1
|
Gonçalves MPMBB, do Prado-Silva L, Sant'Ana AS. Emergent methods for inactivation of Cronobacter sakazakii in foods: A systematic review and meta-analysis. Int J Food Microbiol 2024; 421:110777. [PMID: 38909488 DOI: 10.1016/j.ijfoodmicro.2024.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Cronobacter sakazakii is a potentially pathogenic bacterium that is resistant to osmotic stress and low aw, and capable of persisting in a desiccated state in powdered infant milks. It is widespread in the environment and present in various products. Despite the low incidence of cases, its high mortality rates of 40 to 80 % amongst neonates make it a microorganism of public health interest. This current study performed a comparative assessment between current reduction methods applied for C. sakazakii in various food matrices, indicating tendencies and relevant parameters for process optimization. A systematic review and meta-analysis were conducted, qualitatively identifying the main methods of inactivation and control, and quantitatively evaluating the effect of treatment factors on the reduction response. Hierarchical clustering dendrograms led to conclusions on the efficiency of each treatment. Review of recent research trend identified a focus on the potential use of alternative treatments, with most studies related to non-thermal methods and dairy products. Using random-effects meta-analysis, a summary effect-size of 4-log was estimated; however, thermal methods and treatments on dairy matrices displayed wider dispersions - of τ2 = 8.1, compared with τ2 = 4.5 for vegetal matrices and τ2 = 4.0 for biofilms. Meta-analytical models indicated that factors such as chemical concentration, energy applied, and treatment time had a more significant impact on reduction than the increase in temperature. Non-thermal treatments, synergically associated with heat, and treatments on dairy matrices were found to be the most efficient.
Collapse
Affiliation(s)
| | - Leonardo do Prado-Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil.
| |
Collapse
|
2
|
Hwang HJ, Kim JW, Choi HJ, Choi JB, Chung MS. Effect of environmental water activity on microbial inactivation by intense pulsed light (IPL). Food Sci Biotechnol 2024; 33:485-490. [PMID: 38222922 PMCID: PMC10786795 DOI: 10.1007/s10068-023-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 01/16/2024] Open
Abstract
In this study, the effect of environmental aw on microbial inactivation by intense pulsed light (IPL) was investigated. Three different microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast) were used as test organisms. The effect of environmental aw was assessed by irradiating each microbial suspension in sodium chloride solutions with different environmental aw levels (0.99-0.80). As the aw decreased, the aggregation of intracellular material of cell interior was changed and the cell number was increased. However, there was no significant difference in microbial reduction according to the aw after the 0.23-3.05 J/cm2 of IPL treatment. It was confirmed that yeast had the highest resistance to IPL because of the differences in cell structure and cell wall components between yeast and bacteria. Additional research is needed to clearly understand the inactivation mechanism according to the type of microorganism by controlling aw using various solutes.
Collapse
Affiliation(s)
- Hee-Jeong Hwang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760 South Korea
| | - Jee-Woo Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760 South Korea
| | - Hye-Jae Choi
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760 South Korea
| | - Jun-Bong Choi
- Graduate School of Hotel & Tourism, The University of Suwon, Gyeonggi, 18323 South Korea
| | - Myong-Soo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760 South Korea
| |
Collapse
|
3
|
Liang J, Huang TY, Li X, Gao Y. Germicidal effect of intense pulsed light on Pseudomonas aeruginosa in food processing. Front Microbiol 2023; 14:1247364. [PMID: 37692381 PMCID: PMC10484712 DOI: 10.3389/fmicb.2023.1247364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Pseudomonas aeruginosa (P. aeruginosa) can cause serious infections in many parts of the body and is also an underestimated foodborne pathogen. Intense pulsed light sterilization is recognized for its high sterilization efficiency, flexible and safe operation and ease of installation on production lines, which makes up for the shortcomings of several other physical sterilization technologies. Methods This experiment studied the killing efficiency of different capacitances (650 μF, 470 μF, and 220 μF) of intense pulsed light on foodborne pathogenic microorganisms P. aeruginosa in the models of liquid food models, 96-well cell plates, and polycarbonate membrane models at room temperature (25°C) and refrigerated (4°C) environments to provide data to support the application of IPL sterilization devices in food processing. Results The IPL was very effective in killing P. aeruginosa in the planktonic state as well as in the early and mature biofilm states, meeting target kill rates of 100%, 99.99%, and 94.33% for a given number of exposures. The biofilms formed in the polycarbonate membrane model and the 96-well plate model were more resistant to killing compared to the planktonic state. To achieve the same bactericidal effect, the number of flashes increased with decreasing capacitance. Conclusion The bactericidal effect of IPL on P. aeruginosa was significantly influenced by the state of the bacterium. The larger the capacitance the higher the number of pulses and the better the sterilization effect on P. aeruginosa.
