1
|
Luty RS, Al-Zubaidy AA, Malik AS, Ridha-Salman H, Abbas AH. Protective effect of orientin on diabetic nephropathy in rat models of high-fat diet and streptozotocin-induced diabetes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03949-8. [PMID: 40035824 DOI: 10.1007/s00210-025-03949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Diabetic nephropathy (DN) represents the primary cause of chronic kidney disease (CKD) worldwide. Orientin is a natural bioactive flavonoid with profound immunomodulatory, anti-inflammatory, and antioxidative effects. This study aimed to investigate the nephroprotective effect of orientin on rat prototypes of high-fat diet (HFD) and streptozotocin (STZ)-induced DN. 75 male rats were divided into 5 groups of 15 rats each. Rats were fed a HFD for 4 weeks, injected with a single dose of STZ 30 mg/kg, and continued on HFD for 15 weeks. Orientin was administered daily at 40 mg/kg for 15 weeks. The diabetic group reported substantially greater fasting blood glucose, HbA1c, and renal function measures than normal controls, as well as notable kidney histological abnormalities such as interstitial inflammation, glomerular shrinkage, and tubular necrosis. Additionally, the diabetic group showed dramatically greater amounts of IL-1β, IL-6, TNF-α, TGF-β1, MDA, and a much lower level of GSH than the control group. However, orientin had no effect on the glycaemic parameters, but it dramatically reduced blood creatinine levels, prevented the development of histopathological irregularities, and minimized the renal concentrations of inflammatory and oxidative markers. Orientin may be a promising natural medication for improving diabetic nephropathy thanks to its robust anti-inflammatory and anti-proliferative properties.
Collapse
Affiliation(s)
- Raad Saad Luty
- Department of Dental Surgery, College of Dentistry, University of Basrah, Basrah, Iraq
- Department of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | - Adeeb Ahmed Al-Zubaidy
- College of Medicine, Department of Pharmacology, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Arif Sami Malik
- College of Medicine, Department of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Hayder Ridha-Salman
- College of Pharmacy, Department of Pharmacology, Al-Mustaqbal University, Hillah, 5001, Babylon, Iraq.
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Hillah, 51001, Babylon, Iraq
| |
Collapse
|
2
|
García-Gurrola A, Martínez AL, Wall-Medrano A, Olivas-Aguirre FJ, Ochoa-Ruiz E, Escobar-Puentes AA. Phytochemistry, Anti-cancer, and Anti-diabetic Properties of Plant-Based Foods from Mexican Agrobiodiversity: A Review. Foods 2024; 13:4176. [PMID: 39767118 PMCID: PMC11675762 DOI: 10.3390/foods13244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer are significant contributors to morbidity and mortality worldwide. Recent studies have increasingly highlighted the potential of phytochemicals found in plants and plant-based foods for preventing and treating these chronic diseases. Mexico's agrobiodiversity provides a valuable resource for phytochemistry. This review presents an examination of essential phytochemicals found in plants and foods within Mexican agrobiodiversity that have shown promising anti-cancer and anti-diabetic properties, including their roles as antioxidants, insulin sensitizers, and enzyme inhibitors. Notable compounds identified include flavonoids (such as quercetin and catechins), phenolic acids (chlorogenic, gallic, and caffeic acids), methylxanthines (like theobromine), xanthones (such as mangiferin), capsaicinoids (capsaicin), organosulfur compounds (like alliin), and various lipids (avocatins). Although these phytochemicals have shown promise in laboratory and animal studies, there is a significant scarcity of clinical trial data involving humans, underscoring an important area for future research.
Collapse
Affiliation(s)
- Adriana García-Gurrola
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Ana Laura Martínez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Francisco J. Olivas-Aguirre
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Estefania Ochoa-Ruiz
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Alberto A. Escobar-Puentes
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| |
Collapse
|
3
|
Somsuan K, Aluksanasuwan S, Woottisin S, Chiangjong W, Wanta A, Munkong N, Jaidee W, Praman S, Fuangfoo K, Morchang A, Kamsrijai U, Woottisin N, Rujanapun N, Charoensup R. Mathurameha ameliorates cardiovascular complications in high-fat diet/low-dose streptozotocin-induced type 2 diabetic rats: insights from histological and proteomic analysis. J Mol Histol 2024; 55:1177-1197. [PMID: 39227510 DOI: 10.1007/s10735-024-10258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a global health concern with increasing prevalence. Mathurameha, a Thai herbal formula, has shown promising glucose-lowering effects and positive impacts on biochemical profiles in diabetic rats. The present study investigated the protective effects of Mathurameha on cardiovascular complications in high-fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic rats using histological and proteomic analyses. Thirty-five male Sprague-Dawley rats were divided into seven groups: normal diet (ND), ND with aqueous extract (ND + AE450), ND with ethanolic extract (ND + EE200), diabetes (DM), DM with AE (DM + AE450), DM with EE (DM + EE200), and DM with metformin (DM + Met). Mathurameha, especially at 200 mg/kg EE, significantly reduced adipocyte size, cardiac and vascular abnormalities, collagen deposition, and arterial wall thickness in DM rats. Proteomic analysis of rat aortas revealed 30 significantly altered proteins among the ND, DM, and DM + EE200 groups. These altered proteins are involved in various biological processes related to diabetes. Biochemical assays showed that Mathurameha reduced lipid peroxidation (MDA), increased antioxidant levels (GSH), and decreased the expression of inflammatory markers (ICAM1, TNF-α). In conclusion, Mathurameha exhibited significant protective effects against cardiovascular complications in HFD/STZ-induced type 2 diabetic rats through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand.
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Surachet Woottisin
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Arunothai Wanta
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Kawita Fuangfoo
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Atthapan Morchang
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Utcharaporn Kamsrijai
- School of Medicine, Mae Fah Luang University, 365 Moo 12, Nang Lae, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Nanthakarn Woottisin
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Narawadee Rujanapun
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
4
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
5
|
Zheng H, Hu Y, Shao M, Chen S, Qi S. Chromium Picolinate Protects against Testicular Damage in STZ-Induced Diabetic Rats via Anti-Inflammation, Anti-Oxidation, Inhibiting Apoptosis, and Regulating the TGF-β1/Smad Pathway. Molecules 2023; 28:7669. [PMID: 38005391 PMCID: PMC10674689 DOI: 10.3390/molecules28227669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Chromium picolinate (CP) is an organic compound that has long been used to treat diabetes. Our previous studies found CP could relieve diabetic nephropathy. Thus, we speculate that it might have a positive effect on diabetic testicular injury. In this study, a diabetic rat model was established, and then the rats were treated with CP for 8 weeks. We found that the levels of blood glucose, food, and water intake were reduced, and body weight was enhanced in diabetic rats after CP supplementation. Meanwhile, in CP treatment groups, the levels of male hormone and sperm parameters were improved, the pathological structure of the testicular tissue was repaired, and testicular fibrosis was inhibited. In addition, CP reduced the levels of serum inflammatory cytokines, and decreased oxidative stress and apoptosis in the testicular tissue. In conclusion, CP could ameliorate testicular damage in diabetic rats, as well as being a potential testicle-protective nutrient in the future to prevent the testicular damage caused by diabetes.
