1
|
Cocksedge SP, Mantecón L, Castaño E, Infante C, Bailey SJ. The Potential of Superoxide Dismutase-Rich Tetraselmis chuii as a Promoter of Cellular Health. Int J Mol Sci 2025; 26:1693. [PMID: 40004157 PMCID: PMC11855123 DOI: 10.3390/ijms26041693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tetraselmis chuii (T. chuii) is a green, marine, eukaryotic, microalgae that was authorized in the European Union (EU) as a novel food for human consumption in 2014, and as a food supplement in 2017. This narrative review will provide an overview of preclinical and clinical trials assessing the efficacy of a T. chuii-derived ingredient, characterized by a high superoxide dismutase (SOD) activity (SOD-rich T. chuii), to improve various aspects of cellular health. Collectively, results from in vitro, and more importantly in vivo research, support SOD-rich T. chuii as a potential promoter of cellular health. Principally, the ingredient appears to function as an indirect antioxidant by boosting intracellular antioxidant systems. Moreover, it can positively modulate inflammatory status by up-regulating anti-inflammatory and down-regulating pro-inflammatory cytokines and factors. In addition, SOD-rich T. chuii appears to promote cellular health though protecting from DNA damage, boosting immune function, strengthening cell structure and integrity, and positively modulating cell signaling pathways. There is also some evidence to suggest that SOD-rich T. chuii may improve aspects of mitochondrial function through the up-regulation of genes linked to mitochondrial biogenesis and ATP synthesis. From the trials conducted to date, transcriptional activation of nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) appear to be important in mediating the effects of SOD-rich T. chuii on cellular health. These exciting preliminary observations suggest that SOD-rich T. chuii may represent a natural blue food supplement with the potential to enhance various aspects of cellular health.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Enrique Castaño
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena Comercial s/n, 11500 El Puerto de Santa María, Cádiz, Spain; (L.M.); (E.C.); (C.I.)
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| |
Collapse
|
2
|
Pai P, Vijeev A, Phadke S, Shetty MG, Sundara BK. Epi-revolution in rheumatology: the potential of histone deacetylase inhibitors for targeted rheumatoid arthritis intervention. Inflammopharmacology 2024; 32:2109-2123. [PMID: 38714604 PMCID: PMC11300544 DOI: 10.1007/s10787-024-01486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 05/10/2024]
Abstract
Autoimmune diseases hold significant importance in the realm of medical research, prompting a thorough exploration of potential therapeutic interventions. One crucial aspect of this exploration involves understanding the intricate processes of histone acetylation and deacetylation. Histone acetylation, facilitated by histone acetyl transferases (HATs), is instrumental in rendering DNA transcriptionally active. Conversely, histone deacetylases (HDACs) are responsible for the removal of acetyl groups, influencing gene expression regulation. The upregulation of HDACs, observed in various cancers, has steered attention towards histone deacetylase inhibitors (HDACi) as promising anti-cancer agents. Beyond cancer, HDACi has demonstrated anti-inflammatory properties, prompting interest in their potential therapeutic applications for inflammatory diseases such as rheumatoid arthritis (RA). RA, characterized by the immune system erroneously attacking healthy cells, leads to joint inflammation. Recent studies suggest that HDACi could offer a viable therapeutic strategy for RA, with potential mechanisms including the inhibition of synovial tissue growth and suppression of pro-inflammatory cytokines. Furthermore, HDACi may exert protective effects on bone and cartilage, common targets in RA pathology. In-depth investigations through in vivo and histopathology studies contribute to the ongoing discourse on the therapeutic benefits of HDACis in the context of RA treatment.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Aradhika Vijeev
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharada Phadke
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Poniewierska-Baran A, Bochniak O, Warias P, Pawlik A. Role of Sirtuins in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24021532. [PMID: 36675041 PMCID: PMC9864987 DOI: 10.3390/ijms24021532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease leading to joint destruction. The causes of RA are not fully known. Most likely, the development of the disease depends on the coexistence of many factors, such as hereditary factors, immune system defects, gender, infectious agents, nicotine, and stress. Various epigenetic changes have been identified and correlated with the aggressive phenotype of RA, including the involvement of sirtuins, which are enzymes found in all living organisms. Their high content in the human body can slow down the aging processes, reduce cell death, counteract the appearance of inflammation, and regulate metabolic processes. Sirtuins can participate in several steps of RA pathogenesis. This narrative review presents, collects, and discusses the role of all sirtuins (1-7) in the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Oliwia Bochniak
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paulina Warias
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
4
|
