1
|
Wei J, Yang L, Wang X, Cao Z, Wang C, Cheng H, Luo B, Wei Z, Min X. Characterization of a novel green-revertible albino mutant in alfalfa (Medicago sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154452. [PMID: 39954306 DOI: 10.1016/j.jplph.2025.154452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
High-temperature-sensitive leaf color mutants are ideal materials for studying photosynthetic pigment biosynthesis and corresponding response mechanisms under heat stress. Here, we provide the first report of albinism occurrence in alfalfa and characterize the high-temperature albino regreen (har) mutant of alfalfa, which presents albino leaves when exposed to temperatures ≥35 °C and is not specific to developmental stage. Genetic analysis demonstrated that the albino trait exhibits dominant inheritance. Agronomic trait evaluations revealed that the har mutants were slightly but negatively affected by albinism. However, under high temperature, albino leaves had a severe negative effect on the photosynthesis-related traits of har mutants. Cytological analysis revealed that the albino leaf cells contained disintegrated chloroplasts, suggesting a defect in chloroplast development. Moreover, this study involved a comprehensive investigation of the enzymes associated with the photosynthetic pigment biosynthetic pathway of the har mutant under high-temperature stress using RNA sequencing. Notably, high-temperature-induced differential leaf color traits in alfalfa result in distinct photosynthetic pigment biosynthetic pathways. Twelve key regulatory genes involved in the chlorophyll biosynthesis and degradation pathways, as well as four key regulatory genes involved in carotenoid biosynthesis pathways, were identified. Our study aims to provide a theoretical foundation for further research into the intrinsic mechanisms underlying albino leaves in alfalfa har mutants subjected to high-temperature stress and for the breeding of new germplasms with desirable pigmented leaves.
Collapse
Affiliation(s)
- Jia Wei
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Linghua Yang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Xia Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Zhengfeng Cao
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Chuanjie Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Haowen Cheng
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Bo Luo
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China.
| | - Xueyang Min
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province, 225009, Yangzhou, People's Republic of China.
| |
Collapse
|
2
|
Peng Y, Jiang Y, Chen Q, Lin Y, Li M, Zhang Y, Wang Y, He W, Zhang Y, Wang X, Tang H, Luo Y. Comparative transcriptome and metabolomic analysis reveal key genes and mechanisms responsible for the dark-green leaf color of a strawberry mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109327. [PMID: 39608287 DOI: 10.1016/j.plaphy.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.
Collapse
Affiliation(s)
- Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Yang W, Yuan Y, Yang P, Li S, Ma S, Liu X, Zhou X, Chen R. ZmGluTR1 is involved in chlorophyll biosynthesis and is essential for maize development. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154115. [PMID: 37864879 DOI: 10.1016/j.jplph.2023.154115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Chlorophyll is the most important carrier of photosynthesis in plants and is therefore vital for plant growth and development. Synthesis of 5-aminolevulinic acid (ALA) is initiated and catalyzed by glutamyl-tRNA reductase (GluTR) and is the rate-limiting step in chlorophyll biosynthesis. GluTR is controlled by several regulating factors. Although many studies have investigated the structure and function of GluTR in plants, the maize (Zea mays L.) GluTR has not yet been reported. Here, we isolated and identified the first loss-of-function mutant of GluTR in plants from a maize mutagenic population. The stop-gain mutation in ZmGluTR1 resulted in leaf etiolation throughout the growing season. The level of intermediates of chlorophyll biosynthesis and photosynthetic pigments decreased markedly and abnormal chloroplast structure was also observed in the mutants. Further analysis revealed that the deletion of carboxyl terminal (C-terminal) led to premature transcription termination and this hindered the interaction with FLUORESCENT (FLU), thereby influencing the stability of mutated ZmGluTR1 and leading to abolish interaction with GluTR-binding protein (GluBP). Moreover, mutations in the catalytic domain or nicotinamide adenine dinucleotide phosphate (NADPH) binding domain were lethal under normal growth conditions. These results indicate that ZmGluTR1 plays a fundamental role in chlorophyll biosynthesis and maize development.