Collapse
Affiliation(s)
- Hongxing Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- State Key Laboratory of Qinba Biological Resources and Ecological Environment, Hanzhong 723000, China
- Shaanxi Black Organic Food Engineering Technology Research Center, Hanzhong 723000, China
| | - Yingjun Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723000, China
| | - Mengli Shao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
| | - Simin Chen
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Shaanxi Province Key Laboratory of Bioresources, Hanzhong 723000, China
| | - Shanshan Qi
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Shaanxi Daoerfeng Biotechnology Company, Hanzhong 723000, China
| |
Collapse
|
6
|
El Azab EF, Alakilli SYM, Saleh AM, Alhassan HH, Alanazi HH, Ghanem HB, Yousif SO, Alrub HA, Anber N, Elfaki EM, Hamza A, Abdulmalek S. Actinidia deliciosa Extract as a Promising Supplemental Agent for Hepatic and Renal Complication-Associated Type 2 Diabetes (In Vivo and In Silico-Based Studies). Int J Mol Sci 2023; 24:13759. [PMID: 37762060 PMCID: PMC10530616 DOI: 10.3390/ijms241813759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic condition associated with obesity, oxidative stress-mediated inflammation, apoptosis, and impaired insulin signaling. The utilization of phytochemical therapy generated from plants has emerged as a promising approach for the treatment of diabetes and its complications. Kiwifruit is recognized for its substantial content of antioxidative phenolics. Therefore, this work aimed to examine the effect of Actinidia deliciosa (kiwi fruit) on hepatorenal damage in a high-fat diet (HFD) and streptozotocin (STZ)-induced T2D in rats using in vivo and in silico analyses. An increase in hepatic and renal lipid peroxidation was observed in diabetic rats accompanied by a decrease in antioxidant status. Furthermore, it is important to highlight that there were observable inflammatory and apoptotic responses in the hepatic and renal organs of rats with diabetes, along with a dysregulation of the phosphorylation levels of mammalian target of rapamycin (mTOR), protein kinase B (Akt), and phosphoinositide 3-kinase (PI3K) signaling proteins. However, the administration of kiwi extract to diabetic rats alleviated hepatorenal dysfunction, inflammatory processes, oxidative injury, and apoptotic events with activation of the insulin signaling pathway. Furthermore, molecular docking and dynamic simulation studies revealed quercetin, chlorogenic acid, and melezitose as components of kiwi extract that docked well with potential as effective natural products for activating the silent information regulator 1(SIRT-1) pathway. Furthermore, phenolic acids in kiwi extract, especially syringic acid, P-coumaric acid, caffeic acid, and ferulic acid, have the ability to inhibit the phosphatase and tensin homolog (PTEN) active site. In conclusion, it can be argued that kiwi extract may present a potentially beneficial adjunctive therapy approach for the treatment of diabetic hepatorenal complications.
Collapse
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Saleha Y. M. Alakilli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 23761, Saudi Arabia;
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia; (H.H.A.); (H.B.G.)
| | - Hamad H. Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia; (H.H.A.); (H.B.G.)
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Sara Osman Yousif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
- Department of Clinical Chemistry, Faculty of medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum 13311, Sudan
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Nahla Anber
- Emergency Hospital, Mansoura University, Mansoura 35516, Egypt;
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Alneil Hamza
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| |
Collapse
|
7
|
Abdel-Mohsen DM, Akabawy AMA, El-Khadragy MF, Abdel Moneim AE, Amin HK. Green Coffee Bean Extract Potentially Ameliorates Liver Injury due to HFD/STZ-Induced Diabetes in Rats. J Food Biochem 2023; 2023:1-16. [DOI: 10.1155/2023/1500032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The goal of the current study was to examine the therapeutic potential of green coffee bean extract (GCBE) in the treatment of diabetic hepatic damage induced by high-fat diet (HFD) and streptozotocin (STZ) administration. The novelty of this study lies in constructing a newly stabilized in vivo obese diabetic animal model in rats using HFD/STZ for investigating the dose-dependent effect of two commonly used doses of GCBE in hepatoprotection against oxidative stress-induced hepatic damage by measuring many parameters that have not been carried out previously in other studies. GCBE that was used in this study was a hot water extract of green coffee beans with a concentration of 0.1 g ml−1. Male albino rats were given a single dose of STZ (35 mg kg−1), and HFD to induce diabetes mellitus (DM). For 28 days, two separate doses of GCBE 50 mg kg−1 and 100 mg kg−1 were administered orally to diabetic animals. Leptin, liver enzymes, oxidative stress parameters, inflammatory parameters, fasting plasma glucose (FPG), fasting plasma insulin (FPI), and lipid profile levels were examined. Real-time PCR and ELISA were used to quantitatively detect the mRNAs of the genes involved in the insulin signaling pathway, the genes involved in glucose metabolism, and the amounts of proteins. The levels of FPG, lipid profile, liver enzymes, inflammatory markers, and leptin in the HFD/STZ diabetic group revealed a considerable spike, while they considerably decreased after GCBE treatment in a dose-dependent manner. After GCBE treatment, the diabetic group showed a significant rise in the antioxidant markers glutathione, superoxide dismutase, and catalase, as well as a decrease in malondialdehyde and nitric oxide levels. The liver changes caused by HFD/STZ were entirely reversed by GCBE, and most intriguingly, in a dose-dependent manner. We concluded that GCBE can repair the hepatic oxidative damage caused by HFD and STZ by reversing all the previously measured parameters and improving the insulin signaling pathways. GCBE demonstrated strong antifree radical activity and significantly protected cells from oxidative damage caused by HFD/STZ.
