1
|
Chong CSC, Lau YY, Michels PAM, Lim CSY. Insights into biofilm-mediated mechanisms driving last-resort antibiotic resistance in clinical ESKAPE pathogens. Crit Rev Microbiol 2025:1-26. [PMID: 40098357 DOI: 10.1080/1040841x.2025.2473332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The rise of antibiotic-resistant bacteria poses a grave threat to global health, with the ESKAPE pathogens, which comprise Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. being among the most notorious. The World Health Organization has reserved a group of last-resort antibiotics for treating multidrug-resistant bacterial infections, including those caused by ESKAPE pathogens. This situation calls for a comprehensive understanding of the resistance mechanisms as it threatens public health and hinder progress toward the Sustainable Development Goal (SDG) 3: Good Health and Well-being. The present article reviews resistance mechanisms, focusing on emerging resistance mutations in multidrug-resistant ESKAPE pathogens, particularly against last-resort antibiotics, and describes the role of biofilm formation in multidrug-resistant ESKAPE pathogens. It discusses the latest therapeutic advances, including the use of antimicrobial peptides and CRISPR-Cas systems, and the modulation of quorum sensing and iron homeostasis, which offer promising strategies for countering resistance. The integration of CRISPR-based tools and biofilm-targeted approaches provides a potential framework for managing ESKAPE infections. By highlighting the spread of current resistance mutations and biofilm-targeted approaches, the review aims to contribute significantly to advancing our understanding and strategies in combatting this pressing global health challenge.
Collapse
Affiliation(s)
- Christina Shook Cheng Chong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Yin Yin Lau
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Paul A M Michels
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh 3FL, UK
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Vásquez-Ponce F, Dantas K, Becerra J, Melocco G, Esposito F, Cardoso B, Rodrigues L, Lima K, de Lima AV, Sellera FP, Mattos R, Trevisoli L, Vianello MA, Sincero T, Di Conza J, Vespero E, Gutkind G, Sampaio J, Lincopan N. Detecting KPC-2 and NDM-1 Coexpression in Klebsiella pneumoniae Complex from Human and Animal Hosts in South America. Microbiol Spectr 2022; 10:e0115922. [PMID: 35980188 PMCID: PMC9604071 DOI: 10.1128/spectrum.01159-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/12/2022] [Indexed: 12/30/2022] Open
Abstract
Reports of Gram-negative bacteria harboring multiple carbapenemase genes have increased in South America, leading to an urgent need for appropriate microbiological diagnosis. We evaluated phenotypic methods for detecting Klebsiella pneumoniae carbapenemase 2 (KPC-2) and New Delhi metallo-β-lactamase-1 (NDM-1) coexpression in members of the K. pneumoniae complex (i.e., K. pneumoniae, K. quasipneumoniae, and K. variicola) isolated from human and animal hosts, based on inhibition of ceftazidime-avibactam (CZA) and aztreonam (ATM) by dipicolinic acid (DPA), EDTA, or avibactam (AVI). While the presence of blaKPC-2 and blaNDM-1 genes was confirmed by whole-genome sequencing, PCR, and/or GeneXpert, coexpression was successfully detected based on the following: (i) a ≥5-mm increase in the zone diameter of ATM (30 µg) disks plus AVI (4 or 20 µg) and ≥4-mm and ≥10-mm increases in the zone diameters for "CZA 50" (30 µg ceftazidime [CAZ] and 20 µg AVI) and "CZA 14" (10 µg CAZ and 4 µg AVI) disks, respectively, when we added DPA (1 mg/disk) or EDTA (5 mM) in a combined disk test (CDT); (ii) a positive ghost zone (synergism) between ATM (30 µg) and CZA 50 disks and between CZA 50 and DPA (1 mg) disks, using the double-disk synergy test (DDST) at a disk-disk distance of 2.5 cm; (iii) ≥3-fold MIC reductions of ATM and CZA in the presence of AVI (4 µg/mL), DPA (500 µg/mL), or EDTA (320 µg/mL); and (iv) immunochromatography. Although our results demonstrated that inhibition by AVI, DPA, and EDTA may provide simple and inexpensive methods for the presumptive detection of coexpression of KPC-2 and NDM-1 in members of the K. pneumoniae complex, additional studies are necessary to confirm the accuracy of these methodologies by testing other Gram-negative bacterial species and other KPC and NDM variants coexpressed by WHO critical priority pathogens detected worldwide. IMPORTANCE Alerts regarding the emergence and increase of combinations of carbapenemases in Enterobacterales in Latin America and the Caribbean have recently been issued by PAHO and WHO, emphasizing the importance of appropriate microbiological diagnosis and the effective and articulated implementation of infection prevention and control programs. In this study, we evaluated methods based on inhibition of ceftazidime (CAZ), ceftazidime-avibactam (CZA), and aztreonam (ATM) by dipicolinic acid (DPA), EDTA, and avibactam (AVI) inhibitors for the identification of KPC-2- and NDM-1-coexpression in members of the K. pneumoniae complex recovered from human and animal hosts. Our results demonstrate that inhibition by AVI, DPA, and EDTA may provide simple and inexpensive methods for the presumptive detection of coexpression of KPC-2 and NDM-1 in members of the K. pneumoniae complex.