Collapse
Affiliation(s)
- Wenzhu Yang
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, China
| | - Pengjuan Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Suzhen Li
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Ma
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqing Liu
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Xie W, Xu D, Chen F, Wang Z, Luo J, He Y, Zheng Q, Liu C. Integrated Cytological, Physiological, and Transcriptome Analyses Provide Insight into the Albino Phenotype of Chinese Plum ( Prunus salicina). Int J Mol Sci 2023; 24:14457. [PMID: 37833903 PMCID: PMC10573071 DOI: 10.3390/ijms241914457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Albino seedlings that arise during seed reproduction can have a significant impact on plant growth and breeding. In this research, we present the first report of albino occurrences in the seed reproduction process of Prunus salicina and describe the cytological, physiological, and transcriptomic changes observed in albino seedlings. The albino seedlings which were observed in several plum cultivars exhibited abnormal chloroplast ultrastructure and perturbed stomatal structure. Compared to normal seedlings, the photosynthetic pigment contents in albino seedlings decreased by more than 90%, accompanied by significant reductions in several chlorophyll fluorescence parameters. Furthermore, substantially changed photosynthetic parameters indicated that the photosynthetic capacity and stomatal function were impaired in albino seedlings. Additionally, the activities of the antioxidant enzyme were drastically altered against the background of higher proline and lower ascorbic acid in leaves of albino seedlings. A total of 4048 differentially expressed genes (DEGs) were identified through transcriptomic sequencing, and the downregulated DEGs in albino seedlings were greatly enriched in the pathways for photosynthetic antenna proteins and flavonoid biosynthesis. GLK1 and Ftsz were identified as candidate genes responsible for the impaired chloroplast development and division in albino seedlings. Additionally, the substantial decline in the expression levels of examined photosystem-related chloroplast genes was validated in albino seedlings. Our findings shed light on the intricate physiological and molecular mechanisms driving albino plum seedling manifestation, which will contribute to improving the reproductive and breeding efforts of plums.
Collapse
Affiliation(s)
- Weiwei Xie
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Dantong Xu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Fangce Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Zhengpeng Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jiandong Luo
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Qianming Zheng
- Institute of Pomology Science, Guizhou Academy of Agricultural Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.X.); (D.X.); (F.C.); (Z.W.); (J.L.); (Y.H.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
5
|
Tao T, Hu W, Yang Y, Zou M, Zhou S, Tian S, Wang Y. Transcriptomics reveals the molecular mechanisms of flesh colour differences in eggplant (Solanum melongena). BMC PLANT BIOLOGY 2023; 23:5. [PMID: 36597026 PMCID: PMC9811765 DOI: 10.1186/s12870-022-04002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fruit flesh colour is not only an important commodity attribute of eggplant but is also closely related to maturity. However, very little is known about its formation mechanism in eggplant. RESULTS Two inbred lines of eggplant, green 'NC7' and white 'BL', were used in this study to explain the differences in flesh colour. Transcriptome sequencing results revealed a total of 3304 differentially expressed genes (DEGs) in NC7 vs. BL. Of the DEGs obtained, 2050 were higher and 1254 were lower in BL. These DEGs were annotated to 126 pathways, where porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and photosynthesis-antenna proteins play vital roles in the colour formation of eggplant flesh. At the same time, Gene Ontology (GO) enrichment significance analysis showed that a large number of unigenes involved in the formation of chloroplast structure were lower in BL, which indicated that the formation of chloroplasts in white-fleshed eggplant was blocked. This was confirmed by transmission electron microscopy (TEM), which found only leucoplasts but no chloroplasts in the flesh cells of white-fleshed eggplant. Several genes encoding ERF and bHLH transcription factors were predicted to participate in the regulation of chlorophyll biosynthetic genes. CONCLUSIONS The results of this study indicated that differences in the gene expression of the chlorophyll metabolic pathway were the main cause of the different flesh colour formations. These findings will increase our understanding of the genetic basis in eggplant flesh colors formation mechanism.
Collapse
Affiliation(s)
- Tao Tao
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Wei Hu
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Yang Yang
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Min Zou
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Shanshan Zhou
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Shibing Tian
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| | - Yongqing Wang
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| |
Collapse
|
6
|
Zhou Z, Chen M, Wu Q, Zeng W, Chen Z, Sun W. Combined analysis of lipidomics and transcriptomics revealed the key pathways and genes of lipids in light-sensitive albino tea plant ( Camellia sinensis cv. Baijiguan). FRONTIERS IN PLANT SCIENCE 2022; 13:1035119. [PMID: 36330254 PMCID: PMC9623167 DOI: 10.3389/fpls.2022.1035119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Currently, the mechanism by which light-sensitive albino tea plants respond to light to regulate pigment synthesis has been only partially elucidated. However, few studies have focused on the role of lipid metabolism in the whitening of tea leaves. Therefore, in our study, the leaves of the Baijiguan (BJG) tea tree under shade and light restoration conditions were analyzed by a combination of lipidomics and transcriptomics. The leaf color of BJG was regulated by light intensity and responded to light changes in light by altering the contents and proportions of lipids. According to the correlation analysis, we found three key lipid components that were significantly associated with the chlorophyll SPAD value, namely, MGDG (36:6), DGDG (36:6) and DGDG (34:3). Further weighted gene coexpression network analysis (WGCNA) showed that HY5 TF and GLIP genes may be hub genes involved lipid regulation in albino tea leaves. Our results lay a foundation for further exploration of the color changes in albino tea leaves.