Collapse
Affiliation(s)
- Doaa M. Abdel-Mohsen
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Biochemistry Department, Faculty of Pharmacy, Galala University, El-Galala, Egypt
| |
Collapse
|
8
|
Gao L, Zhang W, Yang L, Fan H, Olatunji OJ. Stink bean ( Parkia speciosa) empty pod: a potent natural antidiabetic agent for the prevention of pancreatic and hepatorenal dysfunction in high fat diet/streptozotocin-induced type 2 diabetes in rats. Arch Physiol Biochem 2023; 129:261-267. [PMID: 33522287 DOI: 10.1080/13813455.2021.1876733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study investigated the effect of polyphenol-rich extract of Parkia speciosa (PPS) against pancreatic and hepatorenal dysfunction in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetes. Diabetic rats were treated with PPS (100 and 400 mg/kg) and glibenclamide. The results revealed that diabetic rats displayed marked hyperglycaemia, hyperlipidaemia, hypoinsulinemia as well as alterations in serum renal and kidney function markers. Furthermore, diabetic rats showed significant increase in hepatorenal level of malonaldehyde as well as suppression of antioxidant enzyme activities. Whereas, diabetic rats that received PPS displayed marked attenuation in most of the aforementioned parameters compared to the untreated diabetic rats. Additionally, histological examination revealed restoration of histopathological alterations of the pancreas, liver, and kidney of PPS treated diabetic rats. In conclusion, the results demonstrated that PPS could decrease serum lipids and blood glucose level, enhance insulin level and hepatorenal antioxidant capacity, as well as ameliorate hepatorenal dysfunction in rats.
Collapse
Affiliation(s)
- Liwei Gao
- Department of Cardiovascular Medicine, Danyang Peoples Hospital of Jiangsu Province, Danyang, Jiangsu, China
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Leiyan Yang
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Hong Fan
- Department of Endocrinology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | | |
Collapse
|
9
|
Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6828230. [PMID: 36647430 PMCID: PMC9840553 DOI: 10.1155/2023/6828230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Olive leaves extracts are known to exert potential pharmacological activities especially, antidiabetic and antiobesity. This study explores the anti-insulin resistant effect of olive leaves extracts and oleuropein in 3 T3-L1 cells and in high-fat diet fed rats. Our results showed that ethanol extract (EE) suppressed significantly (P < 0.01) triacylglycerol accumulation. In preadipocytes cells, EE 1/100 decreased cell viability and induced apoptosis. Real-time PCR analysis showed that EE reduced the mRNA levels of adipogenesis (CEBP-α, PPARγ, SREBP-1c, and FAS) and proinflammatory (TNF-α and IL-6) genes. Moreover, the cotreatment of EE 1/1000 or oleuropein with insulin increased considerably the expression of p-IRS, p85-pI3K, and p-AKT. In vivo model, the oral administration of oleuropein at 50 mg/kg in rats fed with high fat diet for 8 weeks reduced inflammation in liver and adipose tissues (WAT), improved glucose intolerance, and decreased hyperinsulinemia. Furthermore, the immunohistochemistry revealed that the expression level of p-Akt, IRS1, and Glut-4 were significantly enhanced in liver and WAT tissues after oleuropein supplementation comparing with that in HFD group. Additionally, the expression of IRS1 was markedly ameliorated in pancreas. Our obtained results can be adopted as an approach to used olive leaves as complement to prevent insulin-resistance disease.
Collapse
|
10
|
Albrahim T. Lycopene Modulates Oxidative Stress and Inflammation in Hypercholesterolemic Rats. Pharmaceuticals (Basel) 2022; 15:1420. [PMID: 36422550 PMCID: PMC9693203 DOI: 10.3390/ph15111420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
The complicated disorder of hypercholesterolemia has several underlying factors, including genetic and lifestyle factors. Low LDL cholesterol and elevated serum total cholesterol are its defining features. A carotenoid with antioxidant quality is lycopene. Examining lycopene activity in an animal model of hypercholesterolemia induced using food was the aim of this investigation. Triglycerides, LDL cholesterol, HDL cholesterol, and plasma total cholesterol were all measured. Biomarkers of renal and cardiac function were also examined. Apoptotic indicators, pro-inflammatory markers, and oxidative stress were also assessed. Additionally, the mRNA expression of paraoxonase 1 (PON-1), peroxisome proliferator-activated receptor gamma (PPAR-γ), and PPAR-γ coactivator 1 alpha (PGC-1α) in cardiac and renal tissues was examined. Rats showed elevated serum lipid levels, renal and cardiac dysfunction, significant oxidative stress, and pro-inflammatory and apoptotic markers at the end of the study. Treatment with lycopene significantly corrected and restored these changes. Additionally, lycopene markedly increased the mRNA expression of PGC-1α and PON-1, and decreased PPAR-γ expression. It was determined that lycopene has the capacity to modulate the PPAR-γ and PON-1 signaling pathway in order to preserve the cellular energy metabolism of the heart and kidney, which in turn reduces tissue inflammatory response and apoptosis. According to these findings, lycopene may be utilized as a medication to treat hypercholesterolemia. However, further studies should be conducted first to determine the appropriate dose and any adverse effects that may appear after lycopene usage in humans.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
11
|
Othman MS, Khaled AM, Aleid GM, Fareid MA, Hameed RA, Abdelfattah MS, Aldin DE, Moneim AEA. Evaluation of antiobesity and hepatorenal protective activities of Salvia officinalis extracts pre-treatment in high-fat diet-induced obese rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75043-75056. [PMID: 35648345 DOI: 10.1007/s11356-022-21092-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/21/2022] [Indexed: 04/16/2023]
Abstract
The present study evaluated the effects of Hail Salvia officinalis total extract (SOTE) and its high flavonoid fraction (SOHFF) on the high-fat diet (HFD)-induced obesity and hepatorenal damage in rats. Salvia officinalis plants were collected from Hail region, Saudi Arabia. Rats were fed HFD and supplemented orally with SOTE (250 mg kg-1) or SOHFF (100 mg kg-1) or simvastatin (SVS; 10 mg kg-1) every day for 8 weeks. Compared to the controls, HFD-induced obesity led to significant increases in body weight, body weight gained, blood insulin, leptin, cardiac enzymes (LDH and CPK) activity, and atherogenic index (AI). HFD rats also showed higher levels of hepatic and renal function biomarkers (ALT, urea, and creatinine), as well as lower levels of PPARγ and Nrf2-gene expression and a disrupted lipid profile. Moreover, HFD rats had lower levels of hepatic and renal antioxidant biomarkers (CAT, GPx, SOD, GR, and GSH), accompanied by higher levels of hepatic and renal lipid peroxidation (LPO), nitric oxide (NO), and inflammatory mediators (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)). In addition, histological examination of hepatic and renal tissues revealed histopathological changes that validated the biochemical findings. Compared to HFD group, SOTE and SOHFF treatment led to marked amelioration of all the aforementioned parameters. Collectively, supplementation with SOTE and SOHFF effectively reversed HFD-induced alterations through its antioxidant, hypolipidemic, and anti-inflammatory properties. Hence, SOTE and SOHFF have therapeutic potential in controlling obesity and related pathologies.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia.