Collapse
Affiliation(s)
- Felipe Vásquez-Ponce
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Karine Dantas
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Johana Becerra
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Gregory Melocco
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Rodrigues
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Keila Lima
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Aline V. de Lima
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | | | | | | | - Thais Sincero
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jose Di Conza
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eliana Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, Paraná, Brazil
| | - Gabriel Gutkind
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriologia y Virología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Sampaio
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
- Fleury Medicine and Health, Microbiology Section, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Urase T, Goto S, Sato M. Monitoring Carbapenem-Resistant Enterobacterales in the Environment to Assess the Spread in the Community. Antibiotics (Basel) 2022; 11:antibiotics11070917. [PMID: 35884172 PMCID: PMC9311640 DOI: 10.3390/antibiotics11070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The usefulness of wastewater-based epidemiology (WBE) was proven during the COVID-19 pandemic, and the role of environmental monitoring of emerging infectious diseases has been recognized. In this study, the prevalence of carbapenem-resistant Enterobacterales (CRE) in Japanese environmental samples was measured in the context of applying WBE to CRE. A total of 247 carbapenem-resistant isolates were obtained from wastewater, treated wastewater, and river water. Treated wastewater was shown to be an efficient target for monitoring CRE. The results of the isolate analysis showed that WBE may be applicable to Escherichia coli-carrying New Delhi metallo-β-lactamase (NDM)-type carbapenemase, the Enterobacter cloacae complex and Klebsiella pneumoniae complex-carrying IMP-type carbapenemase. In addition, a certain number of CRE isolated in this study carried Guiana extended spectrum (GES)-type carbapenemase although their clinical importance was unclear. Only a few isolates of Klebsiella aerogenes were obtained from environmental samples in spite of their frequent detection in clinical isolates. Neither the KPC-type, the oxacillinase (OXA)-type nor the VIM-type of carbapenemase was detected in the CRE, which reflected a low regional prevalence. These results indicated the expectation and the limitation of applying WBE to CRE.
Collapse
|
4
|
Chen L, Ai W, Zhou Y, Wu C, Guo Y, Wu X, Wang B, Rao L, Xu Y, Zhang J, Chen L, Yu F. Outbreak of IncX8 Plasmid-Mediated KPC-3-Producing Enterobacterales Infection, China. Emerg Infect Dis 2022; 28:1421-1430. [PMID: 35731165 PMCID: PMC9239885 DOI: 10.3201/eid2807.212181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) infection is highly endemic in China; Klebsiella pneumoniae carbapenemase (KPC) 2-producing CRE is the most common, whereas KPC-3-producing CRE is rare. We report an outbreak of KPC-3-producing Enterobacterales infection in China. During August 2020-June 2021, 25 blaKPC-3-positive Enterobacteriale isolates were detected from 24 patients in China. Whole-genome sequencing analysis revealed that the blaKPC-3 genes were harbored by IncX8 plasmids. The outbreak involved clonal expansion of KPC-3-producing Serratia marcescens and transmission of blaKPC-3 plasmids across different species. The blaKPC-3 plasmids demonstrated high conjugation frequencies (10-3 to 10-4). A Galleria mellonella infection model showed that 2 sequence type 65 K2 K. pneumoniae strains containing blaKPC-3 plasmids were highly virulent. A ceftazidime/avibactam in vitro selection assay indicated that the KPC-3-producing strains can readily develop resistance. The spread of blaKPC-3-harboring IncX8 plasmids and these KPC-3 strains should be closely monitored in China and globally.
