1
|
Luo T, He Y, Jiang L, Yang L, Hou X, Shen G, Cui Q, Yu J, Ke J, Chen S, Zhang Z. Flavor perception and biological activities of bitter compounds in food. Food Chem 2025; 477:143532. [PMID: 40057996 DOI: 10.1016/j.foodchem.2025.143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Bitter compounds in food produce a distinct bitter taste that significantly influences overall flavor and quality, while also possessing valuable biological activities. Therefore, a systematic review summarizing recent research advances on bitter compounds is necessary for a better understanding of them. This review discusses the sources of bitter substances in food, the mechanism of bitterness perception, their biological activities and key issues for future research. Bitter compounds in food mainly include polyphenols, alkaloids, terpenoids, bitter peptides and Maillard reaction products. Bitter substances bind to specific sites on bitter taste receptors (TAS2Rs), activating G protein-mediated downstream signaling pathways that lead to the perception of bitterness. Additionally, many bitter compounds possess biological activities, such as regulating food intake and exhibiting anti-cancer, anti-inflammatory and antioxidant activities. This review highlights the potential to exploit the bioactivity of bitter compounds to enhance the nutritional value and functionality of food.
Collapse
Affiliation(s)
- Tingting Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yanni He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Lanxin Jiang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jie Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, China.
| | - Shanbo Chen
- Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
2
|
Pan C, Kakeya H. Recent progress in chemistry and bioactivity of novel enzyme inhibitors from natural products: A comprehensive review. Eur J Med Chem 2025; 289:117481. [PMID: 40073533 DOI: 10.1016/j.ejmech.2025.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
The essence of enzymes is to maintain the normal activities of living organisms by catalyzing metabolic reactions and regulating cells. Inhibiting enzyme activity can slow the progression of certain diseases and cure them, making enzymes one of the major targets for disease treatment. The search and development of novel enzyme inhibitors are of great significance for the treatment of certain major diseases. One of the most prominent features of natural products is their complex and diverse structures, which often compliments the synthetic capabilities of medicinal chemistry. Considering the biosynthetic processes of natural molecules in organisms, they exhibit higher similarity and binding potential with biological structures, enabling them to serve as ligands for various enzymes and receptors. In this review, we summarized a total of 226 novel natural products with enzyme inhibitory activity published in 49 articles over the past three years (2022-2024). These natural products (including terpenes, alkaloids, flavonoids, phenylpropanoids, polyketides, peptides, anthraquinones, etc.) are derived from plants, microorganisms, and marine organisms. We also discuss some synthetic analogs, with a focus on their structures and biological activities. This review provides useful information for the research and development of novel enzyme inhibitors.
Collapse
Affiliation(s)
- Chengqian Pan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China; Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Tufail T, Fatima S, Bader Ul Ain H, Ikram A, Noreen S, Rebezov M, AL-Farga A, Saleh R, Shariati MA. Role of Phytonutrients in the Prevention and Treatment of Chronic Diseases: A Concrete Review. ACS OMEGA 2025; 10:12724-12755. [PMID: 40224418 PMCID: PMC11983219 DOI: 10.1021/acsomega.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Delving into the intricate role of phytonutrients is paramount to effectively preventing and treating chronic diseases. Phytonutrients are "plant-based nutrients" that positively affect human health. Phytonutrients perform primary therapeutic functions in the management and treatment of various diseases. It is reported that different types of pathogenesis occur due to the excessive production of oxidants (reactive nitrogen species and reactive oxygen species). The literature shows that a higher intake of fruits, vegetables, and other plant-based food is inversely related to treating different chronic diseases. Due to many phytonutrients (antioxidants) in fruits, vegetables, and other medicinal plants, they are considered major therapeutic agents for various diseases. The main purpose of this review is to summarize the major phytonutrients involved in preventing and treating diseases. Fourteen major phytonutrients are discussed in this review, such as polyphenols, anthocyanin, resveratrol, phytosterol (stigmasterol), flavonoids, isoflavonoids, limonoids, terpenoids, carotenoids, lycopene, quercetin, phytoestrogens, glucosinolates, and probiotics, which are well-known for their beneficial effects on the human body and treatment of different pathological conditions. It is concluded that phytonutrients play a major role in the prevention and treatment of diabetes mellitus, obesity, hypertension, cardiovascular disorders, other types of cancers, neurological disorders, age-related diseases, and inflammatory disorders and are also involved in various biological activities.
Collapse
Affiliation(s)
- Tabussam Tufail
- School
of Food and Biological Engineering, Jiangsu
University, Zhenjiang, 212013, China
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Smeea Fatima
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Huma Bader Ul Ain
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Ikram
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maksim Rebezov
- Department
of Scientific Research, V. M. Gorbatov Federal
Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Faculty
of Biotechnology and Food Engineering, Ural
State Agrarian University, 42 Karl Liebknecht str., Yekaterinburg, 620075, Russia
- Department
of Biotechnology, Toraighyrov University, 64 Lomov Str., Pavlodar, 140008, Kazakhstan
| | - Ammar AL-Farga
- Department
of Biochemistry, College of Sciences, University
of Jeddah, Jeddah, 21577, KSA
| | - Rashad Saleh
- Medical Microbiology
Department, Faculty of Science, IBB University, IBB, Yemen
| | - Mohammad Ali Shariati
- Kazakh
Research
Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan
| |
Collapse
|
4
|
Yu K, Zhong M, Zhu W, Rashid A, Han R, Virk MS, Duan K, Zhao Y, Ren X. Advances in Computer Vision and Spectroscopy Techniques for Non-Destructive Quality Assessment of Citrus Fruits: A Comprehensive Review. Foods 2025; 14:386. [PMID: 39941979 PMCID: PMC11816614 DOI: 10.3390/foods14030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Citrus fruits, classified under the Rutaceae family and Citrus genus, are valued for their high nutritional content, attributed to their rich array of natural bioactive compounds. To ensure both quality and nutritional value, precise non-destructive testing methods are crucial. Among these, computer vision and spectroscopy technologies have emerged as key tools. This review examines the principles and applications of computer vision technologies-including traditional computer vision, hyperspectral, and multispectral imaging-as well as various spectroscopy techniques, such as infrared, Raman, fluorescence, terahertz, and nuclear magnetic resonance spectroscopy. Additionally, data fusion methods that integrate these technologies are discussed. The review explores innovative uses of these approaches in Citrus quality inspection and grading, damage detection, adulteration identification, and traceability assessment. Each technology offers distinct characteristics and advantages tailored to the specific testing requirements in Citrus production. Through data fusion, these technologies can be synergistically combined, enhancing the accuracy and depth of Citrus quality assessments. Future advancements in this field will likely focus on optimizing data fusion algorithms, selecting effective preprocessing and feature extraction techniques, and developing portable, on-site detection devices. These innovations will drive the Citrus industry toward increased intelligence and precision in quality control.
Collapse
Affiliation(s)
- Kai Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.Y.); (M.Z.); (A.R.); (M.S.V.); (Y.Z.)
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.Y.); (M.Z.); (A.R.); (M.S.V.); (Y.Z.)
| | - Wenjing Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.Y.); (M.Z.); (A.R.); (M.S.V.); (Y.Z.)
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.Y.); (M.Z.); (A.R.); (M.S.V.); (Y.Z.)
| | - Kaiwen Duan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Yongjun Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.Y.); (M.Z.); (A.R.); (M.S.V.); (Y.Z.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (K.Y.); (M.Z.); (A.R.); (M.S.V.); (Y.Z.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Kaya B, Paydas S, Balal M, Mete B, Kuzu T. Avascular Necrosis in Renal Transplant Patients. EXP CLIN TRANSPLANT 2025; 23:21-28. [PMID: 37074005 DOI: 10.6002/ect.2022.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Kidney transplant recipients are at increased risk for avascular necrosis due to steroid use and accompanying comorbidities. Concerning risk factors, uncertainty still exists. We evaluated the clinical characteristics and risk factors of avascular necrosis in kidney transplant recipients. MATERIALS AND METHODS Symptomatic avascular necrosis was found by magnetic resonance imaging in 33 of 360 kidney transplant patients between 2005 and 2021. The patients' clinical characteristics, biochemical testing, and medications were evaluated. RESULTS We found the frequency of avascular necrosis to be 9.7% during the follow-up period. If the total steroid dosage used was more than 4 g in the first 3 months, the risk of developing avascular necrosis increased 4.08 times, and the presence of cytomegalovirus disease increased the risk by 4.03 times. Avascular necrosis was observed bilaterally in 60.6% of cases and at the femoral head in 66.7%. The frequency of avascular necrosis was highest in the first and second years posttransplant. CONCLUSIONS We found that avascular necrosis appears most frequently in the first 2 years after kidney transplant and the most important risk factors are cumulative steroid dose and cytomegalovirus disease. In the follow-up of kidney transplant patients, it is important to use low-dose steroid doses if possible. Of note, preventing the development of cytomegalovirus disease by screening and prophylaxis for cytomegalovirus is also important in reducing the development of avascular necrosis.
