr Food Res 2024; 68:e2200726. [PMID: 38161238 DOI: 10.1002/mnfr.202200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/25/2023] [Indexed: 01/03/2024]
Abstract
SCOPE This paper aims to explore the osteogenic activity and potential mechanism of the peptide-calcium chelate, and provides a theoretical basis for peptide-calcium chelates as functional foods to prevent or improve osteoporosis. METHODS AND RESULTS In this research, a novel peptide (Phe-Gly-Leu, FGL) with a high calcium-binding capacity is screened from bovine bone collagen hydrolysates (CPs), calcium binding sites of which mainly included carbonyl, amino and carboxyl groups. The FGL-Ca significantly enhances the osteogenic activity of MC3T3-E1 cells (survival rate, differentiation, and mineralization). The results of calcium fluorescence labeling and molecular docking show that FGL-Ca may activate calcium-sensing receptor (CaSR), leading to an increase in intracellular calcium concentration, then enhancing osteogenic activity of MC3T3-E1 cells. Further research found that FGL-Ca significantly promotes the mRNA and protein expression levels of CaSR, transforming growth factor β (TGF-β1), TGF-β-type II receptor (TβRII), Smad2, Smad3, osteocalcin (OCN), alkaline phosphatase (ALP), osteoprotegrin (OPG), and collagen type I (COLI). Subsequently, in the signal pathway intervention experiment, the expression levels of genes and proteins related to the TGF-β1/Smad2/3 signaling pathway that are promoted by FGL-Ca are found to decrease. CONCLUSIONS These results suggest that FGL-Ca may activate CaSR, increase intracellular calcium concentration, and activate TGF-β1/Smad2/3 signaling pathway, which may be one of the potential mechanisms for enhancing osteogenic activity.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des déportés 2, B-5030, Gembloux, Belgium
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yang Xu
- Inner Mongolia Mengtai Biological Engineering Co., Ltd., Shengle Economic Park, Helinger County, Hohhot, Inner Mongolia, 010000, China
| |
Collapse
|
10
|
Qi L, Wang K, Zhou J, Zhang H, Guo Y, Zhang C. Phosphorylation modification of bovine bone collagen peptide enhanced its effect on mineralization of MC3T3-E1 cells via improving calcium-binding capacity. Food Chem 2024; 433:137365. [PMID: 37683462 DOI: 10.1016/j.foodchem.2023.137365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
This study aimed to investigate the effect of phosphorylation modification of collagen peptide on its calcium-binding capacity and pro-mineralization activity. In this study, collagen peptide (Leu-Thr-Phe, LTF) and phosphorylated LTF (P-LTF) were synthesized and further chelated with calcium ions. The results showed that phosphorylation of LTF significantly enhanced its calcium-binding capacity. Spectra analysis revealed that the calcium-binding sites of P-LTF were mainly carbonyl, carboxyl, and phosphate groups. Molecular docking further demonstrated that the phosphate group introduced by phosphorylation enhanced the calcium-binding capacity of LTF by ionic bonds and coordination bonds. The stability analysis results suggested that intestinal fluid could repair the peptide-calcium complex destroyed by gastric fluid. The cell experiment displayed that P-LTF-Ca significantly improved the mineralization activity of MC3T3-E1 cells, and the order of effective influence was P-LTF-Ca > LTF-Ca > P-LTF > LTF. This study provided the theoretical basis for the potential application of phosphorylation modification in improving bone health.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaojiao Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Zhong W, He J, Huang W, Yin G, Liu G, Cao Y, Miao J. Effect of the phosphorylation structure in casein phosphopeptides on the proliferation, differentiation, and mineralization of osteoblasts and its mechanism. Food Funct 2023; 14:10107-10118. [PMID: 37874279 DOI: 10.1039/d3fo03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Our previous studies have shown that highly phosphorylated casein phosphopeptides (residues 1-25) P5 could efficiently bind calcium and promote intestinal calcium absorption, and enhanced bone development in rats. The purpose of this study was to investigate the effect of the phosphorylation structure in P5 on the proliferation, differentiation, and mineralization of osteoblasts (MC3T3-E1) and its mechanism. P5 was obtained by high-performance liquid chromatography (HPLC) and non-phosphorylated peptide P5-0 was obtained by chemical synthesis. Compared with the control group, the proliferation rate of MC3T3-E1 cells treated by P5 was 1.10 times that of P5-0 at 200 μg mL-1. P5 caused the cell cycle retention of MC3T3-E1 cells in the G2/M phase, while P5-0 had no significant difference in the G2/M phase. MC3T3-E1 cells incubated with P5 showed stronger alkaline phosphatase (ALP) activity than with P5-0, suggesting a tendency to promote cellular differentiation. Compared to the P5-0 treatment group, the P5 treatment group at concentrations of 10 μg mL-1 showed significant