1
|
Dardari O, Benzaouia MA, El Idrissi A, Channab BE, Benjellound GR, El Gharrak A, El Ouardi M, El Kadib A. Anthocyanin and thyme oil embedded carrageenan-PVA towards bioactive and pH-sensitive food-packaging materials. Int J Biol Macromol 2025; 310:143213. [PMID: 40250673 DOI: 10.1016/j.ijbiomac.2025.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Consumer interest in smart food packaging is rapidly growing due to its ability to monitor food quality in real time. These packages not only track changes in the product but also help prevent microbial growth, extending food shelf life and safety. A prime example is anthocyanin-containing packaging, which visually indicates pH changes through color shifts. We herein illustrate this approach by designing biocompatible and biodegradable packaging containing anthocyanin and thyme oil entrapping bio-based carrageenan (CR) blended with polyvinylalcool (PVA) films. Incorporating thyme oil and anthocyanin into carrageenan/polyvinyl alcohol (CR/PVA) films has significantly enhanced the desired mechanical properties of the biodegradable packaging. Specifically, flexibility increased by 20 % compared to the pristine CR/PVA film. Moreover, the physical properties of the films improved, with a reduction in water vapor permeability (WVP) from 1.74 to 1.30 and an increase in the water contact angle (WCA) from 60.5° to 89.5°, indicating enhanced hydrophobicity. Additionally, the resulting films exhibited substantial antimicrobial potential particularly against Escherichia coli and Staphylococcus aureus, along with strong antioxidant properties, surpassing the performance of the original CR/PVA films. The incorporation of anthocyanin endowed the films with high pH sensitivity, enabling effective visual detection of pH changes. Stability tests showed that anthocyanins degrade under temperature and light exposure. However, their incorporation into CR/PVA films significantly improved stability by reducing degradation. This enhancement highlights their potential for smart, protective food packaging.
Collapse
Affiliation(s)
| | | | - Ayoub El Idrissi
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Badr-Eddine Channab
- Center of Excellence for Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Ghita Radi Benjellound
- Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA URAC36, 20650, Morocco
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis and Valorization of Natural Resources, URAC 24, FST, Hassan II-Mohammedia University, B.P. 146, 20650, Morocco
| | - Mohamed El Ouardi
- Aix Marseille University, University of Toulon, CNRS, IM2NP, CS 60584, CEDEX 9, F 83041 Toulon, France
| | | |
Collapse
|
2
|
Huang R, Xia S, Gong S, Wang J, Zhang W, Zhong F, Lin Q, Deng J, Li W. Enhancing sensitivity and stability of natural pigments in pH-responsive freshness indicators: A review. Food Chem 2025; 463:141357. [PMID: 39306990 DOI: 10.1016/j.foodchem.2024.141357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 11/14/2024]
Abstract
Natural pigments are an indicator component in the freshness indicator, which is advantageous due to their safety, renewability, and low cost. However, freshness indicator with natural pigments as pH indicators has the problems of low stability and the color rendering domain could not effectively cover the shelf life of food. This paper describes the types and structures of natural pigments commonly used in freshness indicators and their color change mechanisms under different pH conditions. Also, the preparation methods of natural pigments freshness indicators are reviewed. Based on the current limitations and shortcomings faced by natural pigments freshness indicators, this paper highlights optimization strategies to enhance their sensitivity and stability, including modification, co-pigmentation, natural pigments mixing, encapsulation, and metal-ion complexation. The exploitation of these optimization strategies can help develop natural pigment-based intelligent packaging with superior performance to meet the food industry's needs for quality and safety monitoring.
Collapse
Affiliation(s)
- Rihua Huang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Suxuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuaikun Gong
- School of Food Science and Technology, Hunan Agricultural University, Changsha 410005, China
| | - Jingjing Wang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wei Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Song W, Wu N, He Y, Zhao H, Xu J, Ren L. Intelligent color changing packaging film based on esterified starch and black rice anthocyanins. Food Chem X 2024; 24:101930. [PMID: 39525064 PMCID: PMC11550056 DOI: 10.1016/j.fochx.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Intelligent packaging film has received more and more attention because it can help consumers obtain more intuitive information about the packaging, provide better preservation and advanced convenience. In this study, black rice anthocyanin (BRA) was added into composite film formed by starch (S) and esterified starch (ES). As the BRA content increased, the thickness and the total color difference of the S/ES-BRA film increased. The opacity of S/ES-BRA film decreased relative to that of the film without BRA, but increased with the increase of anthocyanin. Compared with S/ES film, the elongation at break of S/ES-BRA0.5 film increased from 33.1 % to 45.4 %, and the tensile strength decreased from 7.3 to 5.8 MPa. S/ES-BRA film had response to different pH values and underwent color changes in different buffer solutions. Intelligent color changing packaging film will used to monitor food quality, water quality and soil properties.