Collapse
Affiliation(s)
- Jinglong Liang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Yan Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
4
|
Bharti B, Li H, Ren Z, Zhu R, Zhu Z. Recent advances in sterilization and disinfection technology: A review. CHEMOSPHERE 2022; 308:136404. [PMID: 36165840 DOI: 10.1016/j.chemosphere.2022.136404] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Sterilization and disinfection of pollutants and microorganisms have been extensively studied in order to address the problem of environmental contamination, which is a crucial issue for public health and economics. Various form of hazardous materials/pollutants including microorganisms and harmful gases are released into the environment that enter into the human body either through inhalation, adsorption or ingestion. The human death rate rises due to various respiratory ailments, strokes, lung cancer, and heart disorders related with these pollutants. Hence, it is essential to control the environmental pollution by applying economical and effective sterilization and disinfections techniques to save life. In general, numerous forms of traditional physical and chemical sterilization and disinfection treatments, such as dry and moist heat, radiation, filtration, ethylene oxide, ozone, hydrogen peroxide, etc. are known along with advanced techniques. In this review we summarized both advanced and conventional techniques of sterilization and disinfection along with their uses and mode of action. This review gives the knowledge about the advantages, disadvantages of both the methods comparatively. Despite, the effective solution given by the advanced sterilization and disinfection technology, joint technologies of sterilization and disinfection has proven to be more effective innovation to protect the indoor and outdoor environments.
Collapse
Affiliation(s)
- Bandna Bharti
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Hanliang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zhenye Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Park SK, Lee DJ, Baik OD. Factors Influencing Bactericidal Efficacy using Atmospheric Cold Plasma (ACP) against Escherichia coli in Wheat Flour. Food Res Int 2022; 162:111985. [DOI: 10.1016/j.foodres.2022.111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022]
|
6
|
Zhang Y, Pandiselvam R, Liu Y. Understanding the factors affecting the surface chemical composition of dairy powders: a systematic review. Crit Rev Food Sci Nutr 2022; 64:241-255. [PMID: 35916834 DOI: 10.1080/10408398.2022.2105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dairy powder, with abundant chemical components such as protein, fat, and lactose possessing diverse physical and chemical structures, can exhibit a surface composition distinct from its bulk content during the conversion of liquid milk into dry powder. Surface chemical composition is a significant parameter in the dairy industry, as it is directly associated with the techno-functional properties of dairy powder products. The current work provides an overview of the factors influencing the surface composition of dairy powders such as the bulk composition of raw milk (animal source and formulation), liquid dairy processing (homogenization, thermal treatment, and evaporation), the drying process (drying methods as well as operating conditions during the most commonly used spray drying), and storage conditions (temperature, relative humidity, and duration). The underlying mechanisms involved in the variations of particle surface composition include the mechanical properties of emulsion, milk fat globules redistribution caused by mechanical forces, adsorption competition and interactions of ingredients at the water/air interface, dehydration-induced alterations in particle structure, corresponding solid/solutes segregation differentiation during spray drying, and lactose crystallization-induced increase in surface fat during storage. Additionally, future research is suggested to explore the effects of emerging processing technologies on the surface composition modification of dairy powders.