Takala R, Ramji DP, Choy E. The Beneficial Effects of Pine Nuts and Its Major Fatty Acid, Pinolenic Acid, on Inflammation and Metabolic Perturbations in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24021171. [PMID: 36674687 PMCID: PMC9861571 DOI: 10.3390/ijms24021171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Inflammatory disorders such as atherosclerosis, diabetes and rheumatoid arthritis are regulated by cytokines and other inflammatory mediators. Current treatments for these conditions are associated with significant side effects and do not completely suppress inflammation. The benefits of diet, especially the role of specific components, are poorly understood. Polyunsaturated fatty acids (PUFAs) have several beneficial health effects. The majority of studies on PUFAs have been on omega-3 fatty acids. This review will focus on a less studied fatty acid, pinolenic acid (PNLA) from pine nuts, which typically constitutes up to 20% of its total fatty acids. PNLA is emerging as a dietary PUFA and a promising supplement in the prevention of inflammatory disorders or as an alternative therapy. Some studies have shown the health implications of pine nuts oil (PNO) and PNLA in weight reduction, lipid-lowering and anti-diabetic actions as well as in suppression of cell invasiveness and motility in cancer. However, few reviews have specifically focused on the biological and anti-inflammatory effects of PNLA. Furthermore, in recent bioinformatic studies on human samples, the expression of many mRNAs and microRNAs was regulated by PNLA indicating potential transcriptional and post-transcriptional regulation of inflammatory and metabolic processes. The aim of this review is to summarize, highlight, and evaluate research findings on PNO and PNLA in relation to potential anti-inflammatory benefits and beneficial metabolic changes. In this context, the focus of the review is on the potential actions of PNLA on inflammation along with modulation of lipid metabolism and oxidative stress based on data from both in vitro and in vivo experiments, and human findings, including gene expression analysis.
Collapse
Affiliation(s)
- Rabaa Takala
- Division of Infection and Immunity, Tenovus Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P. Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Ernest Choy
- Division of Infection and Immunity, Tenovus Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Department of Rheumatology, Heath Park, University Hospital of Wales, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
5
|
Wang DD, He CY, Wu YJ, Xu L, Shi C, Olatunji OJ, Zuo J, Ji CL. AMPK/SIRT1 Deficiency Drives Adjuvant-Induced Arthritis in Rats by Promoting Glycolysis-Mediated Monocytes Inflammatory Polarization. J Inflamm Res 2022; 15:4663-4675. [PMID: 35996683 PMCID: PMC9392262 DOI: 10.2147/jir.s378090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Exact roles of many metabolic regulators in rheumatoid arthritis (RA) are to be clarified. This study aimed to further characterize the impacts of silent information regulator 1 (SIRT1) status changes on this disease. Methods Fluctuation pattern of SIRT1 expression in adjuvant-induced arthritis (AIA) rats was monitored using periodically collected white blood cells. Another bath of AIA rats were treated by SIRT1 agonist resveratrol. Blood from these rats was used to separate monocytes and plasma, which were subjected to polymerase chain reaction (PCR), enzyme linked immunosorbent assay (ELISA), and biochemical analyses. Clinical implication of SIRT1 activation was verified by treating AIA rat monocytes with SIRT1 agonist and overexpression vector in vitro. Results SIRT1 deficiency occurred in AIA rats, which was accompanied with down-regulation of interleukin 10 (IL-10) and arginase-1 (ARG-1). Resveratrol eased oxidative stress and increased IL-10 production in vivo. Results of ELISA analysis demonstrated that resveratrol attenuated AIA severity in rats. Furthermore, it restored the altered levels of triglyceride, lactate and pyruvate in blood. Resveratrol promoted IL-10 production, and suppressed glycolysis of AIA monocytes cultured in vitro. SIRT1 overexpression similarly reshaped differentiation profile of AIA monocytes, evidenced by changes in metabolism indicators, IL-10 production and AMP-activated protein kinase (AMPK) pathway status. Although overexpressing SIRT1 in normal cells did not affect glycolysis significantly, it attenuated AMPK antagonist-caused abnormality. Conclusion SIRT1 deficiency is implicated in AIA-related immune abnormality and metabolism alteration. Activating this signaling with resveratrol would impair the inflammatory polarization of monocytes, and consequently ease the severity of RA.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chi-Yi He
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China
| | - Yi-Jin Wu
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liang Xu
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China
| | - Chao Shi
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Jian Zuo
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People's Republic of China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, People's Republic of China.,Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, People's Republic of China
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, 241000, People's Republic of China
| |
Collapse
|
6
|
Role of Histone Deacetylases in T-Cell Development and Function. Int J Mol Sci 2022; 23:ijms23147828. [PMID: 35887172 PMCID: PMC9320103 DOI: 10.3390/ijms23147828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes called “epigenetic erasers”. They remove the acetyl group from histones changing the condensation state of chromatin, leading to epigenetic modification of gene expression and various downstream effects. Eighteen HDACs have been identified and grouped into four classes. The role of HDACs in T-cells has been extensively studied, and it has been proven that many of them are important players in T-cell development and function. In this review, we present the current state of knowledge on the role of HDACs in the early stages of T-cell development but also in the functioning of mature lymphocytes on the periphery, including activation, cytokine production, and metabolism regulation.