Collapse
Affiliation(s)
- Wei Song
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yikai He
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Huaixiang Zhao
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jian Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
4
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
5
|
Nath PC, Sharma R, Mahapatra U, Mohanta YK, Rustagi S, Sharma M, Mahajan S, Nayak PK, Sridhar K. Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int J Biol Macromol 2024; 273:133090. [PMID: 38878920 DOI: 10.1016/j.ijbiomac.2024.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, India
| | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Shikha Mahajan
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
6
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
7
|
Xue J, Yao Y, Wang M, Wang Z, Xue Y, Li B, Ma Y, Shen Y, Wu H. Recent studies on proteins and polysaccharides-based pH-responsive fluorescent materials. Int J Biol Macromol 2024; 260:129534. [PMID: 38237824 DOI: 10.1016/j.ijbiomac.2024.129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Polymer-based pH-responsive fluorescent materials have the characteristics of fast response, real-time monitoring, visualisation, and easy forming. Consequently, they have attracted widespread attention in wound healing, sweat monitoring, security and anti-counterfeiting, freshness detection of aquatic products, metal-ion sensing and bioimaging. This paper analyses the preparation principles and characteristics of pH-responsive fluorescent materials based on cellulose, chitosan and proteins. It then outlines the fluorescence properties, environmental response mechanisms and applications of various luminescent materials. Next, the research indicates that amines, N-heterocyclic rings, carboxyl groups and amino plasmonic groups on the fluorescent molecule structure and polymer skeleton appear to change the degree of ionisation under acid or alkali stimulation, which affects the light absorption ability of chromophore electrons, thus producing fluorescence changes in fluorescent materials under different pH stimuli. On this basis, the challenges and growth encountered in the development of proteins and polysaccharides-based pH-responsive fluorescent materials were prospected to provide theoretical references and technical support for constructing pH-responsive fluorescent materials with high stability, high sensitivity, long-lasting pH-response and wide detection range.
Collapse
Affiliation(s)
- Jiannan Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Miao Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Zhigang Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Ying Xue
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Bo Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanli Ma
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
8
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
9
|
Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023; 15:2972. [PMID: 37447617 DOI: 10.3390/polym15132972] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The research of starch as a matrix material for manufacturing biodegradable films has been gaining popularity in recent years, indicating its potential and possible limitations. To compete with conventional petroleum-based plastics, an enhancement of their low resistance to water and limited mechanical properties is essential. This review aims to discuss the various types of nanofillers and additives that have been used in plasticized starch films including nanoclays (montmorillonite, halloysite, kaolinite, etc.), poly-saccharide nanofillers (cellulose, starch, chitin, and chitosan nanomaterials), metal oxides (titanium dioxide, zinc oxide, zirconium oxide, etc.), and essential oils (carvacrol, eugenol, cinnamic acid). These reinforcements are frequently used to enhance several physical characteristics including mechanical properties, thermal stability, moisture resistance, oxygen barrier capabilities, and biodegradation rate, providing antimicrobial and antioxidant properties. This paper will provide an overview of the development of starch-based nanocomposite films and coatings applied in food packaging systems through the application of reinforcements and additives.
Collapse
Affiliation(s)
| | - Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
10
|
Characterization of Cassava Starch Extruded Sheets Incorporated with Tucumã Oil Microparticles. Processes (Basel) 2023. [DOI: 10.3390/pr11030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The application of biopolymers and feasible technologies to obtain sheets is crucial for the large-scale production of food packages and for reducing plastic pollution. Additionally, the inclusion of additives in sheets can affect and improve their properties. This work aimed to incorporate tucumã oil (TO) and TO microparticles produced by spray drying (SD), spray chilling (SC), and their combination (SDC) into extruded cassava starch sheets and to evaluate the effect of such addition on their physical, optical, and mechanical properties. Gum Arabic and vegetable fat were used as wall materials for SD and SC/SDC, respectively. The sheets enriched with tucumã oil (FO) and the microparticles produced by SD, SC and SDC (FSD, FSC, and FSDC, respectively) presented yellow color (hue angle around 90°) and higher opacity (11.6–25.3%) when compared to the control (6.3%). All sheets showed high thickness (1.3–1.8 mm), and the additives reduced the water solubility of the materials (from 27.11% in the control to 24.67–25.54% in enriched samples). The presence of large SDC particles, as evidenced by Scanning Electron Microscopy (SEM), caused discontinuity of the sheet structure and decreased mechanical strength of the FSDC. One may conclude that potential active packages were obtained by extrusion of cassava starch sheets added with pure and encapsulated TO.