Collapse
Affiliation(s)
- Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Lee J, Park SK, Korber D, Baik OD. Optimization of Atmospheric Cold Plasma Treatment with Different Gases for Reduction of Escherichia coli in Wheat Flour. J Microbiol Biotechnol 2022; 32:768-775. [PMID: 35484965 PMCID: PMC9628904 DOI: 10.4014/jmb.2203.03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
In this study we aimed to derive the response surface models for Escherichia coli reduction in wheat flour using atmospheric cold plasma (ACP) with three types of gas. The jet-type atmospheric cold plasma wand system was used with a 30 W power supply, and three gases (argon, air, and nitrogen) were applied as the treatment gas. The operating parameters for process optimization considered were wheat flour mass (g), treatment time (min), and gas flow rate (L/min). The wheat flour samples were artificially contaminated with E. coli at a concentration of 9.25 ± 0.74 log CFU/g. ACP treatments with argon, air, and nitrogen resulted in 2.66, 4.21, and 5.55 log CFU/g reduction of E. coli, respectively, in wheat flour under optimized conditions. The optimized conditions to reduce E. coli were 0.5 g of the flour mass, 15 min of treatment time, and 0.20 L/min of nitrogen gas flow rate, and the predicted highest reduction level from modeling was 5.63 log CFU/g.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Seul-Ki Park
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Darren Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Oon-Doo Baik
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
8
|
Salehi F. Application of pulsed light technology for fruits and vegetables disinfection: A review. J Appl Microbiol 2021; 132:2521-2530. [PMID: 34839567 DOI: 10.1111/jam.15389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
Non-thermal technologies can maintain fruit and vegetable products quality better than traditional thermal processing. Pulsed light (PL) is a non-thermal method for microbial inactivation (vegetative cells and spores) in fruits and vegetables. The PL treatment involves the application of intense and short-duration pulses of broad spectrum wavelengths ranging from UV to near-infrared (100-1100 nm). This review summarized application of PL technology to control microbial contamination and increasing shelf-life of some fruits and vegetables including apple, blueberries, grape, orange, strawberries, carrot, lettuce, spinach, and tomato. The microbial inactivation in very short treatment times, low energy used by this system, flexibility for solid or liquid samples, few residual compounds and no synthetic chemicals that cause environmental pollution or harm humans, is benefits of PL technique. The efficiency of PL disinfection is closely associated with the input voltage, fluence (energy dose), composition of the emitted light spectrum, number of lamps, the distance between samples and light source, and frequency and number of applied pulses. The PL treatments control pathogenic and spoilage microorganisms, so it facilitates the growth and development of the starter microorganisms affecting product quality.
Collapse
|
9
|
A New Insight into the Bactericidal Mechanism of 405 nm Blue Light-Emitting-Diode against Dairy Sourced Cronobacter sakazakii. Foods 2021; 10:foods10091996. [PMID: 34574108 PMCID: PMC8470084 DOI: 10.3390/foods10091996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
(1) Background: Limited evidence exists addressing the action of antimicrobial visible light against Cronobacter sakazakii. Here, we investigated the antimicrobial effects of blue-LED (light emitting diode) at 405 nm against two persistent dairy environment sourced strains of C. sakazakii (ES191 and AGRFS2961). (2) Methods: Beside of investigating cell survival by counts, the phenotypic characteristics of the strains were compared with a reference strain (BAA894) by evaluating the metabolic rate, cell membrane permeability, and ROS level. (3) Results: The two environment isolates (ES191 and AGRFS2961) were more metabolic active and ES191 showed dramatic permeability change of the outer membrane. Notably, we detected varied impacts of different ROS scavengers (catalase > thiourea > superoxide dismutase) during light application, suggesting that hydrogen peroxide (H2O2), the reducing target of catalase, has a key role during blue light inactivation. This finding was further strengthened, following the observation that the combined effect of external H2O2 (sublethal concentration) and 405 nm LED, achieved an additional 2–4 log CFU reduction for both stationary phase and biofilm cells. (4) Conclusions: H2O2 could be used in combination with blue light to enhance bactericidal efficacy and form the basis of a new hurdle technology for controlling C. sakazakii in dairy processing plants.