Collapse
|
5
|
Shi Q, Han R, Guo Y, Yang Y, Wu S, Ding L, Zhang R, Yin D, Hu F. Multiple Novel Ceftazidime-Avibactam-Resistant Variants of blaKPC-2-Positive Klebsiella pneumoniae in Two Patients. Microbiol Spectr 2022; 10:e0171421. [PMID: 35588280 PMCID: PMC9241591 DOI: 10.1128/spectrum.01714-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
As the first-line antimicrobial agent for the infection caused by carbapenem-resistant Enterobacterales, ceftazidime-avibactam develops drug resistance during its ever-growing clinical use. In this study, we report multiple novel variants in blaKPC-2-positive Klebsiella pneumoniae from two separate patients during their exposure to ceftazidime-avibactam. For one patient, the blaKPC-2 gene carried by K. pneumoniae mutated into blaKPC-35, blaKPC-78, and blaKPC-33 over the same period, while that for the other patient mutated into blaKPC-79 and further evolved into blaKPC-76 to enhance resistance level, among which blaKPC-76 and blaKPC-79 were reported for the first time. In contrast with blaKPC-2, the emergent mutations within the Ω-loop conferred high-level resistance to ceftazidime-avibactam with a sharp reduction of carbapenemase activity. These blaKPC-positive K. pneumoniae isolated from sputum (both patients) and cerebrospinal fluid (patient 2) belonged to ST11 and ST859, respectively. All strains located blaKPC alleles on IncFII/IncR plasmids, except one on an IncFII plasmid. Such blaKPC-2 variants first appeared after 9 to 18 days of ceftazidime-avibactam usage, but the lack of its feasible detection method often led to the assumption of ceftazidime-avibactam sensitivity resulting in clinical incorrect usage. Subsequent substitution of ceftazidime-avibactam with carbapenems also failed, because the blaKPC-2-containing K. pneumoniae dominated again. Ultimately, treatment failed even with the therapeutic regimen of ceftazidime-avibactam combined with carbapenems, because of the inadequate concentration of avibactam in infection sites and decreased drug sensitivity of strains caused by increased expression of blaKPC and point mutation of ompK35 and ompK36. As novel KPC variants conferring resistance to ceftazidime-avibactam are constantly emerging worldwide, quick and efficient laboratory detection and surveillance are urgently needed for infection control. IMPORTANCE Carbapenem-resistant K. pneumoniae which was classified as the most urgent threat by World Health Organization, is the most critical public health concern due to its high mortality rate. Recently, the rapid mutation of blaKPC has occurred during anti-infective therapy, which posed an unexpected challenge for both the diagnostic laboratory and clinical practice.