Collapse
|
11
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
13
|
Emerging Trends of Electrochemical Sensors in Food Analysis. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Food quality and safety pose an increasing threat to human health worldwide [...]
Collapse
|
14
|
Iacovone C, Yulita F, Cerini D, Peña D, Candal R, Goyanes S, Pietrasanta LI, Guz L, Famá L. Effect of TiO 2 Nanoparticles and Extrusion Process on the Physicochemical Properties of Biodegradable and Active Cassava Starch Nanocomposites. Polymers (Basel) 2023; 15:polym15030535. [PMID: 36771837 PMCID: PMC9918894 DOI: 10.3390/polym15030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Biodegradable polymers have been strongly recognized as an alternative to replace traditional petrochemical plastics, which have become a global problem due to their long persistence in the environment. In this work, the effect of the addition of titanium dioxide nanoparticles (TiO2NP) on the morphology, physicochemical properties and biodegradation under industrial composting conditions of cassava starch-based nanocomposites obtained by extrusion at different screw speeds (80 and 120 rpm) were investigated. Films performed at 120 rpm (S120 and S120-TiO2NP) showed completely processed starch and homogeneously distributed nanoparticles, leading to much more flexible nanocomposites than those obtained at 80 rpm. The incorporation of TiO2NP led to an increase in storage modulus of all films and, in the case of S120-TiO2NP, to higher strain at break values. From the Kohlrausch-Williams-Watts theoretical model (KWW), an increase in the relaxation time of the nanocomposites was observed due to a decrease in the number of polymer chains involved in the relaxation process. Additionally, S120-TiO2NP showed effective protection against UV light, greater hydrophobicity and faster biodegradation in compost, resulting in a promising material for food packaging applications.
Collapse
Affiliation(s)
- Carolina Iacovone
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Federico Yulita
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel Cerini
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel Peña
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Roberto Candal
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lía I. Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Centro de Microscopías Avanzadas y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lucas Guz
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Lucía Famá
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-11-5285-7511 (ext. 57511)
| |
Collapse
|
15
|
Ebrahimi V, Mohammadi Nafchi A, Bolandi M, Baghaei H. Fabrication and characterization of a pH-sensitive indicator film by purple basil leaves extract to monitor the freshness of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Researchers have been focusing increasingly on preparing innovative packaging films made from renewable and biodegradable materials in recent years. This research set out to fabricate and analyze pH-sensitive edible films based on salep mucilage combined with anthocyanin from saffron (Crocus sativus L.) (SAAs). A casting technique was developed with varying concentrations of SAAs (0, 2.5, 5, 7.5, and 10%v/v) pH-sensitive edible films. The surface morphology, physicochemical, barrier, and mechanical properties, as well as the pH sensitivity of films, were investigated. The results showed SAAs increased thickness, water solubility, moisture content, and oxygen permeability (O2P) up to 199.03 µm, 63.71%, 14.13%, and 47.73 (cm3 µm m−2 day−1 kPa−1), respectively, of the pH-sensitive salep mucilage edible indicator films. As expected, the SAAs concentration from 0% to 10%v/v decreased tensile strength, transparency, and contact angle to 11.94 MPa, 14.27%, and 54.02°, respectively. Although achieving the highest elongation at the break (108%) and the lowest water vapor permeability (WVP) (1.39 g s−1 m−1 Pa−1 × 10−11), the pH-sensitive edible indicator film containing 5 %v/v of SAAs showed the best results. An investigation of pH sensitivity revealed that the solution’s pH variation altered the SAAs color. When the pH was raised from 3 to 11, the SAAs’ color shifted from pink to brown. The SAAs-halochromic salep mucilage edible indicator film was employed as a label in an experiment to track the degradation of fish fillets stored at 4 °C, revealing that the halochromic indicator changed color from yellow to brown as the fish was stored. Our findings show that SAAs-loaded salep mucilage indicator films help monitor real-time food deterioration.