Collapse
Affiliation(s)
- Bulent Kaya
- From Cukurova University Faculty of Medicine, Department of Nephrology, Adana, Turkey
| | | | | | | | | |
Collapse
|
6
|
Bulgari D, Gobbi E, Cortesi P, Peron G. Bioconversion of Food and Green Waste into Valuable Compounds Using Solid-State Fermentation in Nonsterile Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3494. [PMID: 39771192 PMCID: PMC11728819 DOI: 10.3390/plants13243494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch. In this study, the ability of Trichoderma asperellum R to convert fruit scrap and green waste into value-added chemicals was tested in solid-state and in nonsterile conditions. A solid-state fermentation protocol for a tray bioreactor was developed using spawn as the inoculum for nonsterile substrates. T. asperellum R drove the fermentation of both substrates, shaping the metabolites that were enriched in the secondary plant metabolites. Strain R showed cellulase activity only when inoculated on fruit scraps, resulting in increased amounts of polysaccharides in the crude extract. This extract was also enriched in vanillic acid and limonoid, which are intriguing compounds due to the increasing interest in their potential as biological nitrification inhibitors or food additives. Finally, trimethoxybenzaldehyde, an interesting chemical building block, was identified in the extracts of the Trichoderma-guided fermentation. The overall results showed that the application of T. asperellum R has potential as a driver to facilitate the extraction of bioactive substances from nonsterile recalcitrant substrates.
Collapse
Affiliation(s)
- Daniela Bulgari
- Department of Food Environmental and Nutritional Sciences, University of Milan, Via Celoria, 2, 20133 Milan, Italy; (D.B.); (P.C.)
| | - Emanuela Gobbi
- Agri-Food and Environmental Microbiology Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paolo Cortesi
- Department of Food Environmental and Nutritional Sciences, University of Milan, Via Celoria, 2, 20133 Milan, Italy; (D.B.); (P.C.)
| | - Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| |
Collapse
|
7
|
Akwongo B, Kakudidi EK, Nsubuga AM, Andama M, Namaganda M, Tugume P, Asiimwe S, Anywar G, Katuura E. In vitro antifungal activities of medicinal plants used for treatment of candidiasis in Pader district, Northern Uganda. Trop Med Health 2024; 52:84. [PMID: 39533448 PMCID: PMC11558831 DOI: 10.1186/s41182-024-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The emergence of multidrug resistant Candida species to available drugs has led to renewed interest in the use of herbal medicines globally. This study scientifically verified antifungal effectiveness of five commonly used plant species in Pader district, against selected pathogenic candida strains. METHODS Powdered roots of Momordica foetida, Sansevieria dawei and Distimake dissectus; and stem barks of Khaya anthotheca and Mitragyna rubrostipulata were extracted sequentially using petroleum ether and methanol, respectively; and total water extraction at 24.4 °C (maceration), 60 °C (decoction) and boiling water at 87 °C (hot water infusion). Extracts and their combinations, positive controls (amphotericin B, and fluconazole) and negative control (80% dimethyl sulfoxide, verified to be tolerable concentration to the tested Candida species) were screened and verified for their antifungal activity against Candida albicans (ATCC: American Type Culture Collection reference strain 10231, ATCC 90028, 0770a and 0796), C. glabrata (VVc 004, ATCC 2950) and C. tropicalis (ATCC 750 and 0210) using agar well diffusion and broth micro-dilution, respectively. RESULTS Aqueous extract (24.4 °C) of M. rubrostipulata (ZOI: 18.00 ± 1.00 to 38.33 ± 0.17; MIC: 3.13 ± 0.00 to 20.83 ± 4.17; MFC: 12.50 ± 0.00 to 200.00 ± 0.00), methanol extract of K. anthotheca (10.11 ± 0.31 to 15.11 ± 0.65; 1.04 ± 0.26 to 12.50 ± 0.00; 12.50 ± 0.00 to 100.00 ± 0.00), and combination of aqueous extract (60 °C) of D. dissectus + methanol extract of K. anthotheca (7.89 ± 0.26 to 19.67 ± 0.37; 0.78 ± 0.00 to 50.00 ± 0.00; 12.50 ± 0.00 to 200.00 ± 0.00) exhibited broad spectrum antifungal activities and were fungistatic against all tested Candida species, which comprised 8 clinical/control and susceptible/resistant strains. None of the conventional drugs used demonstrated broad spectrum antifungal activity across all tested Candida species/strains. CONCLUSION Methanol extract of K. anthotheca, aqueous extract (24.4 °C) of M. rubrostipulata, and combination of aqueous extract (60 °C) of D. dissectus + methanol extract of K. anthotheca could be effective in the treatment of candidiasis. They demonstrated potential broad spectrum antifungal activity against different species and strains of tested Candida than the fluconazole and amphotericin B drugs. Their fungistatic nature showed their ability to inhibit fungal growth. Hence, these extracts/extract combination can offer better treatment option for candidiasis if they are standardized and also their active curative compounds isolated and made into antifungal drugs.
Collapse
Affiliation(s)
- Betty Akwongo
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
- Department of Biology, Faculty of Science, Muni University, P.O. Box 725, Arua, Uganda.
| | - Esezah K Kakudidi
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Anthony M Nsubuga
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Morgan Andama
- Department of Biology, Faculty of Science, Muni University, P.O. Box 725, Arua, Uganda
| | - Mary Namaganda
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Patience Tugume
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Savina Asiimwe
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Godwin Anywar
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Esther Katuura
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
8
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
9
|
Panda SP, Kesharwani A, Singh M, Kumar S, Mayank, Mallick SP, Guru A. Limonin (LM) and its derivatives: Unveiling the neuroprotective and anti-inflammatory potential of LM and V-A-4 in the management of Alzheimer's disease and Parkinson's disease. Fitoterapia 2024; 178:106173. [PMID: 39117089 DOI: 10.1016/j.fitote.2024.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Neuroinflammation and neuronal apoptosis are central pathogenic consequences associated with Alzheimer's Disease (AD) and Parkinson's Disease (PD). Limonin (LM), a tetracyclic triterpenoid available in citrus fruits, has anti-tumor, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective actions. LM derivative, V-A-4 emerged as a potential neuroprotective drug due to their ability to target multiple molecular pathways intertwined with neuroinflammation and neuronal apoptosis. To date, the treatment of AD and PD is not successful even though the understanding of the mechanism of neuroinflammation and neuronal apoptosis is vast in the literature. Thus, there is an urgent need to identify novel neuroprotective drugs that could target the multiple molecular pathways associated with neuroinflammation and neuronal apoptosis. The various online databases (Google scholar, Pubmed, Scopus) were searched via keywords: limonin, limonin derivatives and neuroprotection. This review highlights the multifunctional nature of LM and derivatives in combating neuroinflammation and neuronal apoptosis by stimulating PI3K/AKT and downregulating TLR4/NF-κB critical pathways. By intervening in the secretion of NO and TNF-α from glial cells, V-A-4 attenuates the damaging cascade of neuroinflammation by suppressing IKK-α and IKK-β. Furthermore, V-A-4 demonstrates its versatility by suppressing the manifestation of miR-146a and miR-155, both intimately linked to neuroinflammation, this review summarized the activities of LM and its derivatives against AD and PD, with a special focus on V-A-4 as an effective neuroprotective drug. V-A-4's ability to stimulate PI3K/AKT signaling further underscores its neuroprotective effect in combating AD and PD. More in-vitro cell line studies are needed to develop V-A-4 as an upcoming neuroprotective compound.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Mansi Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India; Rakshpal bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India; Rakshpal bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mayank
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
10
|