Collapse
|
10
|
Kang MW, Chen D, Ruan R, Vickers ZM. The effect of intense pulsed light on the sensory properties of nonfat dry milk. J Food Sci 2021; 86:4119-4133. [PMID: 34383322 DOI: 10.1111/1750-3841.15865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Our objectives were to examine (1) how intense pulsed light (IPL) processing parameters (exposure time and initial temperature) affected aroma, flavor, and mouthfeel of nonfat dry milk, (2) which levels of each parameter produced aroma, flavor, and mouthfeel changes from an untreated control sample, and (3) whether minimal or intense processing conditions produced a noticeable appearance change from the control. Four exposure times (1, 2, 3, and 4 passes through the IPL chamber) and three initial temperatures (25, 30, and 35℃) were studied with untreated milk powder as the control. The samples were prepared as both milk powder and reconstituted milk for sensory evaluation. Using standard evaluating protocols, trained descriptive analysis panelists rated the aroma, flavor, and mouthfeel of these samples. Panelists compared the appearance of the IPL-treated samples that underwent a minimal or intense processing condition to the control by using a two-out-of-five difference test. Increasing the exposure time led to increased intensities of overall flavor, burnt flavor, and umami taste in both milk powder and reconstituted milk, while increasing temperature increased animal and sulfur aromas in reconstituted milk only. Compared to the control, all levels of exposure time at any initial temperature resulted in increased aroma and flavor including cardboard aroma, sulfur aroma, and brothy flavor in both milk powder and reconstituted milk. Only the 4-pass exposure at the initial temperature of 25℃ changed the appearance of milk powder. However, the appearance change was not noticeable in reconstituted milk. PRACTICAL APPLICATION: The standard evaluation protocols and lexicons provide useful tools for research on milk powder. Additionally, the understanding of critical factors impacting sensory properties will contribute to a better implementation of this decontamination technology.
Collapse
Affiliation(s)
- Myung-Woo Kang
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Dongjie Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Roger Ruan
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zata M Vickers
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
11
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
12
|
Dittrich AJ, Ludewig M, Rodewald S, Braun PG, Wiacek C. Pulsed-Light Treatment of Dried Parsley: Reduction of Artificially Inoculated Salmonella and Impact in Given Quality Parameters. J Food Prot 2021; 84:1421-1432. [PMID: 33793779 DOI: 10.4315/jfp-20-469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/27/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Dried parsley is regularly contaminated with foodborne pathogens, especially Salmonella. Application of contaminated ingredients in ready-to-eat dishes without further thermal treatment represents a considerable health risk. This study examined the suitability of pulsed light as a novel decontamination method of Salmonella in dried parsley, along with the impact on selected quality parameters (chlorophyll content, phenolic compounds, color, and odor) and product characters (temperature and water activity value). Samples were inoculated with one of three Salmonella isolates (Salmonella Cerro or one of two isolates of Salmonella Agona) at two contamination levels of 103 or 107 CFU/g and treated under various experimental factors, including distance to the light source and exposure time, resulting in fluences in the range of 1.8 to 19.9 J/cm2. At selected parameter settings (9.8 and 13.3 J/cm2), the effect of prolonged storage time (48 h) of inoculated samples before treatment on the reduction of Salmonella Cerro was examined. Samples treated at the same fluences were also stored for 35 days at 22 to 25°C. The three Salmonella isolates were significantly reduced by pulsed light (P < 0.05). Reduction factors ranged between 0.3 and 5.2 log CFU with varying sensitivities of the isolates. In general, increasing fluences (depending on exposure time and distance to the light source) resulted in increasing reductions of Salmonella. However, on closer examination, exposure time and distance to the light source had a varying influence on the reduction of the different Salmonella isolates. Decreasing reduction factors were observed by increasing the contamination level and prolonging the storage time of inoculated samples before treatment. No undesirable changes in quality parameters and sensory analysis were detectable at fluences of 9.8 and 13.3 J/cm2, indicating that pulsed light may be a suitable alternative for the decontamination of dried parsley. HIGHLIGHTS