Collapse
|
7
|
Pinolenic acid exhibits anti-inflammatory and anti-atherogenic effects in peripheral blood-derived monocytes from patients with rheumatoid arthritis. Sci Rep 2022; 12:8807. [PMID: 35614190 PMCID: PMC9133073 DOI: 10.1038/s41598-022-12763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Pinolenic acid (PNLA), an omega-6 polyunsaturated fatty acid from pine nuts, has anti-inflammatory and anti-atherogenic effects. We aimed to investigate the direct anti-inflammatory effect and anti-atherogenic effects of PNLA on activated purified CD14 monocytes from peripheral blood of patients with rheumatoid arthritis (RA) in vitro. Flow cytometry was used to assess the proportions of CD14 monocytes expressing TNF-α, IL-6, IL-1β, and IL-8 in purified monocytes from patients with RA after lipopolysaccharide (LPS) stimulation with/without PNLA pre-treatment. The whole genomic transcriptome (WGT) profile of PNLA-treated, and LPS-activated monocytes from patients with active RA was investigated by RNA-sequencing. PNLA reduced percentage of monocytes expressing cytokines: TNF-α by 23% (p = 0.048), IL-6 by 25% (p = 0.011), IL-1β by 23% (p = 0.050), IL-8 by 20% (p = 0.066). Pathway analysis identified upstream activation of peroxisome proliferator-activated receptors (PPARs), sirtuin3, and let7 miRNA, and KLF15, which are anti-inflammatory and antioxidative. In contrast, DAP3, LIF and STAT3, which are involved in TNF-α, and IL-6 signal transduction, were inhibited. Canonical Pathway analysis showed that PNLA inhibited oxidative phosphorylation (p = 9.14E−09) and mitochondrial dysfunction (p = 4.18E−08), while the sirtuin (SIRTs) signalling pathway was activated (p = 8.89E−06) which interfere with the pathophysiological process of atherosclerosis. Many miRNAs were modulated by PNLA suggesting potential post-transcriptional regulation of metabolic and immune response that has not been described previously. Multiple miRNAs target pyruvate dehydrogenase kinase-4 (PDK4), single-immunoglobulin interleukin-1 receptor molecule (SIGIRR), mitochondrially encoded ATP synthase membrane subunit 6 (MT-ATP6) and acetyl-CoA acyltranferase2 (ACAA2); genes implicated in regulation of lipid and cell metabolism, inflammation, and mitochondrial dysfunction. PNLA has potential anti-atherogenic and immune-metabolic effects on monocytes that are pathogenic in RA and atherosclerosis. Dietary PNLA supplementation regulates key miRNAs that are involved in metabolic, mitochondrial, and inflammatory pathways.