Collapse
|
17
|
Production of Thermoplastic Starch- Aloe vera Gel Film with High Tensile Strength and Improved Water Solubility. Polymers (Basel) 2022; 14:polym14194213. [PMID: 36236161 PMCID: PMC9571595 DOI: 10.3390/polym14194213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Biodegradable film packaging made from thermoplastic starch (TPS) has low mechanical performance and high water solubility, which is incomparable with synthetic films. In this work, Aloe vera (AV) gel and plasticized soluble potato starch were utilised to improve the mechanical stability and water solubility of TPS. Dried starch was mixed with glycerol and different AV gel concentrations (0% to 50%). The TPS + 50% AV gel (30 g TPS + 15 g AV gel) showed the best improvement compared to TPS alone. When compared to similar TPS films with AV gel added, this film is stronger and dissolves better in water. Mechanical qualities improved the tensile strength and Young's modulus of the TPS film, with 1.03 MPa to 9.14 MPa and 51.92 MPa to 769.00 MPa, respectively. This was supported by the improvement of TPS water solubility from 57.44% to 46.6% and also by the increase in decomposition temperature of the TPS. This promises better heat resistance. The crystallinity percentage increase to 24.26% suggested that the formation of hydrogen bonding between TPS and AV gel enhanced crosslinking in the polymeric structure. By adding AV gel, the TPS polymeric structure is improved and can be used as a biodegradable food-packaging film.
Collapse
|
18
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
19
|
Esfahani A, Mohammadi Nafchi A, Baghaei H, Nouri L. Fabrication and characterization of a smart film based on cassava starch and pomegranate peel powder for monitoring lamb meat freshness. Food Sci Nutr 2022; 10:3293-3301. [PMID: 36249982 PMCID: PMC9548365 DOI: 10.1002/fsn3.2918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the development of pH-sensitive smart edible films using biopolymers and natural plant extracts (especially those rich in anthocyanins) has attracted much attention. Therefore, in this study, the intelligent edible film was produced and characterized using cassava starch and pomegranate peel powder (PPP) and the possibility of using production films to monitor the freshness of lamb meat. The smart films were prepared using different concentrations of PPP (2, 4, 6, and 8% w/w) and the solvent casting method. The results showed that the incorporation of PPP had a significant effect on the mechanical parameters of the starch films. With increasing the levels of PPP, the color of the films became darker and redder. Increasing the PPP levels also led to an increase in total phenol content (TPC) (from 0 to 13 mg GAE (gallic acid equivalent)/g) and antioxidant activity (from 0% to 70% DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging) of the produced films (p < .05). The intelligent film was used in the lamb meat packaging, and the color of the film changed from red to green during the storage period at 25°C. The amount of total volatile basic nitrogen (TVB-N) in the meat could be detected by color changes of the intelligent films. Finally, this study demonstrated that the film based on cassava starch and PPP could be used as an intelligent and pH-sensitive film to monitor the freshness of meat and meat products.
Collapse
Affiliation(s)
- Azadeh Esfahani
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Homa Baghaei
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Leila Nouri
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
20
|
Li J, Zhang F, Zhong Y, Zhao Y, Gao P, Tian F, Zhang X, Zhou R, Cullen PJ. Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review. Polymers (Basel) 2022; 14:polym14194025. [PMID: 36235973 PMCID: PMC9572456 DOI: 10.3390/polym14194025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Cellulose is the most abundant biopolymer on Earth, which is synthesized by plants, bacteria, and animals, with source-dependent properties. Cellulose containing β-1,4-linked D-glucoses further assembles into hierarchical structures in microfibrils, which can be processed to nanocellulose with length or width in the nanoscale after a variety of pretreatments including enzymatic hydrolysis, TEMPO-oxidation, and carboxymethylation. Nanocellulose can be mainly categorized into cellulose nanocrystal (CNC) produced by acid hydrolysis, cellulose nanofibrils (CNF) prepared by refining, homogenization, microfluidization, sonification, ball milling, and the aqueous counter collision (ACC) method, and bacterial cellulose (BC) biosynthesized by the Acetobacter species. Due to nontoxicity, good biodegradability and biocompatibility, high aspect ratio, low thermal expansion coefficient, excellent mechanical strength, and unique optical properties, nanocellulose is utilized to develop various cellulose nanocomposites through solution casting, Layer-by-Layer (LBL) assembly, extrusion, coating, gel-forming, spray drying, electrostatic spinning, adsorption, nanoemulsion, and other techniques, and has been widely used as food packaging material with excellent barrier and mechanical properties, antibacterial activity, and stimuli-responsive performance to improve the food quality and shelf life. Under the driving force of the increasing green food packaging market, nanocellulose production has gradually developed from lab-scale to pilot- or even industrial-scale, mainly in Europe, Africa, and Asia, though developing cost-effective preparation techniques and precisely tuning the physicochemical properties are key to the commercialization. We expect this review to summarise the recent literature in the nanocellulose-based food packaging field and provide the readers with the state-of-the-art of this research area.