Collapse
Affiliation(s)
- Anna J Dittrich
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Fachbereich Lebensmittelsicherheit, Freiimfelder Str. 68, 06112 Halle (Saale), Germany
| | - Martina Ludewig
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany.,Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Steffen Rodewald
- Institute of Pharmacy-Pharmaceutical Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Peggy G Braun
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Claudia Wiacek
- Institute of Food Hygiene, Leipzig University, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Franco-Vega A, Reyes-Jurado F, González-Albarrán D, Ramírez-Corona N, Palou E, López-Malo A. Developments and Advances of High Intensity Pulsed Light and its Combination with Other Treatments for Microbial Inactivation in Food Products. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09280-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Kang JH, Bai J, Min SC. Inactivation of Indigenous Microorganisms and Salmonella in Korean Rice Cakes by In-Package Cold Plasma Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073360. [PMID: 33805200 PMCID: PMC8036629 DOI: 10.3390/ijerph18073360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The antimicrobial effects of in-package cold plasma (CP) treatment on Korean rice cakes (KRC) were evaluated. The CP treatment (25 kV) inactivated indigenous mesophilic aerobic bacteria by 0.8–1.0 log CFU/g, irrespective of the position of KRC in the package. The addition of a shaking step during CP treatment increased the reduction in microbes by ~1 log CFU/g. The microbial inactivation efficiency increased significantly when the treatment time increased from 1 to 3 min. Microbial inactivation activity was highest for packages containing eight rice cakes. The optimized CP treatment achieved a 2.0 ± 0.1 log CFU/g reduction in indigenous bacteria. In addition, the optimum CP treatment inactivated indigenous yeast and molds and Salmonella in KRC by 1.7 ± 0.1 log CFU/g and 3.9 ± 0.3 log CFU/g, respectively. No significant changes in color and firmness were observed, and the surface temperature of KRC did not exceed 22 °C after CP treatment. Moreover, CP treatment damaged the cellular membrane of Salmonella, mainly by inducing lipid peroxidation. This study demonstrates the potential use of in-package CP treatment for the non-thermal microbial inactivation of KRC.
Collapse
|
15
|
Mao Q, Liu J, Wiertzema JR, Chen D, Chen P, Baumler DJ, Ruan R, Chen C. Identification of Quinone Degradation as a Triggering Event for Intense Pulsed Light-Elicited Metabolic Changes in Escherichia coli by Metabolomic Fingerprinting. Metabolites 2021; 11:metabo11020102. [PMID: 33578995 PMCID: PMC7916761 DOI: 10.3390/metabo11020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Intense pulsed light (IPL) is becoming a new technical platform for disinfecting food against pathogenic bacteria. Metabolic changes are deemed to occur in bacteria as either the causes or the consequences of IPL-elicited bactericidal and bacteriostatic effects. However, little is known about the influences of IPL on bacterial metabolome. In this study, the IPL treatment was applied to E. coli K-12 for 0–20 s, leading to time- and dose-dependent reductions in colony-forming units (CFU) and morphological changes. Both membrane lipids and cytoplasmic metabolites of the control and IPL-treated E. coli were examined by the liquid chromatography-mass spectrometry (LC-MS)-based metabolomic fingerprinting. The results from multivariate modeling and marker identification indicate that the metabolites in electron transport chain (ETC), redox response, glycolysis, amino acid, and nucleotide metabolism were selectively affected by the IPL treatments. The time courses and scales of these metabolic changes, together with the biochemical connections among them, revealed a cascade of events that might be initiated by the degradation of quinone electron carriers and then followed by oxidative stress, disruption of intermediary metabolism, nucleotide degradation, and morphological changes. Therefore, the degradations of membrane quinones, especially the rapid depletion of menaquinone-8 (MK-8), can be considered as a triggering event in the IPL-elicited metabolic changes in E. coli.