El-Feky AM, Aboulthana WM, El-Rashedy AA. Assessment of the in vitro anti-diabetic activity with molecular dynamic simulations of limonoids isolated from Adalia lemon peels. Sci Rep 2024; 14:21478. [PMID: 39277638 PMCID: PMC11401861 DOI: 10.1038/s41598-024-71198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Limonoids are important constituents of citrus that have a significant impact on promoting human health. Therefore, the primary focus of this research was to assess the overall limonoid content and isolate limonoids from Adalia lemon (Citrus limon L.) peels for their potential use as antioxidants and anti-diabetic agents. The levels of limonoid aglycones in the C. limon peel extract were quantified through a colorimetric assay, revealing a concentration of 16.53 ± 0.93 mg/L limonin equivalent. Furthermore, the total concentration of limonoid glucosides was determined to be 54.38 ± 1.02 mg/L. The study successfully identified five isolated limonoids, namely limonin, deacetylnomilin, nomilin, obacunone 17-O-β-D-glucopyranoside, and limonin 17-O-β-D-glucopyranoside, along with their respective yields. The efficacy of the limonoids-rich extract and the five isolated compounds was evaluated at three different concentrations (50, 100, and 200 µg/mL). It was found that both obacunone 17-O-β-D-glucopyranoside and limonin 17-O-β-D-glucopyranoside possessed the highest antioxidant, free radical scavenging, and anti-diabetic activities, followed by deacetylnomilin, and then the limonoids-rich extract. The molecular dynamic simulations were conducted to predict the behavior of the isolated compounds upon binding to the protein's active site, as well as their interaction and stability. The results revealed that limonin 17-O-β-D-glucopyranoside bound to the protein complex system exhibited a relatively more stable conformation than the Apo system. The analysis of Solvent Accessible Surface Area (SASA), in conjunction with the data obtained from Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and Radius of Gyration (ROG) computations, provided further evidence that the limonin 17-O-β-D-glucopyranoside complex system remained stable within the catalytic domain binding site of the human pancreatic alpha-amylase (HPA)-receptor. The research findings suggest that the limonoids found in Adalia lemon peels have the potential to be used as effective natural substances in creating innovative therapeutic treatments for conditions related to oxidative stress and disorders in carbohydrate metabolism.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Abdel-Kawy MA, Aboulhoda BE, Michel CG, Sedeek MS, Kirollos FN, Masoud MA. Ameliorating effect of Citrus trifoliata L. fruits extract on motor incoordination, neurodegeneration and oxidative stress in Parkinson's disease model. Nutr Neurosci 2024; 27:770-782. [PMID: 37658797 DOI: 10.1080/1028415x.2023.2253026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Citrus trifoliate fruit (also known as Trifoliate orange) is one of the commercially-cultivated Citrus genus of plants belonging to the Rutaceae family. It has been traditionally-utilized in treatment of neurodegenerative disorders. However, the scientific evidence verifying this utilization needs further elucidation. AIM OF THE STUDY Characterization of the bioactive constituents of C. trifoliata L. fruits extract and evaluating its effect on Parkinson's disease (PD) model. MATERIAL AND METHODS Rats were classified into 5 groups; control, PD, PD-treated by L-dopa/Carpidopa and PD-treated by oral Citrus trifoliata L. fruits extract (50 and 100 mg/kg). Deterioration in brain functions was evaluated through an in vivo open field, grid and catalepsy tests. The study also assessed the striatal neurotransmitters, oxidative stress markers and histopathological changes. RESULTS Citrus trifoliata L. fruit extract has revealed motor improvement comparable to L-dopa and carbidopa. It has also effectively-improved oxidative stress via reduction of striatal malondialdehyde & nitric oxide along with replenishment of the striatal glutathione and superoxide dismutase. The extract caused significant reduction of the striatal myeloperoxidase activity and restoration of dopamine, γ-amino butyric acid (GABA), and acetylcholinesterase. This effect was further confirmed by amelioration of neuronal apoptosis, microgliosis and peri-neuronal vacuolation. Metabolite profiling revealed 40 constituents, with flavonoids representing the main identified class. CONCLUSION The neuro-protective effect of Citrus trifoliata extract was achieved through the antioxidant and anti-inflammatory activities of its flavonoids, particularly hesperidin and naringin. This neuro-protective effect was evident at the behavioral, histological and neurotransmitter levels.
Collapse
Affiliation(s)
| | - Basma Emad Aboulhoda
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Camilia G Michel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Farid N Kirollos
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
12
|
D'Amore T, Chaari M, Falco G, De Gregorio G, Zaraî Jaouadi N, Ali DS, Sarkar T, Smaoui S. When sustainability meets health and innovation: The case of Citrus by-products for cancer chemoprevention and applications in functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103163. [DOI: 10.1016/j.bcab.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
13
|
Vergoten G, Bailly C. Insights into the Mechanism of Action of the Degraded Limonoid Prieurianin. Int J Mol Sci 2024; 25:3597. [PMID: 38612409 PMCID: PMC11011620 DOI: 10.3390/ijms25073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Limonoids are extremely diversified in plants, with many categories of products bearing an intact, rearranged or fragmented oxygenated scaffold. A specific subgroup of fragmented or degraded limonoids derives from the tetranortriterpenoid prieurianin, initially isolated from the tree Trichilia prieuriana but also found in other plants of the Meliaceae family, including the more abundant species Aphanamixis polystachya. Prieurianin-type limonoids include about seventy compounds, among which are dregeanin and rohitukin. Prieurianin and analogs exhibit insecticidal, antimicrobial, antiadipogenic and/or antiparasitic properties but their mechanism of action remains ill-defined at present. Previous studies have shown that prieurianin, initially known as endosidin 1, stabilizes the actin cytoskeleton in plant and mammalian cells via the modulation of the architecture and dynamic of the actin network, most likely via interference with actin-binding proteins. A new mechanistic hypothesis is advanced here based on the recent discovery of the targeting of the chaperone protein Hsp47 by the fragmented limonoid fraxinellone. Molecular modeling suggested that prieurianin and, to a lesser extent dregeanin, can form very stable complexes with Hsp47 at the protein-collagen interface. Hsp-binding may account for the insecticidal action of the product. The present review draws up a new mechanistic portrait of prieurianin and provides an overview of the pharmacological properties of this atypical limonoid and its chemical family.
Collapse
Affiliation(s)
- Gérard Vergoten
- U1286—INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 Rue du Professeur Laguesse, 59006 Lille, France
| | - Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, 59000 Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
14
|
Rochlani S, Bhatia M, Rathod S, Choudhari P, Dhavale R. Exploration of limonoids for their broad spectrum antiviral potential via DFT, molecular docking and molecular dynamics simulation approach. Nat Prod Res 2024; 38:891-896. [PMID: 37074699 DOI: 10.1080/14786419.2023.2202398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
Limonoids serve as vital secondary metabolites. Citrus limonoids show a wide range of pharmacological potential. As a result of which limonoids from citrus are of considerable research interest. Identification of new therapeutic molecules from natural origins has been widely adopted as a successful strategy in drug discovery. This work mainly focused on the high-throughput computational exploration of the antiviral potential of three vital limonoids, i.e. Obacunone, Limonin and Nomilin against spike proteins of SARS CoV-2 (PDB:6LZG), Zika virus NS3 helicase (PDB:5JMT), Serotype 2 RNA dependent RNA polymerase of dengue virus (PDB:5K5M). Herein we report the molecular docking, MD simulation studies of nine docked complexes, and density functional theory (DFT) of selected limonoids. The results of this study indicated that all three limonoids have good molecular features but out of these three obacunone exerted satisfactory results for DFT, docking and MD simulation study.
Collapse
Affiliation(s)
- Sneha Rochlani
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Manish Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Sanket Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Rakesh Dhavale
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| |
Collapse
|
15
|
Indriyani NN, Anshori JA, Permadi N, Nurjanah S, Julaeha E. Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development. Foods 2023; 12:2036. [PMID: 37238855 PMCID: PMC10217416 DOI: 10.3390/foods12102036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Citrus aurantifolia is part of the Rutaceae family and belongs to the genus Citrus. It is widely used in food, the chemical industry, and pharmaceuticals because it has a unique flavor and odor. It is nutrient-rich and is beneficial as an antibacterial, anticancer, antioxidant, anti-inflammatory, and insecticide. Secondary metabolites present in C. aurantifolia are what give rise to biological action. Flavonoids, terpenoids, phenolics, limonoids, alkaloids, and essential oils are among the secondary metabolites/phytochemicals discovered in C. aurantifolia. Every portion of the plant's C. aurantifolia has a different composition of secondary metabolites. Environmental conditions such as light and temperature affect the oxidative stability of the secondary metabolites from C. aurantifolia. The oxidative stability has been increased by using microencapsulation. The advantages of microencapsulation are control of the release, solubilization, and protection of the bioactive component. Therefore, the chemical makeup and biological functions of the various plant components of C. aurantifolia must be investigated. The aim of this review is to discuss the bioactive components of C. aurantifolia such as essential oils, flavonoids, terpenoids, phenolic, limonoids, and alkaloids obtained from different parts of the plants and their biological activities such as being antibacterial, antioxidant, anticancer, an insecticide, and anti-inflammatory. In addition, various extraction techniques of the compounds out of different parts of the plant matrix as well as the microencapsulation of the bioactive components in food are also provided.