differences in the mineralization rates (p < 0.05). P5 significantly upregulated the expressions of Runx2, ALP, ColIα1, and OCN compared with the control group (p < 0.05). In addition, in silico molecular docking showed that the binding force of the P5-EGFR complex was stronger than that of the P5-0-EGFR complex, which was significantly related to the phosphorylation structure in P5 and might be an important reason for osteoblast proliferation. In conclusion, the phosphorylation structure and amino acid composition in P5 stimulated the osteogenic activity of MC3T3-E1 cells, and could be expected to be a functional food for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wanying Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jian He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Guangling Yin
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
Mei Z, Jinlun H, Hongyu P, Liping S, Yongliang Z. Phosphorylation modification of tilapia skin gelatin hydrolysate and identification and characterization of calcium-binding peptides. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Asokan V, Yelleti G, Bhat C, Bajaj M, Banerjee P. A novel peptide isolated from Catla skin collagen acts as a self-assembling scaffold promoting nucleation of calcium-deficient hydroxyapatite nanocrystals. J Biochem 2023; 173:197-224. [PMID: 36494197 DOI: 10.1093/jb/mvac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Catla collagen hydrolysate (CH) was fractionated by chromatography and each fraction was subjected to HA nucleation, with the resultant HA-fraction composites being scored based on the structural and functional group of the HA formed. The process was repeated till a single peptide with augmented HA nucleation capacity was obtained. The peptide (4.6 kDa), exhibited high solubility, existed in polyproline-II conformation and displayed a dynamic yet stable hierarchical self-assembling property. The 3D modelling of the peptide revealed multiple calcium and phosphate binding sites and a high propensity to self-assemble. Structural analysis of the peptide-HA crystals revealed characteristic diffraction planes of HA with mineralization following the (002) plane, retention of the self-assembled hierarchy of the peptide and intense ionic interactions between carboxyl groups and calcium. The peptide-HA composite crystals were mostly of 25-40 nm dimensions and displayed 79% mineralization, 92% crystallinity, 39.25% porosity, 12GPa Young's modulus and enhanced stability in physiological pH. Cells grown on peptide-HA depicted faster proliferation rates and higher levels of osteogenic markers. It was concluded that the prerequisite for HA nucleation by a peptide included: a conserved sequence with a unique charge topology allowing calcium chelation and its ability to form a dynamic self-assembled hierarchy for crystal propagation.
Collapse
Affiliation(s)
- Vishwadeep Asokan
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Geethika Yelleti
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Chetna Bhat
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| | - Mayur Bajaj
- School of Biological Sciences, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| | - Pradipta Banerjee
- Department of Biochemistry, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka 560078, India
| |
Collapse
|
14
|
Zhang H, Qi L, Wang X, Guo Y, Liu J, Xu Y, Liu C, Zhang C, Richel A. Preparation of a cattle bone collagen peptide-calcium chelate by the ultrasound method and its structural characterization, stability analysis, and bioactivity on MC3T3-E1 cells. Food Funct 2023; 14:978-989. [PMID: 36541828 DOI: 10.1039/d2fo02146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study was designed to prepare a cattle bone-derived collagen peptide-calcium chelate by the ultrasound method (CP-Ca-US), and its structure, stability, and bioactivity on MC3T3-E1 cells were characterized. Single-factor experiments optimized the preparation conditions: ultrasound power 90 W, ultrasound time 40 min, CaCl2/peptides ratio 1/2, pH 7. Under these conditions, the calcium-chelating ability reached 39.48 μg mg-1. The result of Fourier transform-infrared spectroscopy indicated that carboxyl oxygen and amino nitrogen atoms were chelation sites. Morphological analysis indicated that CP-Ca-US was characterized by a porous surface and large particles. Stability analysis demonstrated that CP-Ca-US was stable in the thermal environment and under intestinal digestion. CP-Ca-US showed more stability in gastric juice than the chelate prepared by the hydrothermal method. Cell experiments indicated that CP-Ca-US increased osteoblast proliferation (proliferation rate 153% at a concentration of 300 μg mL-1) and altered the cell cycle. Significantly, CP-Ca-US enhanced calcium absorption by interacting with calcium-sensing receptors and promoted the mineralization of MC3T3-E1 cells. This study provides the scientific basis for applying the ultrasound method to prepare peptide-calcium chelates and clarifies the positive role of chelates in bone building.