Collapse
Affiliation(s)
- Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjie Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Quanjin Wu
- Department of Finance and Management, The Open University of Fujian, Fuzhou, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Wang Y, Salt DE, Koornneef M, Aarts MGM. Construction and analysis of a Noccaea caerulescens TILLING population. BMC PLANT BIOLOGY 2022; 22:360. [PMID: 35869423 PMCID: PMC9308233 DOI: 10.1186/s12870-022-03739-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Metals such as Zn or Cd are toxic to plant and humans when they are exposed in high quantities through contaminated soil or food. Noccaea caerulescens, an extraordinary Zn/Cd/Ni hyperaccumulating species, is used as a model plant for metal hyperaccumulation and phytoremediation studies. Current reverse genetic techniques to generate mutants based on transgenesis is cumbersome due to the low transformation efficiency of this species. We aimed to establish a mutant library for functional genomics by a non-transgenic approach, to identify mutants with an altered mineral profiling, and to screen for mutations in bZIP19, a regulator of Zn homeostasis in N. caerulescens. RESULTS To generate the N. caerulescens mutant library, 3000 and 5000 seeds from two sister plants of a single-seed recurrent inbred descendant of the southern French accession Saint-Félix-de-Pallières (SF) were mutagenized respectively by 0.3 or 0.4% ethyl methane sulfonate (EMS). Two subpopulations of 5000 and 7000 M2 plants were obtained after 0.3 or 0.4% EMS treatment. The 0.4% EMS treatment population had a higher mutant frequency and was used for TILLING. A High Resolution Melting curve analysis (HRM) mutation screening platform was optimized and successfully applied to detect mutations for NcbZIP19, encoding a transcription factor controlling Zn homeostasis. Of four identified point mutations in NcbZIP19, two caused non-synonymous substitutions, however, these two mutations did not alter the ionome profile compared to the wild type. Forward screening of the 0.4% EMS treatment population by mineral concentration analysis (ionomics) in leaf material of each M2 plant revealed putative mutants affected in the concentration of one or more of the 20 trace elements tested. Several of the low-Zn mutants identified in the ionomic screen did not give progeny, illustrating the importance of Zn for the species. The mutant frequency of the population was evaluated based on an average of 2.3 knockout mutants per tested monogenic locus. CONCLUSIONS The 0.4% EMS treatment population is effectively mutagenized suitable for forward mutant screens and TILLING. Difficulties in seed production in low Zn mutants, obtained by both forward and reverse genetic approach, hampered further analysis of the nature of the low Zn phenotypes.
Collapse
Affiliation(s)
- Yanli Wang
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- College of Horticulture Science & Technology, Hebei Normal University of Science & Technology, No 360, West of HeBei street, Qinhuang Dao, China
| | - David E Salt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Fine Mapping and Characterization of a Major Gene Responsible for Chlorophyll Biosynthesis in Brassica napus L. Biomolecules 2022; 12:biom12030402. [PMID: 35327594 PMCID: PMC8945836 DOI: 10.3390/biom12030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Rapeseed (Brassica napus L.) is mainly used for oil production and industrial purposes. A high photosynthetic efficiency is the premise of a high yield capable of meeting people’s various demands. Chlorophyll-deficient mutants are ideal materials for studying chlorophyll biosynthesis and photosynthesis. In a previous study, we obtained the mutant yl1 for leaf yellowing throughout the growth period by ethyl methanesulfonate mutagenesis of B. napus. A genetic analysis showed that the yl1 chlorophyll-deficient phenotype was controlled by one incompletely dominant gene, which was mapped on chromosome A03 by a quantitative trait loci sequencing analysis and designated as BnA03.Chd in this study. We constructed an F2 population containing 5256 individuals to clone BnA03.Chd. Finally, BnA03.Chd was fine-mapped to a 304.7 kb interval of the B. napus ‘ZS11’ genome containing 58 annotated genes. Functional annotation, transcriptome, and sequence variation analyses confirmed that BnaA03g0054400ZS, a homolog of AT5G13630, was the most likely candidate gene. BnaA03g0054400ZS encodes the H subunit of Mg-chelatase. A sequence analysis revealed a single-nucleotide polymorphism (SNP), causing an amino-acid substitution from glutamic acid to lysine (Glu1349Lys). In addition, the molecular marker BnaYL1 was developed based on the SNP of BnA03.Chd, which perfectly cosegregated with the chlorophyll-deficient phenotype in two different F2 populations. Our results provide insight into the molecular mechanism underlying chlorophyll synthesis in B. napus.