Collapse
Affiliation(s)
- Jingwen Li
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feifan Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaqi Zhong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yadong Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Correspondence: (Y.Z.); (X.Z.)
| | - Pingping Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fang Tian
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianhui Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (X.Z.)
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Forghani S, Zeynali F, Almasi H, Hamishehkar H. Characterization of electrospun nanofibers and solvent-casted films based on Centaurea arvensis anthocyanin-loaded PVA/κ-carrageenan and comparing their performance as colorimetric pH indicator. Food Chem 2022; 388:133057. [PMID: 35483293 DOI: 10.1016/j.foodchem.2022.133057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
In this research, PVA/Ҡ-carrageenan-based colorimetric indicators incorporated with Centaurea arvensis anthocyanin (CAE) were fabricated by two electrospinning and solvent casting methods and their performance as pH indicators were assessed. Chemical immobilization of CAE on PVA and PVA/Ҡ-carrageenan matrixes was approved by FT-IR analysis. According to SEM images, Ҡ-carrageenanaddition improved the homogeneity of films and decreased the diameter of nanofibers. The crystalline structure and thermal properties of polymeric matrixes were affected by anthocyanin incorporation. CAE had an adverse effect on mechanical properties of films and nanofibers. The preparation method and type of solid matrix affected the responsiveness and the tonality of responded color. Electrospun nanofibers showed high responsiveness (10 s) than colorimetric films (15-40 min) to pH changes. The indicators displayed color variations from heather violet to green over the 2-12 pH range. The designed indicators have potential to be applied as visual pH label in food intelligent packaging.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Encapsulation of Anthocyanic Extract of Jambolan (Syzygium cumini (L.)) in Zein Sub-micron Fibers Produced by Electrospinning. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Monitoring dynamic changes in chicken freshness at 4 °C and 25 °C using pH-sensitive intelligent films based on sodium alginate and purple sweet potato peel extracts. Int J Biol Macromol 2022; 216:361-373. [PMID: 35803406 DOI: 10.1016/j.ijbiomac.2022.06.198] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 01/23/2023]
Abstract
A pH-sensitive intelligent indicator film was developed and used for monitoring dynamic changes in chicken freshness at 4 °C and 25 °C by immobilizing 0.2 %-1.0 % purple sweet potato peel extracts (PPE) with sodium alginate (SA). The films presented a wide range of colors from red-pink to green-yellow at 2-13, and the films with less PPE were more sensitive to ammonia. The color of films with 0.6 % PPE changed from pink to blue when used in monitoring chicken freshness at 4 °C (5 d) and 25 °C (60 h), which corresponded to changes in total volatile base nitrogen from 5.35 (5.35) mg/100 g to 16.2 (19.9) mg/100 g. Scanning electron microscopy and X-ray diffraction revealed that PPE improved the compactness and crystallinity of SA films, while Fourier transform infrared spectroscopy revealed hydrogen bonds between SA and PPE. Compared to SA films, the water vapor and light barrier abilities of films with 0.6 % were significantly improved (P < 0.05), there was no significant effect on tensile strength (P > 0.05), and the elongation of 0.6 % PPE films (P < 0.05) was decreased. Thus, PPE can serve as an excellent indicator of intelligent films for monitoring the freshness of meat products.