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Ghada M Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Hameed
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Doaa Ezz Aldin
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
12
|
Idowu OK, Oluyomi OO, Faniyan OO, Dosumu OO, Akinola OB. The synergistic ameliorative activity of peroxisome proliferator-activated receptor-alpha and gamma agonists, fenofibrate and pioglitazone, on hippocampal neurodegeneration in a rat model of insulin resistance. IBRAIN 2022; 8:251-263. [PMID: 37786742 PMCID: PMC10528802 DOI: 10.1002/ibra.12059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 10/04/2023]
Abstract
Insulin resistance (IR) is a risk factor for metabolic disorders and neurodegeneration. Peroxisome proliferator-activated receptor (PPAR) agonists have been proven to mitigate the neuronal pathology associated with IR. However, the synergetic efficacy of these agonists is yet to be fully described. Hence, we aimed to investigate the efficacy of PPARα/γ agonists (fenofibrate and pioglitazone) on a high-fat diet (HFD) and streptozotocin (STZ)-induced hippocampal neurodegeneration. Male Wistar rats (200 ± 25 mg/body weight [BW]) were divided into five groups. The experimental groups were fed on an HFD for 12 weeks coupled with 5 days of an STZ injection (30 mg/kg/BW, i.p) to induce IR. Fenofibrate (FEN; 100 mg/kg/BW, orally), pioglitazone (PIO; 20 mg/kg/BW, orally), and their combination were administered for 2 weeks postinduction. Behavioral tests were conducted, and blood was collected to determine insulin sensitivity after treatment. Animals were killed for assessment of oxidative stress, cellular morphology characterization, and astrocytic evaluation. HFD/STZ-induced IR increased malondialdehyde (MDA) levels and decreased glutathione (GSH) levels. Evidence of cellular alterations and overexpression of astrocytic protein was observed in the hippocampus. By contrast, monotherapy of FEN and PIO increased the GSH level (p < 0.05), decreased the MDA level (p < 0.05), and improved cellular morphology and astrocytic expression. Furthermore, the combined treatment led to improved therapeutic activities compared to monotherapies. In conclusion, FEN and PIO exerted a therapeutic synergistic effect on HFD/STZ-induced IR in the hippocampus.
Collapse
Affiliation(s)
| | | | - Oluwatomisin O. Faniyan
- Department of Physiology, School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | | | | |
Collapse
|
13
|
Tang X, Sun Y, Li Y, Ma S, Zhang K, Chen A, Lyu Y, Yu R. Sodium butyrate protects against oxidative stress in high-fat-diet-induced obese rats by promoting GSK-3β/Nrf2 signaling pathway and mitochondrial function. J Food Biochem 2022; 46:e14334. [PMID: 35848364 DOI: 10.1111/jfbc.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Sodium butyrate (NaB), obtained by fermenting dietary fiber via intestinal microflora, was recently shown to improve the activity of some antioxidant enzymes in vivo. This study aims to investigate the term changes of mitochondrial energy metabolism and redox homeostasis in skeletal muscles and clarify the regulatory mechanism and dose effect of NaB on skeletal muscle. Male Sprague-Dawley rats were divided into the control group, obesity-prone (OP) group and obesity-resistant (OR) group based on the gain of body weight after 8 weeks' of feeding high-fat diet (HFD), followed by sacrificing rats at the end of 20th week. NaB intervention (12 weeks) could effectively reduce the body weight of rats in the OP and OR groups. NaB also mediated upregulation of antioxidant enzyme activity and GSH/GSSG ratio, while reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. At the molecular level, NaB upregulated Pi3k, Nrf2, Nqo-1, and Ho-1, but downregulated Gsk-3β mRNA expression by regulating the Nrf2 antioxidant pathway to enhance tissue antioxidant capacity. At the same time, NaB intervention significantly upregulated Glut4, Irs-1, Pdx1, and MafA, expression in gastrocnemius muscles of OP and OR rats, and elevated insulin secretion and muscle insulin sensitivity. Thus, NaB activates antioxidant pathway, improves the antioxidant capacity of obese rat tissues and promotes glucose metabolism. PRACTICAL APPLICATIONS: This study found that obesity-prone and obesity-resistant rats have differences in mitochondrial redox homeostasis and energy metabolism in tissues. Meanwhile, sodium butyrate can effectively promote muscle protein synthesis, increase insulin sensitivity, and promote glucose metabolism in obesity rats. Thus, sodium butyrate supplementation or increasing intestinal butyrate production (e.g., by consuming foods rich in dietary fiber) is a potential means of improving the body's glucose metabolism and obesity profile.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjuan Sun
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yingrui Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhua Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ailing Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yipin Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Renqiang Yu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
14
|
The Ameliorative Role of Hibiscetin against High-Fat Diets and Streptozotocin-Induced Diabetes in Rodents via Inhibiting Tumor Necrosis Factor-α, Interleukin-1β, and Malondialdehyde Level. Processes (Basel) 2022. [DOI: 10.3390/pr10071396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hibiscetin, as one of the main bioactive constituents of Hibiscus sabdariffa, has many pharmacological activities, but its antihyperglycemic activity has not been fully interpreted yet. The current research was developed from this perspective. The study intended to appraise the antidiabetic capability of hibiscetin in a high-fat diet (HFD) and streptozotocin (STZ; 50 mg/kg, intraperitoneally)-induced diabetes in an experimental animal. The efficiency of hibiscetin at 10 mg/kg in an “HFD/STZ model” remedy in rats with experimentally caused diabetes was explored for 42 days. The efficacy of hibiscetin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, total protein (TP), lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-6, IL-1β, tumor necrosis factor-α (TNF-α), adiponectin, leptin, resistin, malondialdehyde (MDA), catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). The antidiabetic benefits of hibiscetin were proven by a substantial reduction in blood glucose, lipid profile (TC and TG), total protein, IL-6, IL-1β, MDA, TNF-α, leptin, adiponectin, ALT, and AST in the therapy group compared to the diabetic disease standard. Furthermore, hibiscetin therapy also reversed the lowered levels of insulin, resistin, GSH, SOD, and CAT in diabetic rats. It was determined that hibiscetin may be beneficial in terms of reducing diabetes problems due to its effects on both oxidative stress and inflammation and that more research for this design should be conducted.