Collapse
Affiliation(s)
- Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Rong Zhang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
6
|
Sun S, Chen K, Kong X, Tian W, Niu S. Genetic Diversity and in vitro Activity of Aztreonam/Avibactam and Ceftazidime/Avibactam Against Carbapenem-Resistant Enterobacterales: A Multi-Center Study in Southwest China. Infect Drug Resist 2022; 15:2243-2251. [PMID: 35510161 PMCID: PMC9058005 DOI: 10.2147/idr.s357396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shan Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Kai Chen
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuehua Kong
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenjun Tian
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Correspondence: Wenjun Tian; Siqiang Niu, Email ;
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Ji Z, Sun K, Li Z, Cheng W, Yang J. Carbapenem-Resistant Klebsiella pneumoniae Osteomyelitis Treated with Ceftazidime-Avibactam in an Infant: A Case Report. Infect Drug Resist 2021; 14:3109-3113. [PMID: 34408454 PMCID: PMC8364839 DOI: 10.2147/idr.s320056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022] Open
Abstract
Increasing cases of carbapenem-resistant Klebsiella pneumoniae (CR-KP) infections have been observed globally where multi-drug resistance to CR-KP can make the infection difficult to treat. In recent years, the β-lactam/β-lactamase inhibitor, ceftazidime-avibactam (CAZ-AVI), has been developed to treat complicated urinary tract infections and complicated intra-abdominal infections. CAZ-AVI is approved for children over 3-month old but has yet to be investigated for cases of osteomyelitis. Only three case reports exist in literature on the use of CAZ-AVI for CR-KP osteomyelitis in adults. In this report, we present an infant with primary hematogenous osteomyelitis and septic arthritis in the right shoulder following surgical treatment for a heart murmur. Bacterial isolation revealed a strain of CR-KP, which was successfully treated with CAZ-AVI after initial administration of imipenem-based treatments.
Collapse
Affiliation(s)
- Zejuan Ji
- Department of Orthopaedic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Keming Sun
- Department of Orthopaedic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Zhenwei Li
- Department of Orthopaedic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Weyland Cheng
- Department of Orthopaedic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, People's Republic of China.,Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Junwen Yang
- Microbiology Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
8
|
Mauri C, Maraolo AE, Di Bella S, Luzzaro F, Principe L. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics (Basel) 2021; 10:1012. [PMID: 34439062 PMCID: PMC8388901 DOI: 10.3390/antibiotics10081012] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Infections caused by metallo-β-lactamase (MBL)-producing Enterobacterales and Pseudomonas are increasingly reported worldwide and are usually associated with high mortality rates (>30%). Neither standard therapy nor consensus for the management of these infections exist. Aztreonam, an old β-lactam antibiotic, is not hydrolyzed by MBLs. However, since many MBL-producing strains co-produce enzymes that could hydrolyze aztreonam (e.g., AmpC, ESBL), a robust β-lactamase inhibitor such as avibactam could be given as a partner drug. We performed a systematic review including 35 in vitro and 18 in vivo studies on the combination aztreonam + avibactam for infections sustained by MBL-producing Gram-negatives. In vitro data on 2209 Gram-negatives were available, showing the high antimicrobial activity of aztreonam (MIC ≤ 4 mg/L when combined with avibactam) in 80% of MBL-producing Enterobacterales, 85% of Stenotrophomonas and 6% of MBL-producing Pseudomonas. Clinical data were available for 94 patients: 83% of them had bloodstream infections. Clinical resolution within 30 days was reported in 80% of infected patients. Analyzing only patients with bloodstream infections (64 patients), death occurred in 19% of patients treated with aztreonam + ceftazidime/avibactam. The combination aztreonam + avibactam appears to be a promising option against MBL-producing bacteria (especially Enterobacterales, much less for Pseudomonas) while waiting for new antimicrobials.