Collapse
Affiliation(s)
- Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaodan Wang
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD, Wageningen, The Netherlands
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yang Xu
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Shengle Economic Park, Helinger County, Hohhot, Inner Mongolia, 010000, China
| | - Chengjiang Liu
- Institute of Agro-Products Processing Science, Technology Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|
15
|
Wu X, Wang F, Cai X, Wang S. Characteristics and osteogenic mechanism of glycosylated peptides-calcium chelate. Curr Res Food Sci 2022; 5:1965-1975. [PMID: 36312881 PMCID: PMC9596740 DOI: 10.1016/j.crfs.2022.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Finding effective practical components to promote bone mineralization from the diet has become an effective method to regulate bone mass. In this study, peptides-calcium chelate derived from Crimson Snapper scales protein hydrolysates (CSPHs), and xylooligosaccharide (XOS)-peptides-calcium chelate prepared by transglutaminase (TGase) pathway, named CSPHs-Ca and XOS-CSPHs-Ca-TG, were used to explore the effects of glycosylation on their structural properties and osteogenic activity in vitro. Results showed that XOS-CSPHs-Ca-TG had better calcium phosphate crystallization inhibition activity with more unified structures than CSPHs-Ca, and could effectively maintain a stable calcium content in the gastrointestinal tract. Meanwhile, the glycosylated peptide-calcium chelate could accelerate the calcium transport efficiency in the Caco-2 cell monolayer, up to 3.54 folds of the control group. Moreover, XOS-CSPHs-Ca-TG exhibited prominent osteogenic effects by promoting the proliferation of MC3T3-E1 cells, increasing the secretion of osteogenic related factors, and accelerating the formation of intracellular mineralized nodules. RT-qPCR results further confirmed that this beneficial effect of XOS-CSPHs-Ca-TG was achieved by activating the Wnt/β-catenin signaling pathway. These results suggested that glycosylation might be a promising method for optimizing structural properties and osteogenic activity of peptide-calcium chelate.
Collapse
Affiliation(s)
- Xiaoping Wu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China,College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fangfang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China,Corresponding author.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China,Corresponding author.
| |
Collapse
|
16
|
An J, Zhang Y, Ying Z, Li H, Liu W, Wang J, Liu X. The Formation, Structural Characteristics, Absorption Pathways and Bioavailability of Calcium–Peptide Chelates. Foods 2022; 11:foods11182762. [PMID: 36140890 PMCID: PMC9497609 DOI: 10.3390/foods11182762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium is one of the most important mineral elements in the human body and is closely related to the maintenance of human health. To prevent calcium deficiency, various calcium supplements have been developed, but their application tends to be limited by low calcium content and highly irritating effects on the stomach, among other side effects. Recently, calcium–peptide chelates, which have excellent stability and are easily absorbed, have received attention as an alternative emerging calcium supplement. Calcium-binding peptides (CaBP) are usually obtained via the hydrolysis of animal or plant proteins, and calcium-binding capacity (CaBC) can be further improved through chromatographic purification techniques. In calcium ions, the phosphate group, carboxylic group and nitrogen atom in the peptide are the main binding sites, and the four modes of combination are the unidentate mode, bidentate mode, bridging mode and α mode. The stability and safety of calcium–peptide chelates are discussed in this paper, the intestinal absorption pathways of calcium elements and peptides are described, and the bioavailability of calcium–peptide chelates, both in vitro and in vivo, is also introduced. This review of the research status of calcium–peptide chelates aims to provide a reasonable theoretical basis for their application as calcium supplementation products.