Collapse
|
24
|
Effect of starch initial moisture on thermoplastic starch film properties and its performance as agricultural mulch film. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Cheng M, Yan X, Cui Y, Han M, Wang Y, Wang J, Zhang R, Wang X. Characterization and Release Kinetics Study of Active Packaging Films Based on Modified Starch and Red Cabbage Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14061214. [PMID: 35335543 PMCID: PMC8950823 DOI: 10.3390/polym14061214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Active packaging films were prepared by adding red cabbage anthocyanin extract (RCAE) into acetylated distarch phosphate (ADSP). This paper investigated the influence of the interaction relationship between RCAE and the film matrix on the structure, barrier, antioxidant and release properties of active films. Sixteen principal compounds in RCAE were identified as anthocyanins based on mass spectroscopic analysis. Micromorphological observations indicated that the RCAE distribution uniformity in the films decreased as the RCAE content increased. When the concentration of RCAE was not higher than 20%, the moisture absorption and oxygen permeability of films decreased. The stability of RCAE in the films was enhanced by the electrostatic interaction between RCAE and ADSP with the formation of hydrogen bonds, which facilitated the sustainability of the antioxidant properties of films. The release kinetics of RCAE proved that the release rate of RCAE in active films was the fastest in distilled water, and Fickian’s law was appropriate for portraying the release behavior. Moreover, the cytocompatibilty assay showed that the test films were biocompatible with a viability of >95% on HepG2 cells. Thus, this study has established the suitability of the films for applications in active and food packaging.
Collapse
|
26
|
He Y, Li B, Du J, Cao S, Liu M, Li X, Ren D, Wu X, Xu D. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. Int J Biol Macromol 2022; 201:203-215. [PMID: 34995663 DOI: 10.1016/j.ijbiomac.2021.12.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023]
Abstract
Absorbent pads with antioxidant and pH-responsive color changing functions have been developed based on polyvinyl alcohol (PVA), agarose (AG), and purple sweet potato anthocyanins (PSPA), aiming for fresh keeping and freshness indication of meat. The effects of PSPA content on the structure, physical properties, and colorimetric response towards pH changing of pads were evaluated. The results showed that PSPA interacted with PVA and AG and influenced the crystallinity, thermal stability and micro-morphology of pads. The increase of the PSPA content from 3% to 12% improved the strength and DPPH radical scavenging activity of the pads, but reduced the swelling ratio. Significant color change of the pads was observed when pH increased from 3 to 10, and the pad containing 9% PSPA presented the most distinguishable color change with the change of pH. When applied as an absorbent pad for minced meat packaging, the pad indicated the real-time spoilage of the meat through obvious color change, and also extended the shelf life by at least 24 h. Therefore, the dual-functional pad shows great potential to be applied as a smart and active packaging for fresh meat, which would play an important role in ensuring food safety and improving food storage quality.
Collapse
Affiliation(s)
- Yue He
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Baoxiang Li
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jin Du
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Siyuan Cao
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Min Liu
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiaonan Li
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400700, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400700, China.
| |
Collapse
|
27
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
28
|
Beech D, Beech J, Gould J, Hill S. Effect of amylose/amylopectin ratio and extent of processing on the physical properties of expanded maize starches. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Beech
- University of Nottingham Division of Food, Nutrition and Dietetics Sutton Bonington Leicestershire UK
| | - John Beech
- Real World Business Solutions Ltd Melton Mowbray Leicestershire UK
| | - Joanne Gould
- University of Nottingham Division of Food, Nutrition and Dietetics Sutton Bonington Leicestershire UK
| | - Sandra Hill
- Biopolymer Solutions Ltd Sutton Bonington Leicestershire UK
| |
Collapse
|
29
|
La Fuente CI, do Val Siqueira L, Augusto PED, Tadini CC. Casting and extrusion processes to produce bio-based plastics using cassava starch modified by the dry heat treatment (DHT). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Yan J, Cui R, Tang Z, Wang Y, Wang H, Qin Y, Yuan M, Yuan M. Development of pH-sensitive films based on gelatin/chitosan/nanocellulose and anthocyanins from hawthorn (Crataegus scabrifolia) fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
32
|
Luo Q, Hossen A, Sameen DE, Ahmed S, Dai J, Li S, Qin W, Liu Y. Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Crit Rev Food Sci Nutr 2021; 63:1102-1118. [PMID: 34382866 DOI: 10.1080/10408398.2021.1959296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over a few decades, anthocyanin (ACN)-based colorimetric indicators in intelligent packaging systems have been widely used to monitor the freshness or spoilage of perishable food products. Most of the perishable food products are highly susceptible to enzymatic/microbial spoilage and produce several volatile or nonvolatile organic acid and nitrogenous compounds. As a result, the natural pH of fresh foods significantly changes. Fabrication of CAN-based colorimetric indicators in intelligent packaging systems is an advanced technique that monitors the freshness or spoilage of perishable foods based on the display of color variations at varying pH values. This study focuses on the advancement of pH-sensitive indicators and extraction of colorimetric indicators from commercially available natural sources. Moreover, the fabrication techniques and widespread industrial applications of such indicators have also been discussed. In addition, readers will get information about the color-changing and antioxidant mechanisms of ACN-based indicator films in food packaging.