Collapse
|
9
|
Liu B, Zhang X, You X, Li Y, Long S, Wen S, Liu Q, Liu T, Guo H, Xu Y. Hydrogen sulfide improves tall fescue photosynthesis response to low-light stress by regulating chlorophyll and carotenoid metabolisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:133-145. [PMID: 34883320 DOI: 10.1016/j.plaphy.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S), as a gaseous messenger molecule, plays critical roles in signal transduction and biological modulation. In the present study, the roles of H2S in regulating chlorophyll (Chl) and carotenoid (Car) contents to improve photosynthesis in tall fescue were investigated under low-light (LL) stress. Compared to control conditions, LL stress significantly reduced total biomass, net photosynthetic rate (Pn), maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), and the contents of Chl and Car. Under exogenous sodium hydrosulfide (NaHS, H2S donor) application, these parameters were enhanced, ultimately increasing photosynthesis. Moreover, exogenous H2S up-regulated the expression of chlorophyll biosynthesis genes while down-regulated chlorophyll degradation genes, resulting in increases in chlorophyll precursors. Components of carotenoids and expression of genes encoding biosynthesis and degradation enzymes varied similarly. Additionally, application exogenous H2S up-regulated expression of FaDES1 and FaDCD. Thus, it enhanced L-cysteine desulfhydrase 1 (DES1, EC 4.4.1.1) and D-cysteine desulfhydrase (DCD, EC 4.4.1.15) activities leading to elevated endogenous H2S. However, these responses were reversed by treatment with hypotaurine (HT, H2S scavenger). These results suggested that H2S is involved in regulating photosynthesis to improve LL tolerance via modulating Chl and Car metabolisms in tall fescue.
Collapse
Affiliation(s)
- Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xuhu Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Youyue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Suyun Wen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
10
|
Venkatesh J, Kang MY, Liu L, Kwon JK, Kang BC. F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-Temperature Stress Tolerance in Pepper ( Capsicum chinense). PLANTS 2020; 9:plants9091186. [PMID: 32933000 PMCID: PMC7570372 DOI: 10.3390/plants9091186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar ‘sy-2’. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive ‘sy-2’ line. Protein–protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Min-Young Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.V.); (M.-Y.K.); (J.-K.K.)
- Correspondence: ; Tel.: +82-2-880-4563; Fax: +82-2-873-2056
| |
Collapse
|
11
|
Lu M, Han J, Zhu B, Jia H, Yang T, Wang R, Deng WW, Zhang ZZ. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). PLANTA 2019; 249:363-376. [PMID: 30209617 DOI: 10.1007/s00425-018-3007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
A normal tea plant with one albino branch was discovered. RNA sequencing, albinism phenotype and ultrastructural observations provided a valuable understanding of the albino mechanism in tea plants. Tea plants with a specific color (white or yellow) have been studied extensively. A normal tea plant (Camellia sinensis cv. quntizhong) with one albino branch was discovered in a local tea plantation in Huangshan, Anhui, China. The pure albino leaves on this special branch had accumulated a fairly high content of amino acids, especially theanine (45.31 mg/g DW), and had a low concentration of polyphenols and an extremely low chlorophyll (Chl) content compared with control leaves. Ultrastructural observation of an albino leaf revealed no chloroplasts, whereas it was viable in the control leaf. RNA sequencing and differentially expressed gene (DEG) analysis were performed on the albino leaves and on control leaves from a normal green branch. The related genes involved in theanine and polyphenol biosynthesis were also investigated in this study. DEG expression patterns in Chl biosynthesis or degradation, carotenoid biosynthesis or degradation, chloroplast development, and biosynthesis were influenced in the albino leaves. Chloroplast deletion in albino leaves had probably destroyed the balance of carbon and nitrogen metabolism, leading to a high accumulation of free amino acids and a low concentration of polyphenols in the albino leaves. The obtained results can provide insight into the mechanism underlying this special albino branch phenotype, and are a valuable contribution toward understanding the albino mechanism in tea plants.