Collapse
Affiliation(s)
- Jiulong An
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Junru Wang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (H.L.); (X.L.); Tel.: +86-10-68984481 (H.L.)
| |
Collapse
|
17
|
Huang W, Yu K, Kang M, Wang Q, Liao W, Liang P, Liu G, Cao Y, Miao J. Identification and functional analysis of three novel osteogenic peptides isolated from tilapia scale collagen hydrolysate. Food Res Int 2022; 162:111993. [DOI: 10.1016/j.foodres.2022.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
|
18
|
Calcium-binding capacity of peptides obtained from sheep bone and structural characterization and stability of the peptide-calcium chelate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Huang W, Lao L, Deng Y, Li Z, Liao W, Duan S, Xiao S, Cao Y, Miao J. Preparation, characterization, and osteogenic activity mechanism of casein phosphopeptide-calcium chelate. Front Nutr 2022; 9:960228. [PMID: 35983483 PMCID: PMC9378869 DOI: 10.3389/fnut.2022.960228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal calcium absorption, but there are few studies on the osteogenic activity of CPPs. In this study, the preparation of casein phosphopeptide calcium chelate (CPP-Ca) was optimized on the basis of previous studies, and its peptide-calcium chelating activity was characterized. Subsequently, the effects of CPP-Ca on the proliferation, differentiation, and mineralization of MC3T3-E1 cells were studied, and the differentiation mechanism of CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing (RNA-seq). The results showed that the calcium chelation rate of CPPs was 23.37%, and the calcium content of CPP-Ca reached 2.64 × 105 mg/kg. The test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and amino nitrogen atoms of CPPs might be chelated with calcium during the chelation. Compared with the control group, the proliferation of MC3T3-E1 cells treated with 250 μg/mL of CPP-Ca increased by 21.65%, 26.43%, and 28.43% at 24, 48, and 72 h, respectively, and the alkaline phosphatase (ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were notably increased by 55% and 72%. RNA-seq results showed that 321 differentially expressed genes (DEGs) were found in MC3T3-E1 cells treated with CPP-Ca, including 121 upregulated and 200 downregulated genes. Gene ontology (GO) revealed that the DEGs mainly played important roles in the regulation of cellular components. The enrichment of the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in the differentiation of MC3T3-E1 cells. The results of a quantitative real-time PCR (qRT-PCR) showed that compared with the blank control group, the mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0 and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were consistent both in GO functional and KEGG enrichment pathway analysis. This study provided a theoretical basis for CPP-Ca as a nutritional additive in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linhui Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuliang Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China.,Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
20
|
Okagu IU, Aham EC, Ezeorba TPC, Ndefo JC, Aguchem RN, Udenigwe CC. Osteo‐modulatory dietary proteins and peptides: A concise review. J Food Biochem 2022; 46:e14365. [DOI: 10.1111/jfbc.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology Faculty of Physical Sciences, University of Nigeria Nsukka Nigeria
| | - Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
21
|
Co-administration of Antarctic krill peptide EEEFDATR and calcium shows superior osteogenetic activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Liu Y, Li S, Liu H, Li B. Osteogenic peptides in collagen hydrolysates: Stimulate differentiation of MC3T3-E1 cells via β1 integrin-FAK-ERK1/2 signaling pathway and Smad1 protein. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Modulatory activity of a bovine hydrolyzed collagen-hydroxyapatite food complex on human primary osteoblasts after simulating its gastrointestinal digestion and absorption. NUTR HOSP 2022; 39:644-651. [PMID: 35485386 DOI: 10.20960/nh.03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION osteoporosis is the most prevalent bone disease and one of the main causes of chronic disability in middle and advanced ages. Conventional pharmacological treatments are still limited, and their prolonged use can cause adverse effects that motivate poor adherence to treatment. Nutritional strategies are traditionally based on supplementing the diet with calcium and vitamin D. Recent studies confirm that the results of this supplementation are significantly improved if it is accompanied by the intake of oral hydrolyzed collagen. OBJECTIVE to evaluate the possible in vitro osteogenic activity of a peptide-mineral complex formed by bovine hydrolyzed collagen and bovine hydroxyapatite (Phoscollagen®, PHC®). METHODS the digestion and absorption of PHC® were simulated using the dynamic gastrointestinal digester of AINIA and Caco-2 cell model, respectively. Primary cultures of human osteoblasts were treated with the resulting fraction of PHC® and changes were evaluated in the proliferation of preosteoblasts and in the mRNA expression of osteogenic biomarkers at different stages of osteoblast maturation: Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OC) and type I collagen (ColA1). RESULTS an increase in preosteoblastic proliferation was observed (p ≤ 0,05). No changes were detected in the biomarkers of osteoblasts with 5 days of differentiation, but were with 14 days, registering an increase in Runx2 (p = 0.0008), ColA1 (p = 0.035), OC (p = 0.027) and ALP (without significance). CONCLUSION these results show that the PHC® peptide-mineral complex stimulates the activity of mature osteoblasts, being capable of promoting bone formation.