Collapse
Affiliation(s)
- Nastiti Nur Indriyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| | - Jamaludin Al Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Sarifah Nurjanah
- Department of Agricultural Engineering, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| |
Collapse
|
16
|
Lin M, Xu C, Gao X, Zhang W, Yao Z, Wang T, Feng X, Wang Y. Comparative study on secondary metabolites from different citrus varieties in the production area of Zhejiang. Front Nutr 2023; 10:1159676. [PMID: 37252230 PMCID: PMC10211264 DOI: 10.3389/fnut.2023.1159676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
To investigate the distribution pattern of bioactive components and their correlations between citrus varieties, we thoroughly analyzed secondary metabolites (including flavonoids, phenolic acids, carotenoids, and limonoids) in the peel and pulp of 11 citrus varieties from the production area of Zhejiang. Citrus peels accumulated metabolites far more than the pulp, and the accumulation varied significantly between species. Flavonoids were the most abundant compounds, followed by phenolic acids, with carotenoids and limonoids being far less abundant than the first two, but limonoids were more abundant than carotenoids. Hesperidin was the main flavonoid in most varieties, but cocktail grapefruit and Changshanhuyou contained naringin, with Ponkan having the most abundant polymethoxylated flavones (PMFs). The major components of phenolic acids, carotenoids, and limonoids were ferulic acid, β-cryptoxanthin, and limonin, respectively. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) indicated that these components were mostly correlated with each other, and these citrus varieties could be categorized into four groups by pulp and three groups by peel. The obtained results filled the data gap for secondary metabolites from local citrus and could provide data references for citrus resource utilization, selection and breeding of superior varieties, and other research.
Collapse
Affiliation(s)
- Mei Lin
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Chengnan Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Xueying Gao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | | | - Zhoulin Yao
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Tianyu Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Xianju Feng
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Yue Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| |
Collapse
|
17
|
Rudiyansyah, Alimuddin AH, Indrayani Y, Zulqaida S, Takaya Y. Dukunolide G: A New Limonoid from the Root of Lansium domesticum Corr. (Meliaceae). CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Phucharoenrak P, Muangnoi C, Trachootham D. Metabolomic Analysis of Phytochemical Compounds from Ethanolic Extract of Lime (Citrus aurantifolia) Peel and Its Anti-Cancer Effects against Human Hepatocellular Carcinoma Cells. Molecules 2023; 28:molecules28072965. [PMID: 37049726 PMCID: PMC10095956 DOI: 10.3390/molecules28072965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Lime peels are food waste from lime product manufacturing. We previously developed and optimized a green extraction method for hesperidin-limonin-rich lime peel extract. This study aimed to identify the metabolomics profile of phytochemicals and the anti-cancer effects of ethanolic extract of lime (Citrus aurantifolia) peel against liver cancer cells PLC/PRF/5. The extract’s metabolomics profile was analyzed by using LC-qTOF/MS and GC-HRMS. The anti-cancer effects were studied by using MTT assay, Annexin-PI assay, and Transwell-invasion assay. Results show that the average IC50(s) of hesperidin, limonin, and the extract on cancer cells’ viability were 165.615, 188.073, and 503.004 µg/mL, respectively. At the IC50 levels, the extract induced more apoptosis than those of pure compounds when incubating for 24 and 48 h (p < 0.0001). A combination of limonin and hesperidin showed a synergistic effect on apoptosis induction (p < 0.001), but the effect of the combination was still less than that of the extract at 48 h. Furthermore, the extract significantly inhibited cancer cell invasion better than limonin but equal to hesperidin. At the IC50 level, the extract contains many folds lower amounts of hesperidin and limonin than the IC50 doses of the pure compounds. Besides limonin and hesperidin, there were another 60 and 22 compounds detected from the LCMS and GCMS analyses, respectively. Taken altogether, the superior effect of the ethanolic extract against liver cancer cells compared to pure compound likely results from the combinatorial effects of limonin, hesperidin, and other phytochemical components in the extract.
Collapse
|
19
|
García-Nicolás M, Ledesma-Escobar CA, Priego-Capote F. Spatial Distribution and Antioxidant Activity of Extracts from Citrus Fruits. Antioxidants (Basel) 2023; 12:antiox12040781. [PMID: 37107156 PMCID: PMC10135098 DOI: 10.3390/antiox12040781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Citrus fruits are recommended components of the human diet because of their enriched composition in bioactive compounds and health benefits. Among their notable components are phenols, with a special emphasis on flavonoids, limonoids, and carboxylic acids. In this research, we have carried out a spatial metabolomics analysis for the characterization of these bioactive families in three citrus fruits, namely, lemons, limes, and mandarins. Sampling was undertaken, for which the juices and three fruit tissues, namely, albedo, flavedo, and segments, were analyzed. This characterization allowed for the determination of 49 bioactive compounds in all the samples. The composition of the different extracts was correlated with the antioxidant capacity measured by the DPPH radical scavenging activity and β-carotene bleaching assays. Flavonoids, found in the albedo and flavedo at higher concentrations, were the main components responsible for DPPH radical scavenging activity. On the other hand, the combined action of flavonoids and limonoids contributed to explaining the antioxidant activity measured by the β-carotene bleaching assay. Generally, the antioxidant capacity of juices was lower than that estimated for extracts from citrus tissues.
Collapse
Affiliation(s)
- María García-Nicolás
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Cannavacciuolo C, Pagliari S, Giustra CM, Carabetta S, Guidi Nissim W, Russo M, Branduardi P, Labra M, Campone L. LC-MS and GC-MS Data Fusion Metabolomics Profiling Coupled with Multivariate Analysis for the Discrimination of Different Parts of Faustrime Fruit and Evaluation of Their Antioxidant Activity. Antioxidants (Basel) 2023; 12:antiox12030565. [PMID: 36978813 PMCID: PMC10045819 DOI: 10.3390/antiox12030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
The comparative chemical composition of different part of Faustrime fruits (peels, pulp, albedo, and seeds) extracted with different solvents was determined by GC-MS and UHPLC-HRMS QTof. The obtained data were also combined for their in vitro antioxidant activity by multivariate analysis to define a complex fingerprint of the fruit. The principal component analysis model showed the significative occurrence of volatile organic compounds as α-bisabolol and α-trans-bergamotol in the pulp and albedo, hexanoic acid in the seeds, and several coumarins and phenolics in the peels. The higher radical scavenging activity of the pulp was related to the incidence of citric acid in partial least square regression.
Collapse
Affiliation(s)
- Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Chiara Maria Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Sonia Carabetta
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
21
|
Comparative Untargeted Metabolic Profiling of Different Parts of Citrus sinensis Fruits via Liquid Chromatography-Mass Spectrometry Coupled with Multivariate Data Analyses to Unravel Authenticity. Foods 2023; 12:foods12030579. [PMID: 36766108 PMCID: PMC9914239 DOI: 10.3390/foods12030579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Differences between seven authentic samples of Citrus sinensis var. Valencia peel (albedo and flavedo) and juices from Spain and Uruguay, in addition to a concentrate obtained from Brazil, were investigated by untargeted metabolic profiling. Sixty-six metabolites were detected by nano-liquid chromatography coupled to a high-resolution electrospray-ionization quadrupole time-of-flight mass spectrometer (nLC-ESI-qTOF-MS) belonging to phenolic acids, coumarins, flavonoid glycosides, limonoids, terpenes, and fatty acids. Eleven metabolites were detected for the first time in Citrus sinensis and identified as citroside A, sinapic acid pentoside, apigenin-C-hexosyl-O-pentoside, chrysoeriol-C-hexoside, di-hexosyl-diosmetin, perilloside A, gingerol, ionone epoxide hydroxy-sphingenine, xanthomicrol, and coumaryl alcohol-O-hexoside. Some flavonoids were completely absent from the juice, while present most prominently in the Citrus peel, conveying more industrial and economic prospects to the latter. Multivariate data analyses clarified that the differences among orange parts overweighed the geographical source. PCA analysis of ESI-(-)-mode data revealed for hydroxylinoleic acid abundance in flavedo peel from Uruguay the most distant cluster from all others. The PCA analysis of ESI-(+)-mode data provided a clear segregation of the different Citrus sinensis parts primarily due to the large diversity of flavonoids and coumarins among the studied samples.