Collapse
|
15
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
16
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
17
|
El Azab EF, Mostafa HS. Geraniol ameliorates the progression of high fat‐diet/streptozotocin‐induced type 2 diabetes mellitus in rats via regulation of caspase‐3, Bcl‐2, and Bax expression. J Food Biochem 2022; 46:e14142. [DOI: 10.1111/jfbc.14142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences at Al Qurayyat Jouf University Al Qurayyat Saudi Arabia
- Biochemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture Cairo University Giza Egypt
| |
Collapse
|
18
|
Yusni Y, Yusuf H. The Effect of Green Coffee on Blood Pressure, Liver and Kidney Functions in Obese Model Rats. Open Access Maced J Med Sci 2022; 10:346-351. [DOI: 10.3889/oamjms.2022.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND: The effect of green coffee (GC) on blood pressure (BP) is still debated, but GC is thought to improve liver and kidney function. AIM: This study aimed to analyze the effect of the GC intervention on BP, liver, and kidney functions in obese model rats. METHODS: The research was a pre-clinical trial of pretest-posttest with control group design. Animals were divided into four groups: obese rats (G1), obese rats and GC (G2), obese rats and physical exercise (PE) (G3), and a combination of interventions (PE+GC) (G4). Data analysis used an independent sample t-test and analysis of variance; (p < 0.05). RESULTS: There was a different effect of the GC, PE, and PE+GC intervention on BP (186.50 ± 3.45 vs. 91.33 ± 1.96 p = 0.001*; 189.17 ± 2.93 vs. 119.50 ± 3.73 p = 0.001*; 191.8 3 ± 2.64 vs. 98.83 ± 3.76 p = 0.001*) in obese rats. There was a significant difference in Serum Glutamic Oxaloacetic Transaminase (SGOT) (p=0.001*), Serum Glutamic Pyruvic Transaminase (SGPT) (p = 0.001*), Blood urea nitrogen (BUN) (p = 0.001*), and Creatinine (p = 0.001*) before and after the intervention in the three groups (G2, G3, and G4). SGOT, SGPT, and Creatinine levels decreased significantly after PE, GC, and PE+GC intervention. On the other hand, BUN levels decreased significantly after GC and its combination intervention. Meanwhile, in the control group and the intervention of PE, it increased significantly. CONCLUSIONS: GC is more effective in lowering BP without causing impaired liver and kidney function in obese rats.
Collapse
|
19
|
Rout D, Dash UC, Kanhar S, Swain SK, Sahoo AK. Homalium zeylanicum attenuates streptozotocin-induced hyperglycemia and cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114649. [PMID: 34536517 DOI: 10.1016/j.jep.2021.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Homalium zeylanicum (Gardner) Benth (Salicaceae) leaves are being used as folklore medicine to treat diabetes by the local folk of Andhra Pradesh, India. The medicinal claim of this plant with hypoglycaemic effects was initially studied by the authors. Results demonstrated the important antioxidant activities of the hydroalcohol fraction of leaves of H. zeylanicum leaves (HAHZL) were positively correlated with phenols and flavonoids contents. AIM OF THE STUDY Based on the previous findings, additional research is needed to examine the efficacy of using HAHZL to treat hyperglycemia. We therefore investigated in vitro and in vivo glycemic response of HAHZL, and evaluation of possible mechanism of bioactive molecules in mitigating streptozotocin-induced cellular stress in experimental rats via attenuation of oxidative stress imparts inflammation. METHODS GC-MS/MS analysis of HAHZL was carried out to identify bioactive constituents. In vitro antidiabetic (α-glucosidase, α-amylase) and anti-inflammatory activities were investigated. HFD/low-STZ-prompted diabetic Wistar rats were administered with HAHZL (300 and 400 mg/kg; oral) for 28 days. Blood serum, oxidative stress, inflammation, DNA damage, and antidiabetic markers of pancreas and liver were determined. Histopathological studies of liver and pancreas were performed to assess the protective role of HAHZL. RESULTS GC-MS/MS study revealed 7 bioactive compounds e.g., Phenol, 4-ethenyl-, acetate (28.68%), hydroquinone (9.10%), n-hexadecanoic acid (0.55%), phytol (0.57%), arbutin (17.65%), Vitamin E (1.04%), β-Sitosterol (1.54%) which possess antioxidant, anti-inflammatory and anti-diabetic activities. HAHZL showed significant in vitro glycemic response as evidenced by the inhibition of α-amylase, and α-glucosidase activities. Lineweaver-Burk plot revealed that HAHZL exhibited competitive and mixed competitive inhibition towards α-amylase and α-glucosidase, respectively. HAHZL at 400 mg/kg modulated the pathophysiology associated with HFD/STZ-induced type2 diabetes mellitus and significantly (p < 0.001) improved antihyperglycemic (SG, SI, HOMA-IR, and HbA1C), antidyslipidemic (TC, HDL-C, LDL-C, and TG), antioxidative (MDA, SOD, CAT, GSH, and 8-OHdG) and anti-inflammatory (TNF-α, and CRP) markers in serum, pancreas and liver. In vitro and in vivo test results were corroborated by the improvement of pancreatic and hepatic tissue architecture in diabetic rats. CONCLUSION HAHZL bearing bioactive components phenol, 4-ethenyl-,acetate, hydroquinone, n-hexadecanoic acid, arbutin, phytol, vitamin E and β-sitosterol balanced glycemic level by normalising the levels of glycaemic indices, lipid profile, pancreas and liver functional markers in STZ-induced T2DM rats.
Collapse
Affiliation(s)
- Deeptimayee Rout
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Umesh Chandra Dash
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Satish Kanhar
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Sandeep Kumar Swain
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Regional Plant Resource Centre, Medicinal & Aromatic Plant Division, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| |
Collapse
|
20
|
Simões MHS, Salles BCC, Duarte SMDS, Silva MAD, Viana ALM, Moraes GDOID, Figueiredo SA, Ferreira EB, Rodrigues MR, Paula FBDA. Leaf extract of Coffea arabica L. reduces lipid peroxidation and has anti-platelet effect in a rat dyslipidemia model. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Ghany RA, Habotta OA, Abdel Moneim AE. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities. Biomed Pharmacother 2021; 144:112287. [PMID: 34649220 DOI: 10.1016/j.biopha.2021.112287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 02/09/2023] Open
Abstract
Plant derived phytochemical therapy is a bright candidate for treatment of diabetes and its associated complications. Ocimum baslicum is used as an anti-diabetic traditional medicine. Hence, the present study investigated the effect of Hail Ocimum extract (HOE) and its total flavonoids (HOETF) against hepatorenal damage in experimental diabetes induced by high-fat diet (HFD) and injection of streptozotocin (STZ) in rats. Diabetic animals were co-treated daily with HOE, HOETF or metformin (MET) as a standard anti-diabetic drug for four weeks. Compared to controls, HFD/STZ-treatment lead to significant increases in fasting blood glucose, insulin and HOMA-IR levels. Furthermore, diabetic rats had elevated hepatic (ALT and ALP) and kidney functions (urea and creatinine) biomarkers together with disturbed lipid profile and decreased PPAR-γ gene expression. Higher levels of hepatic and renal LPO and NO paralleled with lower levels of GSH and activities of antioxidant enzymes (SOD, CAT, GPx and GR) after HFD/STZ treatment. Additionally, noteworthy inflammatory and apoptotic responses were evident in both organs of diabetic rats as witnessed by augmented levels of TNF-α, IL-1b and Bax levels with declined levels of Bcl-2. Moreover, histological examination of hepatic, renal and pancreatic tissues validated the biochemical findings. On contrary, co-treatment of diabetic animals with HOE or HOETF could decrease glucose and insulin levels together with improvement of lipid markers and alleviation of hepatorenal dysfunction, oxidative injury, inflammatory and apoptotic events. Conclusively, HOE or HOETF could be a promising complementary therapeutic option for the management of diabetic hepatorenal complication owing to their antioxidant, anti-inflammatory; anti-apoptotic properties.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Ghany