Collapse
|
24
|
He J, Guo H, Zhang M, Wang M, Sun L, Zhuang Y. Purification and Characterization of a Novel Calcium-Binding Heptapeptide from the Hydrolysate of Tilapia Bone with Its Osteogenic Activity. Foods 2022; 11:468. [PMID: 35159617 PMCID: PMC8834476 DOI: 10.3390/foods11030468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a calcium-binding peptide was obtained by hydrolyzing tilapia bone and its osteogenic activity was evaluated. Animal protease was selected from nine enzymes, and its hydrolysate was purified through preparative and semi-preparative reverse phase high-performance liquid chromatography. The purified peptide was identified as DGPSGPK (656.32 Da) and its calcium-binding capacity reached 111.98 µg/mg. The peptide calcium chelate (DGPSGPK-Ca) was obtained, and its structure was characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and mass spectrometry (MS). The results of XRD and SEM showed that DGPSGPK-Ca was formed as a new compound. The carboxyl and amino groups of Lys and Asp residues may be the chelating sites of DGPSGPK according to the FTIR and MS results. The molecular simulation showed the carbonyl groups of Asp, Pro, Ser, and Lys residues involved in the binding of calcium. The interaction of DGPSGPK and different integrins was evaluated by molecular docking simulation, and the main forces involved were electrostatic interaction forces, hydrogen bonding and hydrophobic interactions. Furthermore, DGPSGPK could inhibit the differentiation of osteoclast and promote the proliferation, differentiation and mineralization of osteoblasts.
Collapse
Affiliation(s)
- Jinlun He
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Hao Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Mei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Meng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| |
Collapse
|
25
|
Phosphorylation modification of collagen peptides from fish bone enhances their calcium-chelating and antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Yang M, Xu Z, Wu D, Dong Y, Wang Z, Du M. Characterizations and the Mechanism Underlying Osteogenic Activity of Peptides from Enzymatic Hydrolysates of Stichopus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15611-15623. [PMID: 34928143 DOI: 10.1021/acs.jafc.1c06028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sea cucumber (Stichopus japonicus) is a kind of fishery product with high nutritional value. It exhibits a wide range of biological activity and has potential application in the food, pharmaceutical, and biomedical industries. However, there are no reports available on the effects of S. japonicus peptides (SJP) on bone mineral density regulations. The purpose of this work was to analyze the composition and osteogenic activity of SJP and explore its underlying mechanism. The results showed that SJP stimulated cell proliferation, differentiation, and mineralization in a dose-dependent manner. In addition, SJP could promote the proliferation of MC3T3-E1 cells by altering the cell cycle progression and regulating the expression of Cyclins. Besides, SJP activated the WNT/β-catenin pathway and increased the nuclear level of the active form β-catenin. Furthermore, SJP also induced the expression of bone morphogenetic protein (BMP-2) and increase the phosphorylation levels of p38, JNK, and ERK, suggesting that the osteogenic activity of SJP may be achieved through the activation of WNT/β-catenin and BMP/MAPK signal pathways. In vivo, SJP significantly inhibited the serum levels of RANKL, ALP, and TRAP, whereas it increased the levels of osteocalcin and osteoprotegerin in OVX-mice. These results indicate that SJP may have the potential to stimulate bone formation and regeneration, and may be used as a functional food or nutritional supplement to prevent osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Dong
- Dalian Feide Biological Industry Co., Ltd., Dalian 116085, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
27
|
Li Y, Liu C, Liu W, Cheng X, Zhang A, Zhang S, Liu C, Li N, Jian X. Apatite Formation Induced by Chitosan/Gelatin Hydrogel Coating Anchored on Poly(aryl ether nitrile ketone) Substrates to Promote Osteoblastic Differentiation. Macromol Biosci 2021; 21:e2100262. [PMID: 34449122 DOI: 10.1002/mabi.202100262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Bone-like apatite is a promising coating of poly(ether ether ketone) (PEEK) for bone implantation. Poly(aryl ether nitrile ketone) containing phthalazinone moiety (PPENK) is a novel alternative for its easy synthesis. Here, chitosan/gelatin hybrid hydrogel coating is applied to induce the formation of apatite on the surface of PPENK substrate through biomineralization to improve its biocompatibility and osteogenic property. PPENK possessing allyl groups (PPENK-d) are synthesized and spin-coated on PPENK substrate to impart reactive groups. The hydrogel coating is prepared by the ultraviolet crosslinking of gelatin methacrylate (GelMA) and chitosan methacrylate (CSMA) on PPENK substrate. PPENK-d, GelMA, and CSMA are characterized by 1 H-NMR to confirm the designed structures. The presence of chitosan increases the chelation of calcium ions and thus induces the nucleation of apatite. The microstructural and compositional results reveal that the chitosan-containing hydrogel coating induced apatite coating yields a higher apatite quantity compared to the gelatin hydrogel coating. The apatite coatings on PPENK substrate promote the cytocompatibility and osteogenesis of MC3T3-E1 preosteoblasts in vitro.