Collapse
Affiliation(s)
- Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jieyun Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Rangjian Wang
- Tea Research Institute, Fujian Academy of Agricultural Science, Hutouyang, Shekou, Fuan, 355015, Fujian, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
12
|
Li NN, Lu JL, Li QS, Zheng XQ, Wang XC, Wang L, Wang YC, Ding CQ, Liang YR, Yang YJ. Dissection of Chemical Composition and Associated Gene Expression in the Pigment-Deficient Tea Cultivar 'Xiaoxueya' Reveals an Albino Phenotype and Metabolite Formation. FRONTIERS IN PLANT SCIENCE 2019; 10:1543. [PMID: 31827483 PMCID: PMC6890721 DOI: 10.3389/fpls.2019.01543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/05/2019] [Indexed: 05/08/2023]
Abstract
The tea cultivar 'Xiaoxueya', a temperature-sensitive albino mutant, is a rare tea germplasm because of its highly enriched amino acid content and brisk flavour. In comparison with green leaf tissues of 'Xiaoxueya', albino leaves show significant deficiency in chlorophylls and carotenoids and severely disrupted chloroplasts. Furthermore, the accumulation of quality-related secondary metabolites is altered in 'Xiaoxueya' albino leaf, with significantly increased contents of total amino acids, theanine, and glutamic acid and significantly decreased contents of alkaloids, catechins, and polyphenols. To uncover the molecular mechanisms underlying albinism and quality-related constituent variation in 'Xiaoxueya' leaves, expression profiles of pivotal genes involved in the biosynthetic pathways of pigments, caffeine, theanine, and catechins were investigated by quantitative real-time PCR technology. The results revealed that suppressed expression of the chloroplast-localized 1-deoxy-D-xylulose-5-phosphate synthase genes DXS1 and DXS2 involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and protochlorophyllide oxidoreductase genes POR1 and POR2 involved in the chlorophyll biosynthetic pathway is responsible for the pigment deficiency in 'Xiaoxueya' albino leaf. Additionally, the low expression of the tea caffeine synthase gene (TCS) involved in caffeine biosynthesis and the chalcone synthase genes CHS1, CHS2, and CHS3, the chalcone isomerase gene CHI, the flavonoid 3',5'-hydroxylase genes F3'5'H1 and F3'5'H2, and the anthocyanidin reductase genes ANR1 and ANR2 involved in the flavonoid pathway is related to the reduction in alkaloid and catechin levels in 'Xiaoxueya' albino leaves.
Collapse
Affiliation(s)
- Na-Na Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Chao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lu Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Chun Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chang-Qing Ding
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
- *Correspondence: Yue-Rong Liang, ; Ya-Jun Yang,
| | - Ya-Jun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yue-Rong Liang, ; Ya-Jun Yang,
| |
Collapse
|
13
|
Shi X, Chen S, Peng Y, Wang Y, Chen J, Hu Z, Wang B, Li A, Chao D, Li Y, Teng S. TSC1 enables plastid development under dark conditions, contributing to rice adaptation to transplantation shock. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:112-129. [PMID: 29210524 DOI: 10.1111/jipb.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Since its domestication from wild rice thousands of years ago, rice has been cultivated largely through transplantation. During transplantation from the nursery to the paddy field, rice seedlings experience transplantation shock which affects their physiology and production. However, the mechanisms underlying transplantation shock and rice adaptation to this shock are largely unknown. Here, we isolated a transplant-sensitive chloroplast-deficient (tsc1) rice mutant that produces albino leaves after transplantation. Blocking light from reaching the juvenile leaves and leaf primordia caused chloroplast deficiencies in transplanted tsc1 seedlings. TSC1 encodes a noncanonical adenosine triphosphate-binding cassette (ABC) transporter homologous to AtNAP14 and is of cyanobacterial origin. We demonstrate that TSC1 controls plastid development in rice under dark conditions, and functions independently of light signaling. However, light rescued the tsc1 mutant phenotype in a spectrum-independent manner. TSC1 was upregulated following transplantation, and modulated the iron and copper levels, thereby regulating prolamellar body formation during the early P4 stage of leaf development. Therefore, TSC1 is indispensable for plastid development in the absence of light, and contributes to adaptation to transplantation shock. Our study provides insight into the regulation of plastid development and establishes a framework for improving recovery from transplantation shock in rice.