Collapse
Affiliation(s)
- Carola Mauri
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Alberto Enrico Maraolo
- First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, 80131 Naples, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Science, Trieste University, 34128 Trieste, Italy;
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
| |
Collapse
|
9
|
Huang J, Zhang S, Zhao Z, Chen M, Cao Y, Li B. Acquisition of a Stable and Transferable bla NDM-5-Positive Plasmid With Low Fitness Cost Leading to Ceftazidime/Avibactam Resistance in KPC-2-Producing Klebsiella pneumoniae During Treatment. Front Cell Infect Microbiol 2021; 11:658070. [PMID: 34354959 PMCID: PMC8329419 DOI: 10.3389/fcimb.2021.658070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence and prevalence of carbapenem-resistant Enterobacteriaceae (CRE) have drawn worldwide attention. Ceftazidime/avibactam (CAZ/AVI) gives us a valuable alternative strategy to treat CRE infections. Unfortunately, CAZ/AVI resistance could occur during CAZ/AVI treatment. The CAZ/AVI-resistant Carbapenem-resistant Klebsiella pneumoniae (CR-KP) (KP137060) and earlier CAZ/AVI-susceptible isolate (KP135194) from the same hospitalized patient were collected at Fujian Medical University Union Hospital between October and November 2019. In this study, CAZ/AVI MICs of CAZ/AVI-susceptible and -resistant isolates (KP135194 and KP137060) were 4 mg/L and 128 mg/L, respectively; and the two isolates had the same antibiotic resistance pattern to other carbapenems. Two strains were then submitted for whole-genome sequencing and bioinformatic analysis. ompK36 was not detected in two isolates. No mutation was observed in bla KPC-2, ompK35 and ompK37 in this study and there was no significant difference of the expression in bla KPC-2, ompK35 and ompK37 between the two isolates (p>0.05). Two isolates were sequence type 11 and harbored bla KPC-2, bla SHV-182 and bla TEM-1B. Compared with KP135194, KP137060 harbored an additional bla NDM-5 positive plasmid. bla NDM-5 gene could be successfully transferred into E. coli J53 at a conjugation frequency of 1.14×10-4. Plasmid stability testing showed that bla KPC-2- and bla NDM-5-harboring plasmids were still stably maintained in the hosts. Growth assay and growth competition experiments showed there was no significant difference in fitness cost between two CR-KP isolates. Our study described the acquisition of a bla NDM-5-harboring plasmid leading to resistance to ceftazidime/avibactam in KPC-2-producing Klebsiella pneumoniae during treatment. This phenomenon deserves further exploration.
Collapse
Affiliation(s)
- Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Min Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
10
|
Sader HS, Carvalhaes CG, Arends SJR, Castanheira M, Mendes RE. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J Antimicrob Chemother 2021; 76:659-666. [PMID: 33276387 DOI: 10.1093/jac/dkaa504] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Aztreonam is a monobactam stable to hydrolysis by metallo-β-lactamases (MBLs) and avibactam is a non-β-lactam β-lactamase inhibitor that effectively inhibits serine carbapenemases (CPs). Aztreonam/avibactam is under clinical development for treatment of serious infections caused by Gram-negative bacteria, including MBL-producers. OBJECTIVES To evaluate the in vitro activity of aztreonam/avibactam against clinical Enterobacterales isolates. METHODS 8787 Enterobacterales were collected consecutively from 64 medical centres located in Western Europe (W-EU; n = 4616; 26 centres in 10 nations), Eastern Europe (E-EU; n = 1554; 11 centres in 9 nations), the Asia-Pacific region (APAC; n = 1456; 17 centres in 9 nations), and Latin America (LATAM; n = 1161; 10 centres in 6 nations). Susceptibility tests were performed by reference broth microdilution methods and interpreted according to EUCAST criteria. RESULTS 99.9% of isolates were inhibited at aztreonam/avibactam MIC of ≤8 mg/L (MIC50/90, ≤0.03/0.12 mg/L), including 99.7% of carbapenem-resistant (CRE; n = 396; MIC50/90, 0.25/0.5 mg/L) and 99.7% of multidrug-resistant isolates (n = 1706; MIC50/90, 0.06/0.5 mg/L). CRE rates were 1.2%, 12.9%, 5.2%, and 5.8% in W-EU, E-EU, APAC, and LATAM, respectively (4.5% overall). A CP was identified in 90.2% of CRE isolates. The most common CPs were variants of KPC (35.9% of CRE), NDM (29.0%), and OXA-48 (26.8%). The highest aztreonam/avibactam MIC value among MBL-producers (n = 110; MIC50/90, 0.12/0.5 mg/L) was 2 mg/L. Susceptibility rates for ceftriaxone, meropenem, levofloxacin, and amikacin were highest in W-EU (80.9%, 99.0%, 80.7% and 97.9%, respectively) and lowest in E-EU (52.0%, 88.9%, 54.1%, and 84.2%, respectively). CONCLUSIONS Our results support clinical development of aztreonam/avibactam to treat infections caused by Enterobacterales, including MBL-producers.