Collapse
|
8
|
Barik RR, Bhatt LK. Emerging epigenetic targets in rheumatoid arthritis. Rheumatol Int 2021; 41:2047-2067. [PMID: 34309725 DOI: 10.1007/s00296-021-04951-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Rheumatoid arthritis is a complex disorder that is characterized by irreversible and progressive destructions of joints, but its exact etiology remains mainly unknown. The occurrence and the progression of the disease entirely depend on environmental and genetic factors. In recent years, various epigenetic changes involving DNA methylation, histone modification, miRNA, X-chromosome inactivation, bromodomain, sirtuin, and many others were identified that were found to be linked to the activation and the aggressive phenotype in rheumatoid arthritis. Epigenetics is found to be one of the root causes, which brings changes in the heritable phenotype and is not determined by changes in the DNA sequences and understanding these epigenetic mechanisms and the pathogenesis of the disease can help in understanding the disease and various other possible ways for its control and/or prevention. The various epigenetic modification occurring are reversible and can be modulated by drugs, diet, and environmental factors. This article focuses on various epigenetic factors involved in the pathogenesis of rheumatoid arthritis. Further, various epigenetic therapies that might be successful in inhibiting these epigenetic modifications are summarized. Several therapeutic agents alter the epigenetic modifications occurring in various diseases and many of the epigenetic therapies are under pre-clinical and clinical trial. However, exploring these epigenetic prognostic biomarkers would give a broader perspective and provide more ideas and knowledge regarding the process and pathways through which the diseases occur, and also combining various therapeutic agents would show more beneficial and synergistic effects.
Collapse
Affiliation(s)
- Reema R Barik
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
9
|
Li X, Li X, Zeng T, Liu Y, Hu T, Huang J, Wu Y, Yu J, Pei Z, Tan L. The clinical value of serum sirtuin-1 in the diagnosis of rheumatoid arthritis: a pilot study. Br J Biomed Sci 2021; 78:191-194. [PMID: 33507129 DOI: 10.1080/09674845.2021.1880085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction: Cell biology studies, animal models and other data suggest a role for sirtuin-1 in the pathogenesis of rheumatoid arthritis (RA). We hypothesized the clinical significance of serum sirtuin-1 in this disease.Methods: Serum was obtained from 141 RA patients, 144 non-RA patients and 88 healthy controls. Sirtuin-1, anti-mutant citrulline vimentin antibody (anti-MCV), anti-cyclic citrulline polypeptide antibody (anti-CCP), rheumatoid factor and C-reactive protein were measured by immunological methods, and erythrocyte sedimentation rate was determined by the Westergren method.Results: All markers were higher in the RA group than in the non-RA group and the healthy control group (P < 0.01). The specificity of sirtuin-1 for the diagnosis of RA was 97% (the highest among all markers), sensitivity was 71%. In ROC curve analysis, the AUCs (95% CI) of sirtuin-1, anti-CCP and anti-MCV were 0.87 (0.82-0.91), 0.91 (0.88-0.94) and 0.92 (0.89-0.95) respectively (all p < 0.01). The combination of sirtuin-1and anti-MCV gave the highest Youden index of 0.79, whilst Cox regression showed sirtuin-1 and rheumatoid factor were the strongest independent predictors of RA.Conclusions: Serum sirtuin-1 is increased in RA, and may have a place is the diagnosis of this disease when combined with other markers.
Collapse
Affiliation(s)
- X Li
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - X Li
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - T Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Y Liu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - T Hu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - J Huang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Y Wu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - J Yu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Z Pei
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - L Tan
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Číž M, Dvořáková A, Skočková V, Kubala L. The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants (Basel) 2020; 9:antiox9080691. [PMID: 32756302 PMCID: PMC7464822 DOI: 10.3390/antiox9080691] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
A better understanding of the interactions between dietary phenolic compounds and the epigenetics of inflammation may impact pathological conditions and their treatment. Phenolic compounds are well-known for their antioxidant, anti-inflammatory, anti-angiogenic, and anti-cancer properties, with potential benefits in the treatment of various human diseases. Emerging studies bring evidence that nutrition may play an essential role in immune system modulation also by altering gene expression. This review discusses epigenetic mechanisms such as DNA methylation, post-translational histone modification, and non-coding microRNA activity that regulate the gene expression of molecules involved in inflammatory processes. Special attention is paid to the molecular basis of NF-κB modulation by dietary phenolic compounds. The regulation of histone acetyltransferase and histone deacetylase activity, which all influence NF-κB signaling, seems to be a crucial mechanism of the epigenetic control of inflammation by phenolic compounds. Moreover, chronic inflammatory processes are reported to be closely connected to the major stages of carcinogenesis and other non-communicable diseases. Therefore, dietary phenolic compounds-targeted epigenetics is becoming an attractive approach for disease prevention and intervention.