Collapse
Affiliation(s)
- Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Juer Liu
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Justin R. Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Dongjie Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Paul Chen
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., Saint Paul, MN 55108, USA; (P.C.); (R.R.)
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., Saint Paul, MN 55108, USA; (P.C.); (R.R.)
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA; (Q.M.); (J.L.); (J.R.W.); (D.C.); (D.J.B.)
- Correspondence: ; Tel.: +1-612-624-7704; Fax: +1-612-625-5272
| |
Collapse
|
16
|
Effects of radio frequency on physicochemical properties of powdered infant formula milk as compared with conventional thermal treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Chen D, Mosher W, Wiertzema J, Peng P, Min M, Cheng Y, An J, Ma Y, Fan X, Niemira BA, Baumler DJ, Chen C, Chen P, Ruan Chen R. Effects of intense pulsed light and gamma irradiation on Bacillus cereus spores in mesquite pod flour. Food Chem 2020; 344:128675. [PMID: 33277126 DOI: 10.1016/j.foodchem.2020.128675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023]
Abstract
This study was conducted to evaluate the inactivation of Bacillus cereus spore in mesquite flour with intense pulsed light (IPL) and gamma radiation. The physical, chemical, and toxicity of treated mesquite flour were also investigated. The results showed that up to 3.51 log10CFU/g B. cereus spore inactivation was achieved with 8 kGy of gamma radiation, and up to 1.69 log10CFU/g reductions could be achieved after 28s of catalytic IPL exposure. Although chemometric analysis showed 9-hydroxy-10,12-octadecadienoic acid was slightly increased after a 28s-catalytic IPL treatment, the concentration is within the acceptable range. No significant increase in acetic or propionic acids (typical off-flavor volatile compounds) was observed after either treatment. For cytotoxicity, the Caco-2 cell viability analysis revealed that these two technologies did not induce significant cytotoxicity to the treated mesquite flour. Overall, these two technologies exhibit strong potential for the decontamination of B. cereus in mesquite flour.
Collapse
Affiliation(s)
- Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Wes Mosher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Justin Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Peng Peng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Min Min
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Jun An
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Xuetong Fan
- USDA ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | | | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
18
|
Zhang Y, Xie Y, Tang J, Wang S, Wang L, Zhu G, Li X, Liu Y. Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Chen D, Wiertzema JR, Peng P, Cheng Y, Wang Y, Liu J, Ma Y, Mosher W, Kang M, Min M, Chen P, Baumler DJ, Chen C, Lee L, Vickers Z, Feirtag J, Ruan R. Catalytic intense pulse light inactivation of Cronobacter sakazakii and other pathogens in non-fat dry milk and wheat flour. Food Chem 2020; 332:127420. [PMID: 32622191 DOI: 10.1016/j.foodchem.2020.127420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
The outbreaks of Cronobacter sakazakii, Salmonella spp, and Bacillus cereus in powdered foods have been increasing in worldwide. However, an effective method to pasteurize powdered foods before consumption remains lacking. A prototype Intense Pulsed Light (IPL) system was developed to disinfect powdered foods under different IPL and environmental conditions. Synergistic effect of IPL and TiO2 photocatalysis on microbial inactivation was studied. The results show that high energy intensity of each pulse, high peak intensity, and short pulsed duration contributed to a high microbe inactivation. With TiO2 photocatalysis, one additional log10 reduction was achieved, bringing the total log reduction to 4.71 ± 0.07 (C. sakazakii), 3.49 ± 0.01 (E. faecium), and 2.52 ± 0.10 (B. cereus) in non-fat dry milk, and 5.42 ± 0.10 (C. sakazakii), 4.95 ± 0.24 (E. faecium), 2.80 ± 0.23 (B. cereus) in wheat flour. IPL treatment combined with the TiO2 photocatalysis exhibits a strong potential to reduce the energy consumption in improving the safety of powdered foods.