Collapse
|
11
|
Theuretzbacher U, Carrara E, Conti M, Tacconelli E. Role of new antibiotics for KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2021; 76:i47-i54. [PMID: 33534882 DOI: 10.1093/jac/dkaa497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae has accumulated a wide range of resistance determinants and has evolved into a difficult-to-treat pathogen that poses an increasing healthcare threat. KPC is an important marker for extensively drug-resistant (XDR) organisms with limited treatment options. In response to the medical need for new treatment options, several new antibiotics have been developed and registered recently. The β-lactamase inhibitor (BLI) combinations ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam, the cephalosporin-siderophore conjugate cefiderocol, the aminoglycoside derivative plazomicin and the tetracycline derivative eravacycline, focus on carbapenem-resistant Enterobacterales. These modified agents from old antibiotic classes illustrate the challenges of this requirement to address class-specific resistance mechanisms while critical gaps and some cross-resistance within a class, or to unrelated antibiotic classes, remain. The diverse molecular mechanisms and increasing diversification of carbapenem resistance among Klebsiella isolates requires improved rapid molecular diagnostic capabilities and stringent stewardship programmes to preserve the efficacy of new antibiotics for as long as possible.
Collapse
Affiliation(s)
| | - Elena Carrara
- Infectious Diseases Section, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Michela Conti
- Infectious Diseases Section, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Evelina Tacconelli
- Infectious Diseases Section, Department of Diagnostics and Public Health, University of Verona, Italy
| |
Collapse
|
12
|
Hao H, Liu Y, Cao J, Gao K, Lu Y, Wang W, Wang P, Lu S, Hu L, Tong Z, Li W. Genomic New Insights Into Emergence and Clinical Therapy of Multidrug-Resistant Klebsiella pneumoniae in Infected Pancreatic Necrosis. Front Microbiol 2021; 12:669230. [PMID: 34248878 PMCID: PMC8269854 DOI: 10.3389/fmicb.2021.669230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Infected pancreatic necrosis (IPN) is a key risk factor in the progression of severe acute pancreatitis, and use of antibiotics is one of the main clinical actions. However, early prophylactic or unreasonable use of antibiotics promotes drug resistance in bacteria and also delays optimum treatment. To explore genomic evidence of rational antibiotic use in intensive care units, we isolated Klebsiella pneumoniae from IPN samples that showed the highest positive-culture rate in 758 patients. Based on whole-genome sequencing from eight strains, 42 antibiotic-resistant genes were identified in the chromatin and 27 in the plasmid, which included classic resistance-mechanism factors such as β-lactamases [16.67% (7/42) in the chromatin and 25.93% (7/27) in the plasmid]. The K. pneumoniae isolates were identified to be resistant to multiple antibiotics used in clinics. In vivo and in vitro, ceftazidime-avibactam (CZA) plus aztreonam (ATM) (2.5:1) showed more significant antibacterial effectiveness than CZA alone. The isolated K. pneumoniae were of three different types according to the resistance phenotypes for CZA and ATM. Those co-harboring bla NDM-5, bla CTX-M-15, bla OXA-1, and bla SHV-187 showed higher resistance to CAZ than bla NDM-5. Those co-harboring bla CTX-M-65, bla SHV-182, and bla TEM-181 were significantly less resistant to β-lactam than to other extended-spectrum β-lactamases. However, β-lactamases were inhibited by avibactam (AVI), except for NDM-5. ATM plus AVI showed a significant inhibitory effect on K. pneumoniae, and the minimum dosage of ATM was < 1 mg/L. In conclusion, we propose that ATM plus AVI could be a major therapy for complex infectious diseases caused by multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Haibin Hao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yang Liu
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jin Cao
- Laboratory of Microbiology, Basic Medical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kun Gao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Yingying Lu
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Weiping Wang
- Laboratory of Microbiology, Basic Medical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Wang
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sida Lu
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long Hu