Collapse
Affiliation(s)
- Milan Číž
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Correspondence: ; Tel.: +420-541-517-104
| | - Adéla Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Skočková
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (A.D.); (V.S.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
11
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Sun T, Chen Q, Zhu SY, Wu Q, Liao CR, Wang Z, Wu XH, Wu HT, Chen JT. Hydroxytyrosol promotes autophagy by regulating SIRT1 against advanced oxidation protein product‑induced NADPH oxidase and inflammatory response. Int J Mol Med 2019; 44:1531-1540. [PMID: 31432093 DOI: 10.3892/ijmm.2019.4300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/08/2019] [Indexed: 11/05/2022] Open
Abstract
Advanced oxidation protein products (AOPPs) can trigger NADPH oxidase (NOX) and lead to the production of reactive oxygen species (ROS) in the pathophysiology of rheumatoid arthritis (RA). Hydroxytyrosol (HT) is a phenolic composite in olive oil that has antioxidant and anti‑inflammatory effects and enhances autophagy. Early research has revealed that HT can activate the silent information regulator 1 (SIRT1) pathway to induce autophagy and alleviate the cartilage inflammatory response caused by H2O2. However, whether HT can attenuate AOPP‑induced NOX and inflammatory responses remains to be elucidated. The present study aimed to investigate how HT can alleviate the damage caused by AOPPs. In cell experiments, chondrocytes were pre‑stimulated with HT and then exposed to AOPPs. First, it was found that HT promoted autophagy through the SIRT1 pathway, increased the expression of autophagy‑related proteins including microtubule‑associated protein 1 light chain 3, autophagy related (ATG)5 and ATG7, and decreased the expression of P62. Furthermore, HT reduced the expression of NOX, which was affected by AOPPs in chondrocytes through the SIRT1 pathway. Finally, the expression of inflammatory cytokines caused by AOPPs was downregulated following HT treatment. In conclusion, it was found that HT reduced the expression of NOX and inhibited the inflammatory response caused by AOPPs in chondrocytes through the SIRT1 pathway.
Collapse
Affiliation(s)
- Tian Sun
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Chen
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-Yuan Zhu
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wu
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Cong-Rui Liao
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zheng Wang
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao-Hu Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hang-Tian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian-Ting Chen
- Department of Orthopedic Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J Autoimmun 2019; 102:96-113. [DOI: 10.1016/j.jaut.2019.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
|
14
|
Xu YJ, Chen FP, Chen Y, Fu B, Liu EY, Zou L, Liu LX. A Possible Reason to Induce Acute Graft-vs.-Host Disease After Hematopoietic Stem Cell Transplantation: Lack of Sirtuin-1 in CD4 + T Cells. Front Immunol 2018; 9:3078. [PMID: 30622543 PMCID: PMC6308326 DOI: 10.3389/fimmu.2018.03078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a critical suppressor of T cell immunity. However, whether SIRT1 is involved in the progression of acute graft-vs.-host disease (aGVHD) has still remained unclear. PI3K/Akt/mTOR pathway is a crucial element involved in the activation and functions of T cells. Over-activation of PI3K/Akt/mTOR signaling may be related to the occurrence of aGVHD. STAT3 activation requires phosphorylation and acetylation. A recent study showed that STAT3 hyperphosphorylation in CD4+ T cells may be a trigger of aGVHD. The role of the STAT3 acetylation in aGVHD pathogenesis is still unclear. The present study revealed that SIRT1 deficiency as a critical factor is involved in the excessive activation of mTOR pathway and upregulation of STAT3 acetylation and phosphorylation in CD4+ T cells from patients with aGVHD. Exorbitant activation of IL-1β signaling is the main reason for TAK1-dependent SIRT1 insufficiency. The findings of the present study might provide a new therapeutic target for treating aGVHD.