Collapse
Affiliation(s)
- Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
33
|
Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Vianna TC, Marinho CO, Marangoni Júnior L, Ibrahim SA, Vieira RP. Essential oils as additives in active starch-based food packaging films: A review. Int J Biol Macromol 2021; 182:1803-1819. [PMID: 34058206 DOI: 10.1016/j.ijbiomac.2021.05.170] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
The production of sustainable food packaging from renewable sources represents a prominent alternative to the use of petrochemical-based plastics. For example, starch remains one of the more closely studied replacement options due to its broad availability, low cost and significant advances in improving properties. In this context, essential oils as additives fulfil a key role in the manufacture of renewable active packaging with superior performances. In this review, a comprehensive summary of the impact of adding essential oils to the starch-based films is provided. After a brief introduction to the fundamental concepts related to starch and essential oils, details on the most recent advances in obtaining active starch-based films are presented. Subsequently, the effects of essential oils addition on the structure-property relationships (from physicochemical to antimicrobial ones) are thoroughly addressed. Finally, applications and challenges to the widespread use of essential oils are critically discussed.
Collapse
Affiliation(s)
- Thomás Corrêa Vianna
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil
| | - Carolina Oliveira Marinho
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil
| | - Luís Marangoni Júnior
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Brazil
| | - Salam Adnan Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, 500 Albert Einstein Avenue, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
35
|
Wang H, Ding F, Ma L, Zhang Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
do Val Siqueira L, Arias CILF, Maniglia BC, Tadini CC. Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Bio-Based Sensors for Smart Food Packaging-Current Applications and Future Trends. SENSORS 2021; 21:s21062148. [PMID: 33803914 PMCID: PMC8003241 DOI: 10.3390/s21062148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Intelligent food packaging is emerging as a novel technology, capable of monitoring the quality and safety of food during its shelf-life time. This technology makes use of indicators and sensors that are applied in the packaging and that detect changes in physiological variations of the foodstuffs (due to microbial and chemical degradation). These indicators usually provide information, e.g., on the degree of freshness of the product packed, through a color change, which is easily identified, either by the food distributor and the consumer. However, most of the indicators that are currently used are non-renewable and non-biodegradable synthetic materials. Because there is an imperative need to improve food packaging sustainability, choice of sensors should also reflect this requirement. Therefore, this work aims to revise the latest information on bio-based sensors, based on compounds obtained from natural extracts, that can, in association with biopolymers, act as intelligent or smart food packaging. Its application into several perishable foods is summarized. It is clear that bioactive extracts, e.g., anthocyanins, obtained from a variety of sources, including by-products of the food industry, present a substantial potential to act as bio-sensors. Yet, there are still some limitations that need to be surpassed before this technology reaches a mature commercial stage.
Collapse
|
38
|
Zarski A, Bajer K, Kapuśniak J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers (Basel) 2021; 13:832. [PMID: 33803238 PMCID: PMC7967182 DOI: 10.3390/polym13050832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Starch is the second most abundantly available natural polymer in the world, after cellulose. If we add its biodegradability and non-toxicity to the natural environment, it becomes a raw material very attractive for the food and non-food industries. However, in the latter case, mainly due to the high hydrophilicity of starch, it is necessary to carry out many more or less complex operations and processes. One of the fastest growing industries in the last decade is the processing of biodegradable materials for packaging purposes. This is mainly due to awareness of producers and consumers about the dangers of unlimited production and the use of non-degradable petroleum polymers. Therefore, in the present review, an attempt was made to show the possibilities and limitations of using starch as a packaging material. The most important physicochemical features of this biopolymer are discussed, and special attention is paid to more or less environmentally friendly methods of improving its processing properties.
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| | - Krzysztof Bajer
- Lukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, Marii Sklodowskiej-Curie 55 Str., 87-100 Torun, Poland;
| | - Janusz Kapuśniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland;
| |
Collapse
|