Collapse
|
22
|
Jiao Y, Song Y, Yan Z, Wu Z, Yu Z, Zhang D, Ni D, Chen Y. The New Insight into the Effects of Different Fixing Technology on Flavor and Bioactivities of Orange Dark Tea. Molecules 2023; 28:molecules28031079. [PMID: 36770746 PMCID: PMC9920512 DOI: 10.3390/molecules28031079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Peach leaf orange dark tea (ODT) is a fruity tea made by removing the pulp from peach leaf orange and placing dry Qingzhuan tea into the husk, followed by fixing them together and drying. Since the quality of traditional outdoor sunlight fixing (SL) is affected by weather instability, this study explored the feasibility of two new fixing methods, including hot air fixing (HA) and steam fixing (ST). Results showed that fixing method had a great impact on ODT shape, aroma, and taste. Compared with SL and ST, HA endowed ODT with higher fruit aroma, mellow taste, better coordination, and higher sensory evaluation score. Physical-chemical composition analysis showed that SL-fixed orange peel was higher than HA- or ST-fixed peel in the content of polyphenols, flavonoids, soluble protein, hesperidin and limonin, while HA has a higher content of volatile substances and contains more alcohols, aldehydes and ketones, and acid and esters than ST and SL. Activity analysis showed that HA was superior to ST or SL in comprehensive antioxidant activity and inhibitory activity against α-glucosidase. Comprehensive results demonstrated that HA has better performance in improving ODT quality and can replace the traditional SL method in production.
Collapse
Affiliation(s)
- Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Song
- Zigui County Agricultural and Rural Bureau, Yichang 443600, China
| | - Zhi Yan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhuanrong Wu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.N.); (Y.C.); Tel.: +86-181-7122-7832 (D.N.); +86-186-9616-9236 (Y.C.)
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.N.); (Y.C.); Tel.: +86-181-7122-7832 (D.N.); +86-186-9616-9236 (Y.C.)
| |
Collapse
|
23
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Chandel S, Singh R, Gautam A, Ravichandiran V. Screening of Azadirachta indica phytoconstituents as GSK-3β inhibitor and its implication in neuroblastoma: molecular docking, molecular dynamics, MM-PBSA binding energy, and in-vitro study. J Biomol Struct Dyn 2022; 40:12827-12840. [PMID: 34569452 DOI: 10.1080/07391102.2021.1977705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, primary regulator of various cellular activities varying from glycogen metabolism to cell proliferation and regulation. GSK-3β is associated with the pathogenesis of numerous human diseases, including cancer, metabolic disorder, and Alzheimer's disease. In this study, Azadirachta indica compounds were selected and further screened on the BOILED-Egg model. The compounds showing good GIT absorption were docked with the crystal structure of GSK-3β. The compounds with high docking score were submitted for the molecular dynamic simulation (MDS) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA). Based upon the MDS and MM-PBSA study, gedunin showed the highest binding energy throughout the MDS process. Gedunin was isolated from the Azadirachta indica, and its efficacy on GSK-3β inhibition was studied in the human neuroblastoma (SH-SY5Y) cells. Gedunin induced apoptosis and anti-proliferative activity by arresting G2/M phase, as evident by cell-cycle analysis. From immunoblot study, gedunin significantly enhanced the expression of an inhibitory form of GSK-3β (p-GSK-3β Ser9) in concentration-dependent manner. Our findings demonstrate that gedunin may act as an effective GSK-3β inhibitor suggesting that this compound may be used for the management of neuroblastoma. Further preclinical and clinical investigation is desirable.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
25
|
Sadeghi-Dehsahraei H, Esmaeili Gouvarchin Ghaleh H, Mirnejad R, Parastouei K. The effect of bergamot (KoksalGarry) supplementation on lipid profiles: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:4409-4424. [PMID: 36251526 DOI: 10.1002/ptr.7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/20/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
This systematic review and meta-analysis were conducted to evaluate the impact of bergamot (KoksalGarry) and its nutraceutical compounds on lipid profiles. PubMed, Web of Knowledge, Scopus, and Google Scholar searched for relevant articles. Trials investigating the effect of oral bergamot supplementation on serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in adults were included. The mean differences and standard deviations were pooled using a random-effects model. Fourteen trials were included in this systematic review and meta-analysis. Bergamot supplementation significantly decreased serum levels of TC (weighted mean difference (WMD): -63.60 mg/dL; 95% CI: -78.03 to -49.18; p < .001), TG (WMD: -74.72 mg/dL; 95% CI: -83.58 to -65.87; p < .001), LDL-C (WMD: -55.43 mg/dL; 95% CI: -67.26 to -43.60; p < .001), and increased HDL-C (WMD: 5.78 mg/dL; 95% CI: 3.27 to 8.28; p < .001), respectively. Our systematic review of the effects of nutraceuticals containing bergamot on lipid markers showed inconsistent results. The results showed that bergamot supplementation might improve lipid profiles. The findings for nutraceutical compounds containing bergamot were inconsistent. However, the clinical efficacy of bergamot on lipid profiles needs to be further established through higher-quality studies.
Collapse
Affiliation(s)
| | | | - Reza Mirnejad
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
New Insight on Phenolic Composition and Evaluation of the Vitamin C and Nutritional Value of Smoothies Sold on the Spanish Market. Molecules 2022; 27:molecules27238229. [PMID: 36500319 PMCID: PMC9739094 DOI: 10.3390/molecules27238229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Fruits and vegetables are a source of a wide range of nutrients, including bioactive compounds. These compounds have great biological activity and have been linked to the prevention of chronic non-communicable diseases. Currently, the food industry is developing new products to introduce these compounds, whereby smoothies are becoming more popular among consumers. The aim of this study was to evaluate the nutritional quality and the polyphenol and vitamin C content of smoothies available on the Spanish market. An evaluation of the nutritional information and ingredients was carried out. The phenolic compounds were determined by HPLC-ESI-TOF-MS; the vitamin C content was quantified using HPLC-UV/VIS; and the antioxidant activity was analyzed by DPPH and FRAP. Among all of the ingredients of the smoothies, coconut and banana have shown a negative impact on the polyphenol content of the smoothies. In contrast, ingredients such as orange, mango, and passion fruit had a positive correlation with the vitamin C content. Moreover, apple and red fruits showed the highest positive correlations with most of the phenolic acids, flavonoids, total phenolic compounds, and antioxidant activities. In addition, a clustering analysis was performed, and four groups were clearly defined according to the bioactive composition determined here. This research is a precious step for the formulation of new smoothies and to increase their polyphenol quality.
Collapse
|
27
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Effect of Six Lactic Acid Bacteria Strains on Physicochemical Characteristics, Antioxidant Activities and Sensory Properties of Fermented Orange Juices. Foods 2022; 11:foods11131920. [PMID: 35804736 PMCID: PMC9265423 DOI: 10.3390/foods11131920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Six lactic acid bacteria strains were used to study the effects on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. All strains exhibited good growth in orange juice. Of these fermentations, some bioactive compositions (e.g., vitamin C, shikimic acid) and aroma-active compounds (e.g., linalool, 3-carene, ethyl 3-hydroxyhexanoate, etc.) significantly increased in Lactiplantibacillus plantarum and Lactobacillus acidophilus samples. DPPH free radical scavenging rates in L. plantarum and Lacticaseibacillus paracasei samples increased to 80.25% and 77.83%, respectively. Forty-three volatile profiles were identified, including 28 aroma-active compounds. 7 key factors significantly influencing sensory flavors of the juices were revealed, including D-limonene, linalool, ethyl butyrate, ethanol, β-caryophyllene, organic acids and SSC/TA ratio. The orange juice fermented by L. paracasei, with more optimization aroma-active compounds such as D-limonene, β-caryophyllene, terpinolene and β-myrcene, exhibited more desirable aroma flavors such as orange-like, green, woody and lilac incense, and gained the highest sensory score. Generally, L. paracasei fermentation presented better aroma flavors and overall acceptability, meanwhile enhancing antioxidant activities.