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
22
|
Rizk S, Taha H, Abdel Moneim AE, Amin HK. Neuroprotective effect of green and roasted coffee bean extracts on cerebral ischemia-induced injury in rats. Metab Brain Dis 2021; 36:1943-1956. [PMID: 34228267 DOI: 10.1007/s11011-021-00769-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Stroke is a lethal event with a high incidence in Egypt. Quick early intervention can be lifesaving. Transient global ischemia (TGI), a type of ischemic stroke, is mainly instigated by cardiac arrest. Ischemia followed by reperfusion causes further neuronal cell damage. In this study, we aimed to evaluate the potential apoptotic, anti-inflammatory, and neuroprotective effects of green (GCBE) and roasted (RCBE) coffee bean water extract against transient global ischemia-induced via a bilateral common carotid artery occlusion (CAO) in rats. Before CAO, 1.5 ml/kg body weight/day of GCBE or RCBE was administered for 14 days by oral gavage. Ischemia/reperfusion (I/R) and sham groups were treated with a vehicle. Oxidative stress biomarkers and antioxidant enzyme activities, such as MDA, NO, GSH, SOD, CAT, GR, GPx, inflammatory markers TNF-α, IL-1β, and NF-κB, and BDNF were investigated. Quantitative real-time PCR analysis of mitogen-activated protein kinase pathways, in addition to heme oxygenase 1, and nuclear factor erythroid 2-related factor 2 were determined. Apoptotic markers, including Bcl-2, Bax, and caspase 3, in addition to the vascular endothelial growth factor-a, were investigated, followed by an examination of hippocampal histopathology. Pre-administration of GCBE and RCBE improved neurological function and neuronal survival, suppressed the spread of oxidative stress, inflammation, and apoptosis, and reversed most of the pathological changes. However, green coffee bean extract was more effective than roasted coffee bean extract, perhaps due to the roasting process, which may affect active compounds. In conclusion, GCBE and RCBE represent a potential clinical strategy for pre-ischemic conditioning.
Collapse
Affiliation(s)
- Sara Rizk
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
23
|
Omidifar A, Shirvani H, Taheri RA, Gorgani-Firouzjae S, Delfan M, Kalaki-Jouybari F, Khakdan S. Protective effects of HIIT vs. CET exercise training on high-fat-high-fructose diet-induced hyperglycemia, hyperlipidemia, and histopathology of liver in rats: regulation of SIRT1/PGC-1α. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Sabouri M, Hatami E, Pournemati P, Shabkhiz F. Inflammatory, antioxidant and glycemic status to different mode of high-intensity training in type 2 diabetes mellitus. Mol Biol Rep 2021; 48:5291-5304. [PMID: 34228273 DOI: 10.1007/s11033-021-06539-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exercise has traditionally been used and prescribed as an effective and suitable way to treat type 2 diabetics Mellitus (T2DM). In this regard, we compared inflammatory, antioxidant, and glycemic status to different kinds of high-intensity interval training (strength training, HIIT, and HIIT + ST) in patients with T2DM. METHODS AND RESULTS Fifty-nine T2DM patients (age = 45-60 yrs) were randomly divided to strength training (ST) (n = 15), high intensity interval training (HIIT) (n = 16), HIIT + ST (n = 15) or served as control (CON) (n = 13) groups. Experimental groups performed three training sessions/week for 12 weeks. Inflammatory, antioxidant, glycemic factors, and anthropometric parameters were evaluated at baseline and after the 12 weeks of interventions. Training HIIT groups significantly improved antioxidant factors, lipid profile, and glycemic parameters (P ≤ 0.05). Interleukin 6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) significantly decreased in the three training groups. As a result of training, the overall inflammatory and antioxidant status were improved considerably in all three training groups compared to the CON group (P ≤ 0.05). In addition, there were significant differences in CRP at the follow-up values between ST and CON groups (P ≤ 0.05). Exercise time and TC were significantly improved in HIIT than in the CON group (P ≤ 0.05). The results showed a significant difference between the HIIT + ST group and the CON group in VO2peak (P ≤ 0.05). CONCLUSIONS Our results showed improvement in inflammatory factors, antioxidants, and glycemic parameters in all training groups regardless of their type. However, for more benefits in T2DM patients, combination exercises can be suggested.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | - Elaheh Hatami
- Department of Exercise Physiology, Sport Sciences Research Institute, Tehran, Iran
| | - Parisa Pournemati
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
25
|
Jiménez-Estrada M, Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Alvarez AB. Contributions from Mexican Flora for the Treatment of Diabetes Mellitus: Molecules of Psacalium decompositum (A. Gray) H. Rob & Brettell. Molecules 2021; 26:2892. [PMID: 34068304 PMCID: PMC8153299 DOI: 10.3390/molecules26102892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) is cited as a serious worldwide health problem that occupies second place in causes of annual mortality in Mexico. Among Mexican flora, nearly 300 plant species have been employed as hypoglycemic in popular use. Thus, their study entertains great relevance In this context, this work contributes a clear and timely review of the plant species utilized in Traditional Mexican Medicine and experimental biological models in which not only have the hypoglycemic properties of the extracts and the isolated compounds been considered, but also the anti-inflammatory and antioxidant properties, taking into account an integral focus based on the complex mechanisms involved in the pathogenesis and physiopathology of DM. Among the species reviewed, we highlight Psacalium decompositum (Asteraceae), due to the potent hypoglycemic, anti-inflammatory, and antioxidant activity of the sesquiterpenes identified as majority compounds isolated from the root, such as cacalol and cacalone that also possess the capacity of increasing insulin levels. In this manner, the present manuscript attempts to contribute necessary information for the future study of bioactive molecules that are useful in the treatment of DM, as well as also being a contribution to the knowledge and diffusion of Mexican Traditional Medicine.