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- National Institut of Healthcare Data Science at Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Ding Y, Wang H, Pu S, Huang S, Niu S. Resistance Trends of Klebsiella pneumoniae Causing Urinary Tract Infections in Chongqing, 2011-2019. Infect Drug Resist 2021; 14:475-481. [PMID: 33603411 PMCID: PMC7881772 DOI: 10.2147/idr.s295870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose To analyze the characteristics and trends of drug resistance for Klebsiella pneumoniae (K. pneumoniae), isolated from urinary tract infections (UTIs), to common antibiotics used in clinics. Methods This retrospective study was conducted in a teaching hospital in Chongqing from 2011 to 2019. Laboratory data of isolated bacteria were collected and analyzed. Results Among the 17,966 non-repetitive strains isolated from the urine sample, a total of 1543 K. pneumoniae isolates were identified, with an isolation frequency secondary only to Escherichia coli (E. coli) and there was a peak in the K. pneumoniae isolates in the year 2013. During the period, the rate of extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae fell from 48.4% in 2011 to 32.9% in 2019, and a marked jump of resistance was seen in carbapenems from 2.2% to 18.0%. The peak of carbapenem resistance rate (22.6%) to K. pneumoniae was observed in 2017 along with a low ESBL-producing rate (30.9%). Piperacillin/tazobactam and cefepime resistance levels went up from 4.4% to 25.7% and from 18.2% to 30.5%, respectively. Moreover, the K. pneumoniae isolates resistance rate to carbapenems and amikacin gradually grew up, showing their peaks in 2017, and then dropped year by year. However, ceftazidime and aztreonam resistance levels were relatively stable, fluctuating between 21.8% and 35.6%, 32.2% and 39.4%, respectively. Conclusion There is a significant upward tendency in carbapenem resistance rate and a downward tendency in ESBL-production rate in K. pneumoniae isolates from UTIs, and continuous surveillance is necessary in the future.
Collapse
Affiliation(s)
- Yanhui Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Huijuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuli Pu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shifeng Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
14
|
Zou C, Wei J, Shan B, Chen X, Wang D, Niu S. In vitro Activity of Ceftazidime-Avibactam and Aztreonam-Avibactam Against Carbapenem-resistant Enterobacteriaceae Isolates Collected from Three Secondary Hospitals in Southwest China Between 2018 and 2019. Infect Drug Resist 2020; 13:3563-3568. [PMID: 33116675 PMCID: PMC7567573 DOI: 10.2147/idr.s273989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose To assess the antimicrobial activities of ceftazidime/avibactam (CAZ/AVI) and aztreonam/avibactam (ATM/AVI) against carbapenem-resistant Enterobacteriaceae (CRE) isolates collected from three secondary hospitals in Southwest China between 2018 and 2019. Materials and Methods A total of 120 unique CRE clinical isolates were collected and carbapenemase genes were detected using PCR. Antimicrobial susceptibility was determined using standard broth microdilution method and the results were interpreted according to CLSI breakpoints. Results The 120 carbapenem-resistant strains included 92 Klebsiella pneumoniae, 10 Escherichia coli, 10 Enterobacter cloacae, five Klebsiella aerogenes, and three Klebsiella oxytoca isolates. Seventy-four percent of these 120 CRE isolates were collected from patients located in non-ICUs; 65.0% of these CRE isolates were collected from male patients; and 34.2% of these isolates were isolated from respiratory tracts. Four different carbapenemase genes were identified among 103 carbapenemase-producing Enterobacteriaceae (CPE) isolates, including bla KPC-2 (n=77), bla NDM-1 (n=16), bla NDM-5 (n=12) and bla IMP-4 (n=2). Overall, 21.7%, 37.5%, 40.8%, 75.0%, and 100% of the CRE strains were susceptible to levofloxacin, trimethoprim/sulfamethoxazole, amikacin, CAZ/AVI, and ATM/AVI, respectively. In addition, antimicrobial susceptibility testing showed that 96.7% isolates (n=116) were resistant to aztreonam, and the addition of avibactam (4 mg/L) significantly reduced the MICs of those aztreonam-resistant isolates by more than 128-fold (range: ≤0.125-4 mg/L), and 90.0% (n=108) of total 120 isolates were inhibited at ATM/AVI concentration ≤1 mg/L. Conclusion Our study revealed significant antimicrobial resistance among the CRE isolates against some commonly used antibiotics in three secondary Chinese hospitals. ATM/AVI exhibited potent activity against CRE isolates, including double carbapenemase-producing isolates, whereas CAZ/AVI was active against all KPC producers.