Collapse
Affiliation(s)
- Xiaoliang Shi
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Sunlu Chen
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Yu Peng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Yufeng Wang
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| | - Jiugeng Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhanghua Hu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baohe Wang
- Rice Breeding Center, Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Aihong Li
- Rice Breeding Center, Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhong Li
- Rice Breeding Center, Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
14
|
An D, Ma Q, Wang H, Yang J, Zhou W, Zhang P. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. PLANT MOLECULAR BIOLOGY 2017; 94:109-124. [PMID: 28258553 DOI: 10.1007/s11103-017-0596-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 02/16/2017] [Indexed: 05/20/2023]
Abstract
Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.
Collapse
Affiliation(s)
- Dong An
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China.
| |
Collapse
|
15
|
Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J. WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. PLANT MOLECULAR BIOLOGY 2016; 92:581-595. [PMID: 27573887 DOI: 10.1007/s11103-016-0533-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Plastid-encoded plastid RNA polymerase (PEP), a dominant RNA polymerase in mature chloroplasts, consists of core subunits and peripheral subunits. Despite the importance of the peripheral subunits in control of PEP activity it is unclear how they interact with one another to exert physiological effects on chloroplast development and plant growth, especially in rice. Here, we report a mutant, designated wsl3 that lacks a peripheral subunit in rice. We isolated the WSL3 gene encoding an essential peripheral subunit of rice PEP complex, OsPAP1/OspTAC3 by map-based cloning, and verified its function by complementation analysis. The wsl3 mutant showed a typical expression pattern of plastid-encoded genes, suggesting that PEP activity was impaired. Using immunofluorescent labeling and immunoblotting, we found that WSL3 was localized to the chloroplast and associated with the nucleoid. In addition, we demonstrated that WSL3 interacted with PEP subunits in Y2H, BiFC and pull-down experiments. Furthermore, a cpDNA IP assay revealed that WSL3 was associated with the PEP complex during the entire transcription process. We provide evidence suggesting that WSL3 is essential for early chloroplast development by interacting with subunits of the PEP complex.
Collapse
Affiliation(s)
- Liwei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Kunneng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qibing Lin
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jie Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhichao Zhao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
16
|
Liu L, Venkatesh J, Jo YD, Koeda S, Hosokawa M, Kang JH, Goritschnig S, Kang BC. Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1541-56. [PMID: 27147070 DOI: 10.1007/s00122-016-2723-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/22/2016] [Indexed: 05/24/2023]
Abstract
The sy - 2 temperature-sensitive gene from Capsicum chinense was fine mapped to a 138.8-kb region at the distal portion of pepper chromosome 1. Based on expression analyses, two putative F-box genes were identified as sy - 2 candidate genes. Seychelles-2 ('sy-2') is a temperature-sensitive natural mutant of Capsicum chinense, which exhibits an abnormal leaf phenotype when grown at temperatures below 24 °C. We previously showed that the sy-2 phenotype is controlled by a single recessive gene, sy-2, located on pepper chromosome 1. In this study, a high-resolution genetic and physical map for the sy-2 locus was constructed using two individual F2 mapping populations derived from a cross between C. chinense mutant 'sy-2' and wild-type 'No. 3341'. The sy-2 gene was fine mapped to a 138.8-kb region between markers SNP 5-5 and SNP 3-8 at the distal portion of chromosome 1, based on comparative genomic analysis and genomic information from pepper. The sy-2 target region was predicted to contain 27 genes. Expression analysis of these predicted genes showed a differential expression pattern for ORF10 and ORF20 between mutant and wild-type plants; with both having significantly lower expression in 'sy-2' than in wild-type plants. In addition, the coding sequences of both ORF10 and ORF20 contained single nucleotide polymorphisms (SNPs) causing amino acid changes, which may have important functional consequences. ORF10 and ORF20 are predicted to encode F-box proteins, which are components of the SCF complex. Based on the differential expression pattern and the presence of nonsynonymous SNPs, we suggest that these two putative F-box genes are most likely responsible for the temperature-sensitive phenotypes in pepper. Further investigation of these genes may enable a better understanding of the molecular mechanisms of low temperature sensitivity in plants.