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Ali Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Nan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
28
|
Chotphruethipong L, Binlateh T, Hutamekalin P, Aluko RE, Tepaamorndech S, Zhang B, Benjakul S. Impact of Hydrolyzed Collagen from Defatted Sea Bass Skin on Proliferation and Differentiation of Preosteoblast MC3T3-E1 Cells. Foods 2021; 10:1476. [PMID: 34202207 PMCID: PMC8304286 DOI: 10.3390/foods10071476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a serious problem affecting health of the elderly. Drugs (bisphosphonates) applied for treatment are often accompanied by adverse side effects. Thus, fish byproduct-derived peptides, particularly hydrolyzed collagen (HC) from defatted sea bass skin, could be a safe source of anti-osteoporosis agents. This study aimed to examine the effects of HC on proliferation and differentiation of preosteoblast cells. HC prepared using papain before Alcalase hydrolysis was determined for molecular weight (MW) distribution. Thereafter, the resulting HC (50-800 µg/mL) was added to the cell. Proliferation, alkaline phosphatase activity (AP-A) and mineralization of cells were investigated. Moreover, the expression of runt-related transcription factor 2 (RUNX2) and the p-Akt/Akt pathway were also determined using Western blot. The results showed that HC had an MW < 3 kDa. HC (50-200 µg/mL) could promote cell proliferation. Nevertheless, HC at 100 µg/mL (HC-100) had enhanced AP-A and increased mineralization during the first 7 days of culture. Moreover, HC-treated cells had higher calcium depositions than the control (p < 0.05). Additionally, cells treated with HC-100 had higher levels of RUNX2 and p-Akt expressions than control (p < 0.05). Therefore, HC could be a promising functional ingredient to promote osteoblast proliferation and differentiation, which could enhance bone strength.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Thunwa Binlateh
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Surapun Tepaamorndech
- National Center of Genetic Engineering and Biotechnology Center (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathumthani 12120, Thailand;
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| |
Collapse
|
29
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
30
|
Suvarnapathaki S, Wu X, Lantigua D, Nguyen MA, Camci-Unal G. Hydroxyapatite-Incorporated Composite Gels Improve Mechanical Properties and Bioactivity of Bone Scaffolds. Macromol Biosci 2020; 20:e2000176. [PMID: 32755044 DOI: 10.1002/mabi.202000176] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Reinforcing polymeric scaffolds with micro/nanoparticles improve their mechanical properties and render them bioactive. In this study, hydroxyapatite (HA) is incorporated into 5% (w/v) gelatin methacrylate (GelMA) hydrogels at 1, 5, and 20 mg mL-1 concentrations. The material properties of these composite gels are characterized through swelling, degradation, and compression tests. Using 3D cell encapsulation, the cytocompatibility and osteogenic differentiation of preosteoblasts are evaluated to assess the biological properties of the composite scaffolds. The in vitro assays demonstrate increasing cell proliferation and metabolic activity over the course of 14 d in culture. Furthermore, the scaffolds support osteogenic differentiation of the microencapsulated preosteoblasts. For the in vivo study, the composite scaffolds are subcutaneously implanted in rats for 14 d. The histological staining of the explanted in vivo samples exhibits the functional advantages of the scaffold's biocompatibility, biodegradability, and integration into the existing host tissue. This work demonstrates the enhanced mechanical and biological performance of HA-gelatin composite hydrogels for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA.,Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Xinchen Wu
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA.,Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Darlin Lantigua
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA.,Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Michelle A Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA.,Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue, Worcester, MA, 01655, USA
| |
Collapse
|