Collapse
Affiliation(s)
- Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Mexico;
| | - Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| | - J. Javier Alvarado-Sansininea
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| | - Ana Berenice Alvarez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán 04510, Mexico; (R.T.-H.); (J.J.A.-S.); (A.B.A.)
| |
Collapse
|
26
|
Jaiyesimi KF, Agunbiade OS, Ajiboye BO, Afolabi OB. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J Diabetes Metab Disord 2021; 19:1543-1556. [PMID: 33553038 DOI: 10.1007/s40200-020-00690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Background This study sought to investigate anti-hyperglycemic potentials of free and bound phenolic-rich extracts of Andrographis paniculata (A. paniculata) leaves, commonly called "king of the bitter", a plant locally employed in folkloric alternative medicine. Method In vitro antioxidant potentials such as total phenolic and flavonoid contents were evaluated in addition to phosphomolybdenum reducing total antioxidant activity in bound and free polyphenol-rich extracts of A. paniculata. Also, following induction of diabetes through a single intraperitoneal injection of freshly prepared alloxan monohydrate (150 mg/kg body weight, b.w), diabetic rats were divided into seven (7) treatment groups with six rats each (n = 6) i.e. group 1 (normal control), 2 (diabetic untreated), 3 (5 mg/kg glibenclamide -treated control), while 4-7 were administered 50 and 100 mg/kg b.w of free and bound phenolic extracts of A. paniculata, respectively for twenty-one (21) days. Results There was a significant (p < 0.05) difference in hematological indices, hepatic biomarkers, total protein, antioxidant enzymes activities, total thiol and fasting blood glucose levels of diabetic groups administered polyphenolic-rich extracts of A. paniculata compared to diabetic untreated control. Similarly, serum insulin levels, hexokinase and glucose-6-phoshatase activities were significantly (p < 0.05) improved in phenolic-rich extracts of A. paniculata-treated diabetic groups compared to diabetic untreated control. A significant (p < 0.05) reduction was as well observed in the levels of inflammatory biomarkers such as interleukin-6 (IL-6) and tumor necrosis factor (TNFα) among extract of A. paniculata administered diabetic groups compared diabetic untreated group. Conclusions Anti-hyperglycemic activities demonstrated by polyphenolic-rich extracts of A. paniculata when compared to glibenclamide and normal control, could possibly have been occasioned by β-cell protection, restoration of glycolytic enzymes as well as mitigation of inflammatory markers via antioxidant defensive/protective properties of the extracts.
Collapse
Affiliation(s)
- Kikelomo Folake Jaiyesimi
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Oludare Shadrach Agunbiade
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Bashiru Olaitan Ajiboye
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Olakunle Bamikole Afolabi
- College of Science, Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| |
Collapse
|
27
|
Albasher G, Alwahaibi M, Abdel-Daim MM, Alkahtani S, Almeer R. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40525-40536. [PMID: 32666453 DOI: 10.1007/s11356-020-09997-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/02/2020] [Indexed: 05/06/2023]
Abstract
Diabetes mellitus (DM) is one of the most dangerous incurable diseases that affects a large number of people worldwide. Artemisia species have various protective activities and are widely used for the control of diabetes in folkloric medicine. Therefore, the current study was designed to illustrate the protective effect of oral administration of Artemisia judaica extract (AjE) against hepatorenal damage in a high-fat diet/streptozotocin (HFD/STZ) rat model of hyperlipidemia and hyperglycemia. Animals were divided into five groups-control, AjE, HFD/STZ, HFD/STZ-AjE (300 mg/kg), and HFD/STZ-MET (100 mg/kg)-and treated daily for 28 days. The results revealed that STZ-injected rats showed marked hyperglycemia and hypoinsulinemia in addition to high levels of cholesterol, triglycerides, and low- and high-density lipoproteins compared to control rats. Significant elevations in hepatic (AST and ALT) and renal (urea, uric acid, and creatinine) function markers were observed in the serum of diabetic rats. Additionally, STZ injection caused remarkable elevations in lipid peroxidation and nitric oxide levels as well as suppression of antioxidant markers (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione). Marked elevations in TNF-α and Bax levels with a decline in Bcl-2 levels were detected after STZ injection. Furthermore, TGF-β1 expression levels were significantly upregulated in the liver and kidney tissues. Rats that received AjE or MET showed significant improvement in most of the aforementioned parameters, and the protective efficacy was higher for AjE than for MET. Histopathological screening confirmed the biochemical findings. Conclusively, our results illustrated the antihyperglycemic, antihyperlipidemic, antioxidant, anti-inflammatory, and antiapoptotic activities of AjE against hepatorenal injury in HFD/STZ-induced diabetes.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mona Alwahaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Al-Brakati A, Albarakati AJA, Daabo HMA, Baty RS, Salem FEH, Habotta OA, Elmahallawy EK, Abdel-Mohsen DM, Taha H, Akabawy AMA, Kassab RB, Abdel Moneim AE, Amin HK. Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab Brain Dis 2020; 35:1175-1187. [PMID: 32548708 DOI: 10.1007/s11011-020-00583-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is an increasing metabolic disease worldwide associated with central nervous system disorders. Coffee is a widely consumed beverage that enriched with antioxidants with numerous medicinal applications. Accordingly, the present study aimed to investigate the therapeutic potential of orally administered green coffee bean water extract (GCBWE) against cortical damage induced by high fat diet (HFD) followed by a single injection of streptozotocin (STZ) in rats. Metformin (Met) was used as standard antidiabetic drug. Animals were allocated into six groups: control, GCBWE (100 mg/kg), HFD/STZ (40 mg/kg), HFD/STZ + GCBWE (50 mg/kg), HFD/STZ + GCBWE (100 mg/kg) and HFD/STZ + Met (200 mg/kg) which were treated daily for 28 days. Compared to control rats, HFD/STZ-treated rats showed decreased levels of cortical dopamine, norepinephrine and serotonin with marked increases in their metabolites. Further, HFD/STZ treatment resulted in notable elevations in malondialdehyde, protein carbonyl and total nitrite levels paralleled with declines in antioxidant markers (SOD, CAT, GPx, GR and GSH) and down-regulations of Sod2, Cat, GPx1 and Gsr gene expression. Neuroinflammation was evident in diabetic animals by marked elevations in TNF-α, IL-1β and up-regulation of inducible nitric oxide synthase. Significant rises incaspase-3 and Bax with decline in Bcl-2 level were noticed in diabetic rats together with similar results in their gene expressions. Cortical histopathological examination supported the biochemical and molecular findings. GCBWE administration achieved noteworthy neuroprotection in diabetic animals in most assessed parameters. The overall results suggested that antioxidant, anti-inflammatory; anti-apoptotic activities of GCBWE restored the cortical neurochemistry in diabetic rats.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hamid M A Daabo
- Pharmacy Department, Duhok Technical Institute, Duhok Polytechnic University, Duhok, Iraq
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Fatma Elzahraa H Salem
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Doaa M Abdel-Mohsen
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed M A Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Hatim K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
29
|
Albasher G. Modulation of reproductive dysfunctions associated with streptozocin-induced diabetes by Artemisia judaica extract in rats fed a high-fat diet. Mol Biol Rep 2020; 47:7517-7527. [PMID: 32920759 DOI: 10.1007/s11033-020-05814-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