Collapse
Affiliation(s)
- Chunhong Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Wei
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Baoju Shan
- Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Deqiang Wang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist 2020; 23:174-180. [PMID: 32971292 DOI: 10.1016/j.jgar.2020.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Sequence type 11 (ST11) carbapenem-resistant Klebsiella pneumoniae (CRKP) has become the dominant clone in China. In this review, we trace the prevalence of ST11 CRKP in the China Antimicrobial Surveillance Network (CHINET), the key antimicrobial resistance mechanisms and virulence evolution. The recent emergence of ST11 carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strains in China due to the acquisition of a pLVPK-like virulence plasmid, which may cause severe infections in relatively healthy individuals that are difficult to treat with current antibiotics, has attracted worldwide attention. There is a very close linkage among IncF plasmids, NTEKPC and ST11 K. pneumoniae in China. Hybrid conjugative virulence plasmids are demonstrated to readily convert a ST11 CRKP strain to a CR-hvKP strain via conjugation. Understanding the molecular evolutionary mechanisms of resistance and virulence-bearing plasmids as well as the prevalence of ST11 CRKP in China allows improved tracking and control of such organisms.
Collapse
Affiliation(s)
- Wenjian Liao
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
16
|
Li D, Liao W, Huang HH, Du FL, Wei DD, Mei YF, Long D, Wan LG, Liu Y, Zhang W. Emergence of Hypervirulent Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae Isolates in a Chinese Tertiary Hospital. Infect Drug Resist 2020; 13:2673-2680. [PMID: 32821131 PMCID: PMC7422693 DOI: 10.2147/idr.s257477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is increasingly reported worldwide, but ceftazidime/avibactam (CAZ/AVI)-resistant hvKP isolates have rarely been observed. We attempted to characterize them in clinical CRKP isolates collected from a university hospital in China from March 2016 to March 2018. Methods All isolates were analyzed by antimicrobial susceptibility testing, molecular detection of antibiotic resistance determinants, multilocus sequence typing (MLST), SDS-PAGE, and pulsed-field gel electrophoresis (PFGE). The pLVPK-related genetic loci (rmpA2, terW, iutA, and silS) were screened in all CAZ/AVI-resistant CRKP isolates for the presence of virulence plasmids by PCR. Capsule typing, serum killing assay, Galleria mellonella lethality experiments, and mouse lethality assay were conducted to identify CAZ/AVI-resistant hvKP among isolates that carried all four virulence genes. Results A total of 232 CRKP isolates were collected. Overall, CAZ/AVI-resistance was found in 8.2% (19/232) CRKP isolates isolated from patients with no history of previous CAZ/AVI-based treatment. Among these, 63.2% (12/19) were metallo-β-lactamase-producing K. pneumoniae (MBL-KP), 52.6% (10/19) were Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP), and 26.3% (5/19) produced both MBL and KPC. The presence of carbapenemase promoted a very high increase in CAZ/AVI minimum inhibitory concentration only when ompk35 and ompk36 were absent. Alarmingly, nine isolates had all four virulence genes for the presence of virulence plasmids. All nine isolates were considered to be CAZ/AVI-resistant hvKP according to the G. mellonella infection model and mouse lethality assay, with ST23 being the most common type (55.6%, 5/9). Conclusion The newly emerged hypervirulent CAZ/AVI-resistant KP strain might cause a serious threat to public health, suggesting an urgent need for enhanced clinical awareness and epidemiologic surveillance.
Collapse
Affiliation(s)
- Dan Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China.,The First Clinical Medical College of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Wenjian Liao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China.,The First Clinical Medical College of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Hai-Hua Huang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Fang-Ling Du
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Dan-Dan Wei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Yan-Fang Mei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Dan Long
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - La-Gen Wan
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|