Collapse
Affiliation(s)
- Li Liu
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Yeong Deuk Jo
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Sota Koeda
- Department of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Munetaka Hosokawa
- Department of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jin-Ho Kang
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Korea
| | | | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea.
| |
Collapse
|
17
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
18
|
Zhao DS, Zhang CQ, Li QF, Yang QQ, Gu MH, Liu QQ. A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice. PLANT MOLECULAR BIOLOGY 2016; 91:161-77. [PMID: 26873698 DOI: 10.1007/s11103-016-0453-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/08/2016] [Indexed: 05/25/2023]
Abstract
The plastid ribosome is essential for chloroplast biogenesis as well as seedling formation. As the plastid ribosome closely resembles the prokaryotic 70S ribosome, many plastid ribosomal proteins (PRPs) have been identified in higher plants. However, their assembly in the chloroplast ribosome in rice remains unclear. In the present study, we identified a novel rice mutant, albino lethal 1 (al1), from a chromosome segment substitution line population. The al1 mutant displayed an albino phenotype at the seedling stage and did not survive past the three-leaf stage. No other apparent differences in plant morphology were observed in the al1 mutant. The albino phenotype of the al1 mutant was associated with decreased chlorophyll content and abnormal chloroplast morphology. Using fine mapping, AL1 was shown to encode the PRPL12, a protein localized in the chloroplasts of rice, and a spontaneous single-nucleotide mutation (C/T), resulting in a residue substitution from leucine in AL1 to phenylalanine in al1, was found to be responsible for the early seedling lethality. This point mutation is located at the L10 interface feature of the L12/AL1 protein. Yeast two-hybrid analysis showed that there was no physical interaction between al1 and PRPL10. In addition, the mutation had little effect on the transcript abundance of al1, but had a remarkable effect on the protein abundance of al1 and transcript abundance of chloroplast biogenesis-related and photosynthesis-related genes. These results provide a first glimpse into the molecular details of L12's function in rice.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
19
|
Wu Q, Chen Z, Sun W, Deng T, Chen M. De novo Sequencing of the Leaf Transcriptome Reveals Complex Light-Responsive Regulatory Networks in Camellia sinensis cv. Baijiguan. FRONTIERS IN PLANT SCIENCE 2016; 7:332. [PMID: 27047513 PMCID: PMC4801010 DOI: 10.3389/fpls.2016.00332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 03/04/2016] [Indexed: 05/08/2023]
Abstract
Tea plants (Camellia sinensis L.) possess high genetic diversity that is important for breeding. One cultivar, Baijiguan, exhibits a yellow leaf phenotype, reduced chlorophyll (Chl) content, and aberrant chloroplast structures under high light intensity. In contrast, under low light intensity, the flush shoot from Baijiguan becomes green, the Chl content increases significantly, and the chloroplasts exhibit normal structures. To understand the underlying molecular mechanisms for these observations, we performed de novo transcriptome sequencing and digital gene expression (DGE) profiling using Illumina sequencing technology. De novo transcriptome assembly identified 88,788 unigenes, including 1652 transcription factors from 25 families. In total, 1993 and 2576 differentially expressed genes (DEGs) were identified in Baijiguan plants treated with 3 and 6 days of shade, respectively. Gene Ontology (GO) and pathway enrichment analyses indicated that the DEGs are predominantly involved in the ROS scavenging system, chloroplast development, photosynthetic pigment synthesis, secondary metabolism, and circadian systems. The light-responsive gene POR (protochlorophyllide oxidoreductase) and transcription factor HY5 were identified. Quantitative real-time PCR (qRT-PCR) analysis of 20 selected DEGs confirmed the RNA-sequencing (RNA-Seq) results. Overall, these findings suggest that high light intensity inhibits the expression of photosystem II 10-kDa protein (PsbR) in Baijiguan, thus affecting PSII stability, chloroplast development and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Quanjin Wu
- Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhidan Chen
- Department of Tea Science, Anxi College of Tea Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Weijiang Sun
- Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Tea Science, Anxi College of Tea Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Weijiang Sun
| | - Tingting Deng
- Department of Tea Science, College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Mingjie Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
20
|
Characterization and fine mapping of a novel barley Stage Green-Revertible Albino Gene (HvSGRA) by Bulked Segregant Analysis based on SSR assay and Specific Length Amplified Fragment Sequencing. BMC Genomics 2015; 16:838. [PMID: 26494145 PMCID: PMC4619012 DOI: 10.1186/s12864-015-2015-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022] Open
Abstract