Collapse
|
29
|
Targeted phenolic profile of radler beers by HPLC-ESI-MS/MS: the added value of hesperidin to beer antioxidants. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4553-4562. [PMID: 35789584 PMCID: PMC9244072 DOI: 10.1007/s13197-022-05536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
The well-known health beneficial properties of beer are mainly due to phenolic antioxidants. Citrus-flavored beers represent a growing side-market in the beer industry, sparingly investigated to date. The phenolic profile of commercial radler beers (R1, R2) was investigated to evaluate the impact of the lemon juice added to beer in the industrial production. Results were compared to those obtained for opportunely chosen commercial beer (B) and lemonade (L). The study was carried out by an HPLC-MS/MS with an electrospray ionization source in selected ion recording mode, analyzing in a single chromatographic run 26 compounds belonging to the different phenolic classes of hydroxybenzoic, hydroxycinnamic and caffeoylquinic acids, flavonoids and prenylflavonoids. Different phenolic profiles were found for R1 and R2, mainly ascribed to different malt/hop/recipe used for the beer. High to very high level of hesperidin were found in the radlers, so that a major impact on phenolic antioxidants of the radlers was due to the lemon. Similarly, a major impact of the lemon aromas was found, D-limonene being the dominant peak resulting from the GC-MS analysis of the volatile fraction of the radlers.
Collapse
|
30
|
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit Juice Industry Wastes as a Source of Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6805-6832. [PMID: 35544590 PMCID: PMC9204825 DOI: 10.1021/acs.jafc.2c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 05/15/2023]
Abstract
Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.
Collapse
Affiliation(s)
- Kevser Kandemir
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Elif Piskin
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo-Ourense
Campus, E-32004 Ourense, Spain
- International
Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
| | - Merve Tomas
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
31
|
Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A, Bouras HD, Dizge N. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. NANOMATERIALS 2022; 12:nano12122013. [PMID: 35745352 PMCID: PMC9227472 DOI: 10.3390/nano12122013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Collapse
Affiliation(s)
- Yasmina Khane
- Université de Ghardaia, BP455, Ghardaia 47000, Algeria
- Laboratory of Applied Chemistry (LAC), DGRSDT, Ctr. Univ. Bouchaib Belhadj, Ain Temouchent 46000, Algeria
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Khedidja Benouis
- Laboratory of Process Engineering, Materials and Environment, Department of Energy and Process Engineering, Faculty of Technology, University of Sidi Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Fares Fenniche
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Sofiane Khane
- Department of Energy and Process Engineering, Faculty of Technology, University of Djillali Liabes, Sidi Bel Abbes 22000, Algeria;
| | - Wahiba Chaibi
- Scientific and Technical Research Center in Chemistry and Physics Analysis, Bousmail RP 42415, Algeria;
| | - Abdallah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Hadj Daoud Bouras
- Département de Physique, Ecole Normale Supérieure de Laghouat, RP Rue des Martyrs, Laghouat BP 4033, Algeria;
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey;
| |
Collapse
|
32
|
Shorbagi M, Fayek NM, Shao P, Farag MA. Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Qiu Y, Yang J, Ma L, Song M, Liu G. Limonin Isolated From Pomelo Seed Antagonizes Aβ25-35-Mediated Neuron Injury via PI3K/AKT Signaling Pathway by Regulating Cell Apoptosis. Front Nutr 2022; 9:879028. [PMID: 35634407 PMCID: PMC9133815 DOI: 10.3389/fnut.2022.879028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Pomelo seed as a by-product from pomelo consumption is rich in bioactive compounds, however, a huge volume of pomelo seed was disposed as wastes, the comprehensive utilization of pomelo seed could not only generate valued-added products/ingredients, but also decrease the environmental pollution. In this study, the main active substance limonin in pomelo seed was considered as a high-value bioactive compound. The purification of limonin from pomelo seed was investigated, and the neuroprotective and mechanism were characterized. The UPLC-MS/MS results indicated that 29 compounds in pomelo seed were identified, including 14 flavonoids, 3 limonids, 9 phenols and 3 coumarins. Moreover, high purity of limonin was obtained by crystallization and preparative-HPLC. Furthermore, limonin pretreatment can antagonize the cell damage mediated by Aβ25-35 in a concentration-dependent relationship. The regulation of Bax/Bcl-2, expression of caspase-3 protein and the activation of PI3K/Akt signaling pathway were observed in the cells pretreated with limonin. Treatment of PC12 cells with PI3K inhibitor LY294002 weakened the protective effect of limonin. These results indicated that limonin prevented Aβ25-35-induced neurotoxicity by activating PI3K/Akt, and further inhibiting caspase-3 and up-regulating Bcl-2. This study enables comprehensive utilization of pomelo seed as by-product and offers a theoretical principle for a waste-to-wealth solution, such as potential health benefits of food ingredient and drug.
Collapse
Affiliation(s)
- Yuanxin Qiu
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
| | - Jingxian Yang
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
- Guangdong Meizhou Vocational and Technical College, Meizhou, China
| | - Lukai Ma
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Goh RMV, Pua A, Luro F, Ee KH, Huang Y, Marchi E, Liu SQ, Lassabliere B, Yu B. Distinguishing citrus varieties based on genetic and compositional analyses. PLoS One 2022; 17:e0267007. [PMID: 35436309 PMCID: PMC9015143 DOI: 10.1371/journal.pone.0267007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Simple sequence repeats (SSR) markers and secondary metabolite composition were used in combination to study seven varieties of citrus for the first time. With reference to established accessions of citrus, two of the varieties (Chanh Giay and Ma Nao Pan) were predicted to be Mexican key limes, while three were mandarin hybrids (Nagpur, Pontianak and Dalandan) and the remaining two (Qicheng and Mosambi) were related to the sweet orange. Notably, Dalandan was genetically more like a mandarin despite often referred to as an orange locally, whereas Mosambi was more likely to be a sweet orange hybrid although it has also been called a sweet lime due to its green peel and small size. Several key secondary metabolites such as polymethoxyflavones (sinensetin, tangeretin etc.), furanocoumarins (bergapten, citropten etc.) and volatiles (citronellol, α-sinensal etc.) were identified to be potential biomarkers for separation of citrus species. However, despite having similar genetic profiles, variations in the volatile profile of the two limes were observed; similarly, there were differences in the secondary metabolite profiles of the three mandarin hybrids despite having a common ancestral parent, highlighting the usefulness of genetic and compositional analyses in combination for revealing both origins and flavour profiles especially in citrus hybrids. This knowledge would be crucial for variety screening and selection for use in flavour or fragrance creation and application.
Collapse
Affiliation(s)
- Rui Min Vivian Goh
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Aileen Pua
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Mane SEA PTE LTD, Singapore, Singapore
| | - Francois Luro
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Univ Montpellier, San Giuliano, France
| | | | - Yunle Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Mane SEA PTE LTD, Singapore, Singapore
| | - Elodie Marchi
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Univ Montpellier, San Giuliano, France
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Singapore, Singapore
| |
Collapse
|
35
|
Efficient Detection of Limonoid From Citrus Seeds by Handheld NIR: Compared with Benchtop NIR. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Nicholson JM, Millham AB, Bucknam AR, Markham LE, Sailors XI, Micalizio GC. General Enantioselective and Stereochemically Divergent Four-Stage Approach to Fused Tetracyclic Terpenoid Systems. J Org Chem 2022; 87:3352-3362. [PMID: 35175755 PMCID: PMC9438405 DOI: 10.1021/acs.joc.1c02979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tetracyclic terpenoid-derived natural products are a broad class of medically relevant agents that include well-known steroid hormones and related structures, as well as more synthetically challenging congeners such as limonoids, cardenolides, lanostanes, and cucurbitanes, among others. These structurally related compound classes present synthetically disparate challenges based, in part, on the position and stereochemistry of the numerous quaternary carbon centers that are common to their tetracyclic skeletons. While de novo syntheses of such targets have been a topic of great interest for over 50 years, semisynthesis is often how synthetic variants of these natural products are explored as biologically relevant materials and how such agents are further matured as therapeutics. Here, focus was directed at establishing an efficient, stereoselective, and molecularly flexible de novo synthetic approach that could offer what semisynthetic approaches do not. In short, a unified strategy to access common molecular features of these natural product families is described that proceeds in four stages: (1) conversion of epichlorohydrin to stereodefined enynes, (2) metallacycle-mediated annulative cross-coupling to generate highly substituted hydrindanes, (3) tetracycle formation by stereoselective forging of the C9-C10 bond, and (4) group-selective oxidative rearrangement that repositions a quaternary center from C9 to C10. These studies have defined the structural features required for highly stereoselective C9-C10 bond formation and document the generality of this four-stage synthetic strategy to access a range of unique stereodefined systems, many of which bear stereochemistry/substitution/functionality not readily accessible from semisynthesis.