We investigated the palliative effect of Artemisia judaica extract (AjE) on testicular deterioration induced by DM in high-fat diet/streptozocin (HFD/STZ)-injected rats. Forty rats were allocated to the following five groups: control, AjE, HFD/STZ, HFD/STZ-AjE, and HFD/STZ-metformin. HFD/STZ-diabetic rats showed a marked decrease in testicular weight and male sex hormones. There was significant suppression of testicular antioxidant enzymes and glutathione content in HFD/STZ-diabetic rats. However, rats that had received the STZ injection and the high-fat diet displayed increased malondialdehyde content and nitric oxide levels as well as tumour necrosis factor-alpha. High levels of Bax and low levels of Bcl-2 were detected after the STZ injection. Obvious pathological alterations were found in the testicular tissue of the HFD/STZ-diabetic rats. Thus, the administration of AjE attenuated the biochemical, molecular, and histopathological changes in the testes of the diabetic rats. The obtained findings showed that AjE treatment attenuated the diabetes-induced reprotoxicity in male rats via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
30
|
Albasher G, Aljarba N, Al Sultan N, Alqahtani WS, Alkahtani S. Evaluation of the neuro-protective effect of Artemisia judaica extract in a murine diabetic model. J Food Biochem 2020; 44:e13337. [PMID: 32588466 DOI: 10.1111/jfbc.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Chronic hyperglycemia is associated with several negative outcomes including neuronal injury. Medicinal plants supplementation has been widely applied to treat or decrease diabetic complications. Here, the possible neuroprotective effect of Artemisia judaica extract (AjE. 300 mg kg-1 day-1 ) against neuronal deficits in diabetes model induced by high-fat diet (HFD) administration and streptozotocin (STZ, 30 mg/Kg) injection in rats was investigated. Diabetic rats showed a disturbance in the neuronal redox homeostasis as confirmed by the elevated lipoperoxidation and nitric oxide formation along with the decreased antioxidant molecules. In addition, a state of neuroinflammation and apoptosis were recorded in the brain tissue in diabetic rats. Furthermore, HFD/STZ provoked neurochemical alterations. However, AjE administration was found to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, antiapoptotic, and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients. PRACTICAL APPLICATIONS: Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level comes from the dysregulation of insulin production and/or its action. The persisted hyperglycemia is correlated with the progression of several physical complications including renal, hepatic, vascular, retinal, and neuronal dysfunction. Artemisia is used in the nutritional and medicinal proposes due to the enriched bioactive molecules such as essential oil, flavonoids, phenolics, sesquiterpenoids, triterpenoids, and artemisinin. And we found that Artemisia judaica extract (AjE) administration was able to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, anti-apoptotic and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada Aljarba
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Al Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
AL-Megrin WA, El-Khadragy MF, Hussein MH, Mahgoub S, Abdel-Mohsen DM, Taha H, Bakkar AAA, Abdel Moneim AE, Amin HK. Green Coffea arabica Extract Ameliorates Testicular Injury in High-Fat Diet/Streptozotocin-Induced Diabetes in Rats. J Diabetes Res 2020; 2020:6762709. [PMID: 32626781 PMCID: PMC7306074 DOI: 10.1155/2020/6762709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disease characterized by persistent hyperglycemia. Oxidative damage, inflammatory cytokines, and apoptotic cell death play a major role in the induction and progression of male testicular damage. Plant-derived phytochemicals such as green coffee (Coffea arabica) can possess antidiabetic effects with little toxicity. The current study is aimed at investigating the therapeutic roles of green coffee in diabetic testicular injury stimulated by high-fat diet/streptozotocin administration. Diabetes mellitus was induced by a high-fat diet and a single dose of streptozotocin (STZ) (35 mg kg-1) in male albino rats. Diabetic animals were orally given two different concentrations of green coffee (50 mg kg-1 and 100 mg kg-1) for 28 days. The levels of testosterone, luteinizing hormone, and follicle-stimulating hormone and parameters of oxidative stress, inflammation, and apoptosis were measured. mRNAs and protein levels were detected quantitatively by real-time PCR and ELISA, respectively. In the diabetic group, the levels of testosterone, luteinizing hormone, and follicle-stimulating hormone showed a significant reduction while they increased significantly after green coffee treatment. A significant increase of antioxidant markers glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase along with decreased levels of lipid peroxides and nitric oxide was observed after green coffee treatment in the diabetic group. Finally, the levels of IL-1β, TNF-α, Bax, and caspase-3 were also decreased in both treated groups (metformin and green coffee) when compared to the diabetic group. We conclude that testicular oxidative impairment induced by a high-fat diet (HFD) and STZ can be reversed by green coffee. Administration of green coffee could represent a promising therapeutic agent which can help the treatment of type 2 DM-induced testicular dysfunction.
Collapse
Affiliation(s)
- Wafa A. AL-Megrin
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Manal F. El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manal H. Hussein
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shahenda Mahgoub
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Doaa M. Abdel-Mohsen
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ashraf A. A. Bakkar
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hatem K. Amin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
32
|
El-Borady OM, Othman MS, Atallah HH, Abdel Moneim AE. Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats. Heliyon 2020; 6:e04045. [PMID: 32509990 PMCID: PMC7264054 DOI: 10.1016/j.heliyon.2020.e04045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/06/2019] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
This study was aimed to evaluate the efficacy of synthesized selenium nanoparticles (SeNPs) capped with glucose and polyvinyl-pyrrolidone (PVP) on the hyperglycemia and prooxidants/antioxidants imbalance present in model streptozotocin (STZ)-induced diabetic rats. SeNPs were synthesized and characterized. Twenty-four albino male rats were grouped into four different groups. After the rats were induced to have type 2 diabetes by STZ, the SeNPs-treated groups received a dose of 0.5 mg/ml of SeNPs for seven days. Plasma glucose and insulin levels, pancreatic insulin expression, the levels of lipid peroxidation (LPO), nitric oxide (NO), glutathione peroxidase (GPx) and glutathione (GSH) were evaluated. TEM images revealed the formation of semispherical particles with average size between 40 and 50 nm. SeNPs administration successfully reduced the hyperglycemia, raised the levels of insulin in both the pancreas and the plasma and restored the damaged pancreatic tissue. SeNPs also showed enhancement of the elimination of the diabetes-induced oxidative stress injuries by decreasing the pancreatic LPO and NO levels. Furthermore, the activities of the antioxidant enzyme GPx and GSH levels of the diabetic rats were increased. In conclusion, SeNPs capped with PVP could be used in the future as an agent that could manage Diabetes mellitus.
Collapse
Affiliation(s)
- Ola M El-Borady
- Institute for Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed S Othman
- Faculty of Preparatory Year, University of Ha'il, Hail, KSA, Saudi Arabia.,October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Heba H Atallah
- October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|