Background Leaf color variations are common in plants. Herein we describe a natural mutant of barley cultivar Edamai No.6, whs18, whose leaf color showed stable and inheritable stage-green-revertible-albino under field condition. Methods Bulked Segregant Analysis (BSA) based on SSR assay and Specific Length Amplified Fragment Sequencing (SLAF-seq) was used to map the candidate gene for this trait. Results We found that leaf color of whs18 was green at seedling stage, while the seventh or eighth leaf began to show etiolation, and albino leaves emerged after a short period. The newly emerged leaves began to show stripe white before jointing stage, and normal green leaves emerged gradually. The duration of whs18 with abnormal leaf color lasted for about 3 months, which had some negative impacts on yield-related-traits. Further investigations showed that the variation was associated with changes in chlorophyII content and chloroplast development. Genetic analysis revealed that the trait was controlled by a single recessive nuclear gene, and was designed as HvSGRA in this study. Based on the F2 population derived from Edamai No.9706 and whs18, we initially mapped the HvSGRA gene on the short arm of chromosome 2H using SSR and BSA. GBMS247 on 2HS showed co-segregation with HvSGRA. The genetic distance between the other marker GBM1187 and HvSGRA was 1.2 cM. Further analysis using BSA with SLAF-seq also identified this region as candidate region. Finally, HvSGRA interval was narrowed to 0.4 cM between morex_contig_160447 and morex_contig_92239, which were anchored to two adjacent FP contigs, contig_34437 and contig_46434, respectively. Furthermore, six putative genes with high-confidence in this interval were identified by POPSEQ. Further analysis showed that the substitution from C to A in the third exon of fructokinase-1-like gene generated a premature stop codon in whs18, which may lead to loss function of this gene. Conclusions Using SSR and SLAF-seq in conjunction with BSA, we mapped HvSGRA within two adjacent FP contigs of barley. The mutation of fructokinase-1-like gene in whs18 may cause the stage green-revertible albino of barley. The current study lays foundation for hierarchical map-based cloning of HvSGRA and utilizing the gene/trait as a visualized maker in molecular breeding in future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2015-1) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Liu J, Wang J, Yao X, Zhang Y, Li J, Wang X, Xu Z, Chen W. Characterization and fine mapping of thermo-sensitive chlorophyll deficit mutant1 in rice (Oryza sativa L.). BREEDING SCIENCE 2015; 65:161-9. [PMID: 26069446 PMCID: PMC4430508 DOI: 10.1270/jsbbs.65.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/06/2015] [Indexed: 05/20/2023]
Abstract
Chlorophyll content is one of the most important traits controlling crop biomass and economic yield in rice. Here, we isolated a spontaneous rice mutant named thermo-sensitive chlorophyll deficit 1 (tscd1) derived from a backcross recombinant inbred line population. tscd1 plants grown normally from the seedling to tiller stages showed yellow leaves with reduced chlorophyll content, but showed no significant differences after the booting stage. At temperatures below 22°C, the tscd1 mutant showed the most obvious yellowish phenotype. With increasing temperature, the yellowish leaves gradually turned green and approached a normal wild type color. Wild type and tscd1 mutant plants had obviously different chloroplast structures and photosynthetic pigment precursor contents, which resulted in underdevelopment of chloroplasts and a yellowish phenotype in tscd1. Genetic analysis indicated that the mutant character was controlled by a recessive nuclear gene. Through map-based cloning, we located the tscd1 gene in a 34.95 kb region on the long arm of chromosome 2, containing two BAC clones and eight predicted candidate genes. Further characterization of the tscd1 gene is underway. Because it has a chlorophyll deficit phenotype before the tiller stage and little influence on growth vigor, it may play a role in ensuring the purity of hybrids.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Jiayu Wang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
- Corresponding author (e-mail: )
| | - Xiaoyun Yao
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Yu Zhang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research,
Kǒln,
Germany
| | - Xiaoxue Wang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Zhengjin Xu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| | - Wenfu Chen
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University,
110866 Shenyang,
China
| |
Collapse
|
22
|
Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 2014; 9:e99564. [PMID: 24932524 PMCID: PMC4059691 DOI: 10.1371/journal.pone.0099564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/15/2014] [Indexed: 01/06/2023] Open
Abstract
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Collapse
Affiliation(s)
- Xiao-juan Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Hai-qing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan, China
- * E-mail:
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Feng He
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-feng Shu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Preservation, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-huai Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-liang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|