Collapse
Affiliation(s)
- Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Justin R Wiertzema
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Peng Peng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Yunpu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; National Key Laboratory of Food Science, Nanchang University, Jiangxi, China
| | - Juer Liu
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Wes Mosher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Myungwoo Kang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Min Min
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | | | - Zata Vickers
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Joellen Feirtag
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
20
|
Xie J, Hung YC. Efficacy of pulsed-ultraviolet light for inactivation of Salmonella spp on black peppercorns. J Food Sci 2020; 85:755-761. [PMID: 32078747 DOI: 10.1111/1750-3841.15059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/18/2019] [Accepted: 01/01/2020] [Indexed: 11/30/2022]
Abstract
Efficacy of pulsed ultraviolet (PUV) to inactivate Salmonella pure culture and on inoculated black peppercorns was evaluated. Black peppercorns inoculated with Salmonella were subjected to PUV treatment (0.28 J/cm2 /pulse) using two different sample holders, on a traditional flat surface or on a wave-shaped surface to increase surface exposure of peppercorns to PUV through light reflection. The temperature change on black peppercorns surface during treatment was recorded, and the effect of cooling period during PUV treatment was studied. PUV treatment of two pulses reduced Salmonella population by more than 6 log CFU/mL in phosphate-buffered saline. Continuous PUV treatment (80 pulses on each side) using a wave-shaped surface was able to reduce Salmonella by 1.9 log CFU/g; same treatment using flat surface reduced Salmonella by less than 1.5 log CFU/g. The temperature on peppercorns surface increased to 65 °C after 80 pulses continuous PUV treatment. Adding 280 s cooling time after every 20 pulses reduced the temperature from 65 to 40 °C and achieved similar Salmonella inactivation (P > 0.05) as the continuous PUV treatment. Results from this study showcase the effectiveness of PUV treatment for reducing Salmonella level on black peppercorns surface and provided insights on the potential implementation of PUV treatment at the industrial level. PRACTICAL APPLICATION: Results from this study showcased the effectiveness of PUV treatment for reducing Salmonella level on black peppercorns surface and provided insights on the potential implementation of PUV treatment at the industrial level.
Collapse
Affiliation(s)
- Jing Xie
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA
| | - Yen-Con Hung
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA
| |
Collapse
|
21
|
Zhu Y, Li C, Cui H, Lin L. Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157:H7 and its application in carrot juice. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|
23
|
Buyanova I, Altukhov I, Tsuglenok N, Krieger O, Kashirskih E. Pulsed infrared radiation for drying raw materials of plant and animal origin. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-1-151-160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paper describes physical characteristics of drying animal- and plant-based raw materials with pulsed infrared emitters. Furthermore, it discusses how to select and use infrared emitters to produce high quality products with a long shelf-life. Using an experimental facility, we identified basic patterns of changes in the heat flux density. We also analysed the drying thermograms and assessed the influence of process factors on the removal of moisture from raw materials and the preservation of biologically active substances in dried and concentrated products. We determined specific kinetics of drying in different modes of power supply and selected the most efficient pulsed cera- mic emitters. These emitters had a high rate of heat transfer and an ability to accurately target molecular bonds, thus reducing the drying time and energy costs. Mathematical modelling enabled us to obtain specific values of process parameters for pulsed infrared drying of plant materials. The heating time constant was calculated for root and tuber vegetables, depending on their moisture content and size. The study showed that root and tuber vegetables should not be heated to more than 60°C when irradiated with a 500 W medium-wave emitter at a working distance of 250 mm during a full 10-minute cycle. The optimal modes of drying liquid products with milk and plant proteins included a heating power of 400 W, a radiant heating temperature of 60°C, and a layer thickness of 10 mm. The selected modes of pulsed infrared drying of sugar-containing root and tuber vegetables reduced the duration of moisture removal by 16–20% and cut energy costs by 16.6%. This unconventional method of infrared drying of whole milk, whey, whey drinks, and milk mixture preserves beneficial microflora and increases the nutritional value and shelf-life, with a pos- sible content of chemically bound water of polymolecular and monomolecular adsorption ranging from 10 to 15.58%.