Collapse
Affiliation(s)
- Joshua M. Nicholson
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Adam B. Millham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Andrea R. Bucknam
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Lauren E. Markham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Xenia Ivanna Sailors
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
37
|
Antiviral Plants from Marajó Island, Brazilian Amazon: A Narrative Review. Molecules 2022; 27:molecules27051542. [PMID: 35268642 PMCID: PMC8911695 DOI: 10.3390/molecules27051542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Diseases caused by viruses are a global threat, resulting in serious medical and social problems for humanity. They are the main contributors to many minor and major outbreaks, epidemics, and pandemics worldwide. Over the years, medicinal plants have been used as a complementary treatment in a range of diseases. In this sense, this review addresses promising antiviral plants from Marajó island, a part of the Amazon region, which is known to present a very wide biodiversity of medicinal plants. The present review has been limited to articles and abstracts available in Scopus, Web of Science, Science Direct, Scielo, PubMed, and Google Scholar, as well as the patent offices in Brazil (INPI), United States (USPTO), Europe (EPO) and World Intellectual Property Organization (WIPO). As a result, some plants from Marajó island were reported to have actions against HIV-1,2, HSV-1,2, SARS-CoV-2, HAV and HBV, Poliovirus, and influenza. Our major conclusion is that plants of the Marajó region show promising perspectives regarding pharmacological potential in combatting future viral diseases.
Collapse
|
38
|
Hanada K, Sakai S, Kumagai K. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT. Int J Mol Sci 2022; 23:ijms23042098. [PMID: 35216212 PMCID: PMC8875512 DOI: 10.3390/ijms23042098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Quality Assurance, Radiation Safety and Information Management, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
- Correspondence:
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| |
Collapse
|
39
|
Ultrasound-Assisted Extraction, Chemical Characterization, and Impact on Cell Viability of Food Wastes Derived from Southern Italy Autochthonous Citrus Fruits. Antioxidants (Basel) 2022; 11:antiox11020285. [PMID: 35204168 PMCID: PMC8868432 DOI: 10.3390/antiox11020285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/22/2023] Open
Abstract
Citrus fruits are one of the principal fruits used to produce juices. Over the years, these fruits have been recognized as new health-promoting agents. In this work, food wastes derived from autochthonous citrus fruits of Southern Italy, named Limone di Rocca Imperiale, Arancia Rossa Moro, and Arancia Bionda Tardivo from Trebisacce, were analyzed. After fresh-squeezing juice, peel and pomace were employed to obtain six different extracts using an ultrasound-assisted method in a hydroalcoholic solvent. The extracts were analyzed in terms of qualitative composition, antioxidant properties, and antiproliferative activity on MCF-7, MDA-MB-231, and BJ-hTERT cell lines. GC-MS and LC-ESI-MS analyses showed different compounds: of note, limonin-hexoside, neodiosmin, obacunone glucoside, and diacetyl nomilinic acid glucoside have been identified as limonoid structures present in all the samples, in addition to different polyphenols including naringenin-glucoside, hesperetin-O-hexoside-O-rhamnoside-O-glucoside, diferuloyl-glucaric acid ester, chlorogenic acid, and the presence of fatty acids such as palmitic, myristic, and linoleic acids. These extracts were able to exert antioxidant activity as demonstrated by DPPH and ABTS assays and, although at higher doses, to reduce the cell viability of different solid tumor cell lines, as shown in MTT assays.
Collapse
|
40
|
Azeem M, Mustafa G, Mahrosh HS. Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies. Int J Immunopathol Pharmacol 2022; 36:3946320221142793. [PMID: 36442514 PMCID: PMC9716588 DOI: 10.1177/03946320221142793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Medicinal herbs are being investigated for medicationhg development against SARS-CoV-2 as a rich source of bioactive chemicals. One of the finest approaches for finding therapeutically effective drug molecules in real time is virtual screening scheme such as molecular docking in conjunction with molecular dynamics (MD) simulation. These virtual techniques provide an ample opportunity for the screening of plausible inhibitors of SARS-CoV-2 different target proteins from a comprehensive and extensive phytochemical library. The study was designed to identify potential phytochemicals by virtual screening against different receptor proteins. METHODS In the current study, a library of plant secondary metabolites was created by manually curating 120 phytochemicals known to have antimicrobial as well as antiviral properties. In the current study, different potential phytochemicals were identified by virtual screening against various selected receptor proteins (i.e., viral main proteases, RNA-dependent RNA polymerase (RdRp), ADP ribose phosphatase, nonstructural proteins NSP7, NSP8, and NSP9) which are key proteins responsible for transcription, replication and maturation of SARS-CoV-2 in the host. Top three phytochemicals were selected against each viral receptor protein based on their best S-scores, RMSD values, molecular interactions, binding patterns and drug-likeness properties. RESULTS The results of molecular docking study revealed that phytochemicals (i.e., baicalin, betaxanthin, epigallocatechin, fomecin A, gallic acid, hortensin, ichangin, kaempferol, limonoic acid, myricetin hexaacetat, pedalitin, quercetin, quercitrin, and silvestrol) have strong antiviral potential against SARS-CoV-2. Additionally, the reported preeminent reliable phytochemicals also revealed toxicity by no means during the evaluation through ADMET profiling. Moreover, the MD simulation study also exhibited thermal stability and stable binding affinity of the pedalitin with SARS-CoV-2 RdRp and SARS-CoV-2 main protease which suggests appreciable efficacy of the lead optimization. CONCLUSION The biological activity and pharmacologically distinguishing characteristics of these lead compounds also satisfied as repurposing antiviral drug contenders and are worth substantial evaluation in the biological laboratory for the recommendation of being plausible antiviral drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiza S Mahrosh
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
41
|
Recent advances in valorization of citrus fruits processing waste: a way forward towards environmental sustainability. Food Sci Biotechnol 2021; 30:1601-1626. [PMID: 34925937 DOI: 10.1007/s10068-021-00984-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are well known for their medicinal and therapeutic potential due to the presence of immense bioactive components. With the enormous consumption of citrus juice, citrus processing industries are focused on the production of juice but at the same time, a large amount of waste is produced mainly in the form of peel, seeds, pomace, and wastewater. This waste left after processing leads to environmental pollution and health-related hazards. However, it could be exploited for the recovery of essential oils, pectin, nutraceuticals, macro and micronutrients, ethanol, and biofuel generation. In view of the importance and health benefits of bioactive compounds found in citrus waste, the present review summarizes the recent work done on the citrus fruit waste valorization for recovery of value-added compounds leading to zero wastage. Therefore, instead of calling it waste, these could be a good resource of significant valuable components, in this way encouraging the zero-waste theory.
Collapse
|
42
|
Antioxidant Activity of Citrus Limonoids and Investigation of Their Virucidal Potential against SARS-CoV-2 in Cellular Models. Antioxidants (Basel) 2021; 10:antiox10111794. [PMID: 34829666 PMCID: PMC8615075 DOI: 10.3390/antiox10111794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic represents an unprecedented global emergency. Despite all efforts, COVID-19 remains a threat to public health, due to the complexity of mass vaccination programs, the lack of effective drugs, and the emergence of new variants. A link has recently been found between the risk of developing a severe COVID-19 infection and a high level of oxidative stress. In this context, we have focused our attention on natural compounds with the aim of finding molecules capable of acting through a dual virucidal–antioxidant mechanism. In particular, we studied the potential of grapefruit seed extracts (GSE) and their main components, belonging to the class of limonoids. Using chemical and biological approaches including isolation and purification of GSE, antioxidant and virucidal assays, we have shown that grapefruit seed constituents, belonging to the class of limonoids, are endowed with remarkable virucidal, antioxidant and mitoprotective activity.