Collapse
|
24
|
Chen D, Cheng Y, Peng P, Liu J, Wang Y, Ma Y, Anderson E, Chen C, Chen P, Ruan R. Effects of intense pulsed light on Cronobacter sakazakii and Salmonella surrogate Enterococcus faecium inoculated in different powdered foods. Food Chem 2019; 296:23-28. [PMID: 31202302 DOI: 10.1016/j.foodchem.2019.05.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022]
Abstract
Cronobacter sakazakii and Salmonella spp. are foodborne pathogens associated with low moisture foods. An intense pulsed light (IPL) system is being developed as an alternative novel method to pasteurize powdered food. The aim of the study is to investigate the microorganism inactivation in different powdered foods and a variety of related variables using a vibratory-assisted IPL system. The results showed that C. sakazakii on non-fat dry milk (NFDM), wheat flour, and egg white powder were significantly inactivated by 5.27, 4.92, and 5.30 log10 CFU/g, respectively, after 3 or 4 passes of IPL treatments. For decontamination of E. faecium, 3-4 passes of IPL treatments reduced the E. faecium level on NFDM, wheat flour, and egg white by 3.67, 2.79, 2.74 log10 CFU/g, respectively. These results demonstrated that the enhanced microbiological inactivation can be achieved using this vibratory-assisted IPL system after multiple passes.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Yanling Cheng
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Peng Peng
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Juer Liu
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Yunpu Wang
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; College of Food Science and Engineering, Nanchang University, Jiangxi, China
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Erik Anderson
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Paul Chen
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Roger Ruan
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
25
|
Chen D, Peng P, Zhou N, Cheng Y, Min M, Ma Y, Mao Q, Chen P, Chen C, Ruan R. Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chem 2019; 290:270-276. [PMID: 31000047 DOI: 10.1016/j.foodchem.2019.03.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 11/30/2022]
Abstract
Cronobacter sakazakii can cause life-threatening infections in neonates. Exposure to contaminated powdered food, especially milk powder, is a major route for C. sakazakii infection. Cold atmospheric plasma (CAP) is well known as a non-thermal method for inactivating microbial pathogens. This study evaluates the effectiveness of CAP on C. sakazakii in non-fat dry milk (NFDM) powder using a fluidized reaction system. The CAP treatments for 20-120 s led to 1.17-3.27 log10 reductions of C. sakazakii. C. sakazakii inactivation increased with increasing flow rate from 8 to 20 L/min. In terms of quality attributes of NFDM after the CAP treatments, no noticeable color changes (ΔE < 1.5) were observed. Moreover, no significant changes in crystallinity, amino acid composition, or phenolic content occurred following a 120s-CAP treatment. These results indicate that this fluidized reaction system combined with CAP can provide an effective antimicrobial activity with minimal effects on some physicochemical properties of NFDM powder.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - Peng Peng
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States
| | - Nan Zhou
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States
| | - Yanling Cheng
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States
| | - Min Min
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - Paul Chen
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - Roger Ruan
- Department of Center for Biorefining and Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
26
|
Chen D, Chen P, Cheng Y, Peng P, Liu J, Ma Y, Liu Y, Ruan R. Deoxynivalenol Decontamination in Raw and Germinating Barley Treated by Plasma-Activated Water and Intense Pulsed Light. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2206-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|