Collapse
|
43
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kouba M, Fašmon Durjava M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Manini P, Pizzo F, Dusemund B. Safety and efficacy of a feed additive consisting of an aqueous extract of Citrus limon (L.) Osbeck (lemon extract) for use in all animal species (Nor-Feed SAS). EFSA J 2021; 19:e06893. [PMID: 34765034 PMCID: PMC8573541 DOI: 10.2903/j.efsa.2021.6893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of an aqueous extract of Citrus limon (L.) Osbeck (lemon extract) when used as a sensory additive in feed for all animal species. The FEEDAP Panel concluded that the additive under assessment is safe for all animal species up to the maximum proposed use levels of 1,000 mg/kg complete feed and 250 mg/kg water for drinking. No concerns for consumers were identified following the use of lemon extract up to the highest safe level in feed. The additive should be considered a skin and eye irritant, and a potential corrosive. The use of the extract in animal feed under the proposed conditions was not expected to pose a risk for the environment. Lemon extract was recognised to flavour food. Since its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
Collapse
|
44
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Abdelghffar EA, El-Nashar HAS, Al-Mohammadi AGA, Eldahshan OA. Orange fruit ( Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food Funct 2021; 12:9443-9455. [PMID: 34606555 DOI: 10.1039/d1fo01905h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Cyclophosphamide (CYP) is a chemotherapy drug widely used in the treatment of several types of cancers and autoimmune disorders. Unfortunately, it causes severe side effects on many organs due to its oxidative stress effect. Objective: The present study aims to tentatively identify the phytochemical constituents of orange fruit (Citrus sinensis) peel extract (OFPE) and elucidate the chemopreventive effects of OFPE on CYP drug induced organ toxicity. Methods: The high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS/MS) technique was used to identify the compounds. Thirty-five male rats were divided into five groups (GP; n = 7): GP1: normal control, GP2: OFPE 0.5 only, GP3: CYP-only, GP4: OFPE 0.25 + CYP, and GP5: OFPE 0.5 + CYP. Results: Twenty-nine compounds of polyphenolic nature, mainly flavonoids, anthocyanidins, phenolic acids and limonoids were characterized by HPLC-MS/MS analysis. Among these compounds, naringin, hesperidin, diosmin, rutin, neohesperidin and limonin were the predominant compounds in the examined extract. Serum cellular markers were found to be decreased significantly upon treatment with OFPE (especially high dose). Also, a significant prophylactic effect against liver, kidney, and heart injuries induced by CYP via decreasing inflammation (serum TNF-α, IL-1β & IL-6) and lipid peroxidation (MDA) was also revealed. Also, an increase in antioxidant levels (serum TAO, and cellular GSH & CAT in tissue homogenates) confirmed the protective efficacy of OFPE against CYP toxicity. Conclusions: The present study reveals some chemopreventive properties and beneficial effects of OFPE on CYP-induced organ toxicity via its antioxidant status and immunoregulatory activities.
Collapse
Affiliation(s)
- Eman A Abdelghffar
- Department of Biology, Collage of Science, Taibah University, Saudi Arabia. .,Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| | | | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| |
Collapse
|
46
|
Kumar KA, Sharma M, Dalal V, Singh V, Tomar S, Kumar P. Multifunctional inhibitors of SARS-CoV-2 by MM/PBSA, essential dynamics, and molecular dynamic investigations. J Mol Graph Model 2021; 107:107969. [PMID: 34237666 PMCID: PMC8220440 DOI: 10.1016/j.jmgm.2021.107969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 pandemic demands a novel approach to combat and identify potential therapeutic targets. The SARS-CoV-2 infection causes a hyperimmune response followed by a spectrum of diseases. Limonoids are a class of triterpenoids known to prevent the release of IL-6, IL-15, IL-1α, IL-1β via TNF and are also known to modulate PI3K/Akt/GSK-3β, JNK1/2, MAPKp38, ERK1/2, and PI3K/Akt/mTOR signaling pathways and could help to avoid viral infection, persistence, and pathogenesis. The present study employs a computational approach of virtual screening and molecular dynamic (MD) simulations of such compounds against RNA-dependent RNA polymerase (RdRp), Main protease (Mpro), and Papain-like protease (PLpro) of SARS-CoV-2. MD simulation, Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA), and Essential dynamics revealed that the macromolecule-ligand complexes are stable with very low free energy of binding. Such compounds that could modulate both host responses and inhibit viral machinery could be beneficial in effectively controlling the global pandemic.
Collapse
Affiliation(s)
- K Amith Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
47
|
Giofrè SV, Napoli E, Iraci N, Speciale A, Cimino F, Muscarà C, Molonia MS, Ruberto G, Saija A. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Comput Biol Med 2021; 134:104538. [PMID: 34116362 PMCID: PMC8186839 DOI: 10.1016/j.compbiomed.2021.104538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
The outbreak of COVID-19 disease caused by SARS-CoV-2, along with the lack of targeted medicaments, forced the scientific world to search for new antiviral formulations. In the current emergent situation, drug repurposing of well-known traditional and/or approved drugs could be the most effective strategy. Herein, through computational approaches, we aimed to screen 14 natural compounds from limonoids and terpenoids class for their ability to inhibit the key therapeutic target proteins of SARS-CoV-2. Among these, some limonoids, namely deacetylnomilin, ichangin and nomilin, and the terpenoid β-amyrin provided good interaction energies with SARS-CoV-2 3CL hydrolase (Mpro) in molecular dynamic simulation. Interestingly, deacetylnomilin and ichangin showed direct interaction with the catalytic dyad of the enzyme so supporting their potential role in preventing SARS-CoV-2 replication and growth. On the contrary, despite the good affinity with the spike protein RBD site, all the selected phytochemicals lose contact with the amino acid residues over the course of 120ns-long molecular dynamics simulations therefore suggesting they scarcely can interfere in SARS-CoV-2 binding to the ACE2 receptor. The in silico analyses of docking score and binding energies, along with predicted pharmacokinetic profiles, indicate that these triterpenoids might have potential as inhibitors of SARS-CoV-2 Mpro, recommending further in vitro and in vivo investigations for a complete understanding and confirmation of their inhibitory potential.
Collapse
Affiliation(s)
- Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Nunzio Iraci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonio Speciale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Francesco Cimino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.
| | - Claudia Muscarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Maria Sofia Molonia
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Antonella Saija
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
48
|
Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods 2021; 10:foods10051120. [PMID: 34070065 PMCID: PMC8158112 DOI: 10.3390/foods10051120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Orange peel is the main by-product from orange juice industry. It is a known source of bioactive compounds, mostly phenolic compounds, and it has been widely studied for its healthy activities. Thus, this research focuses on the establishment of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode. For this purpose, a Box–Behnken design of 27 experiments was carried out with four independent factors—ratio ethanol/water (v/v), time (min), amplitude (%), and pulse (%). Quantitative analyses of phenolic compounds were performed and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology (RSM). The extracts obtained in the established conditions were analyzed by High Performance Liquid Chromatography (HPLC) coupled to mass spectrometer detector and 74 polar compounds were identified. The highest phenolic content and antioxidant activity were obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W), and pulse 100%. The established method allows an increment of phenolics recovery up to 60% higher than a conventional extraction. Moreover, the effect of drying on phenolic content was also evaluated.
Collapse
|
49
|
Influence of Citrus Flavor Addition in Brewing Process: Characterization of the Volatile and Non-Volatile Profile to Prevent Frauds and Adulterations. SEPARATIONS 2021. [DOI: 10.3390/separations8020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the last few years, the flavored beer market has increased significantly. In particular, consumers showed a growing interest in citrus-flavored beers. Citrus fruits contain, among other class of compounds, terpenes and terpenoids and oxygenated heterocyclic compounds. The absence of a specific legislation concerning beer flavored production and ingredients reported on the labels makes these beers subject to possible adulterations. Solid phase micro extraction (SPME) followed by gas chromatographic–mass spectrometry (GC-MS) and gas chromatographic-flame ionization detector (GC-FID) analysis of the volatile profile together with the characterization of the oxygen heterocyclic compounds through high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) demonstrated to be a powerful analytical strategy for quality control. In this study, we combined the volatile and non-volatile profiles of “citrus flavored mainstream beers”, in order to evaluate the authenticity and determine markers to prevent food frauds. The changes in the aroma composition of the unflavored types after the addition of peel, or citrus essential oil were also evaluated. The linear retention index (LRI) system was used for both techniques; in particular, its application in liquid chromatography is still limited and represents a novelty. The coupling of the high sensitivity of the HPLC MS/MS method with the LRI system, it has made possible for the first time a reliable identification and an accurate quantification of furocoumarins in citrus-flavored beers.
Collapse
|
50
|
Wang W, Xia Z, Yu S, Tian Z, Yan B, Jiang H, Zhou H. Two New Limonoids from the Fruits of
Melia azedarach
(Meliaceae). Chem Biodivers 2021. [DOI: 10.1002/cbdv.202000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen‐Qi Wang
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
| | - Zhen‐Zhen Xia
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
| | - Shao‐Hua Yu
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
| | - Zhen‐Hua Tian
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
| | - Bin Yan
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
| | - Hai‐Qiang Jiang
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
| | - Hong‐Lei Zhou
- College of Pharmacy Shandong University of Traditional Chinese Medicine Jinan 250355 P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University Ministry of Education Yantai 264005 P. R. China
| |
Collapse
|