Collapse
Affiliation(s)
- Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - En-Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lang Zou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin-Xin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Hu Q, Sun Y, Li Y, Shi H, Teng J, Liu H, Cheng X, Ye J, Su Y, Yin Y, Liu M, Wang J, Yang C. Anti-SIRT1 autoantibody is elevated in ankylosing spondylitis: a potential disease biomarker. BMC Immunol 2018; 19:38. [PMID: 30558548 PMCID: PMC6298004 DOI: 10.1186/s12865-018-0280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023] Open
Abstract
Background Little is known about the presence of specific autoantibodies in ankylosing spondylitis (AS), an immune-mediated inflammatory disease. The object of this study was to explore potential autoantibody profiles in AS patients. Results Levels of anti-SIRT1 autoantibodies were significantly higher in AS (P < 0.001) and psoriatic arthritis (PsA) (P < 0.01) patients but not rheumatoid arthritis (RA) patients compared with healthy controls. Additionally, titers of anti-NAD-dependent protein deacetylase sirtuin-1(SIRT1) antibodies were significantly higher in AS patients than in RA (P < 0.05) and PsA (P < 0.05) patients. Moreover, levels of anti-SIRT1 (P < 0.001) antibodies were significantly higher during the first year in patients with hip joint involvement. The anti-SIRT1 antibody positivity rate was 18.9% in AS patients. Conclusions Our findings indicate that anti-SIRT1 autoantibodies may serve as a marker for diagnosing AS and predicting hip joint involvement at an early stage. Electronic supplementary material The online version of this article (10.1186/s12865-018-0280-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yuan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yufeng Yin
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Mengru Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
16
|
Chauhan P, Saha B. Metabolic regulation of infection and inflammation. Cytokine 2018; 112:1-11. [PMID: 30472107 DOI: 10.1016/j.cyto.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Immunometabolic framework provides a way to understand the immune regulation via cell intrinsic metabolic fluxes and metabolites during infections, tumors, and inflammatory disorders. During these diseases, the immune cells are activated requiring more energy and moderating their metabolic functions. The two categories of metabolic alterations are therefore causally associated with energy derivation and cellular functions. Pathogens, tumors and inflammation target energy metabolism, primarily glucose uptake, glucose catabolism, gluconeogenesis for continuing lipid metabolism through mainstream pathways such as glycolysis, tricarboxylic acid cycle, mitochondrial respiration and pentose phosphate pathway. Many biosynthetic pathways such as those of cholesterol, ceramide, sphingolipids, and fatty acids are altered explaining the metabolic interface in molecular pathogenesis in various infectious and non-infectious inflammatory diseases. The emerging immune-metabolic framework also identifies the key regulatory elements such as metabolites, signalling intermediates and transcription factors. These regulatory elements play key roles in deciding the fate of an infection, tumor or autoimmune diseases. The original research articles and the review articles in this Special issue of Cytokine on "Infection, Inflammation and Immunometabolomes" highlight these aspects of metabolic reprogramming and the role of some 'metabolomic regulators' in controlling the outcome of infectious and non-infectious diseases. In this Editorial, we introduce the readers to these articles discussing the elements in immune-metabolic framework.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- Trident Academy of Creative Technology, Bhubaneswar 750019, India
| |
Collapse
|
17
|
Reduced Activity of HDAC3 and Increased Acetylation of Histones H3 in Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis. J Immunol Res 2018; 2018:7313515. [PMID: 30402512 PMCID: PMC6192092 DOI: 10.1155/2018/7313515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant histone acetylation and deacetylation are increasingly thought to play important roles in the pathogenesis of rheumatoid arthritis (RA). However, limited data from studies about the activity of histone deacetylases (HDACs) and histone acetyltransferase (HAT) in RA are controversial. Those conflicting results may be caused by sample size, medication, and age- and sex-matched controls. The aim of this study is to investigate the expression and activity of class I HDACs (1-3.8) and their effects on histone acetylation in peripheral blood mononuclear cells (PBMCs) from RA patients. The expression of class I HDACs in PBMCs from RA patients was decreased in both mRNA and protein levels in comparison with HCs. The nuclear HAT activities were dramatically increased. Further, we found HDAC3 activity to be the most significantly reduced in overall reduction of HDACs in the RA group. The extent of total histone H3, but not H4, acetylation in PBMCs from RA patients was increased compared to that in healthy controls (HCs) (p < 0.01). In RA PBMCs, the activity and expression of class I HDACs are decreased, which is accompanied with enhanced HAT activity. An altered balance between HDAC and HAT activity was found in RA PBMCs.
Collapse
|
18
|
Kudo H, Takeichi O, Hatori K, Makino K, Himi K, Ogiso B. A potential role for the silent information regulator 2 homologue 1 (SIRT1) in periapical periodontitis. Int Endod J 2018; 51:747-757. [PMID: 29363137 DOI: 10.1111/iej.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/18/2018] [Indexed: 01/14/2023]
Abstract
AIM To investigate the role played by silent information regulator 2 homologue 1 (SIRT1) during angiogenesis of periapical periodontitis. METHODOLOGY Periapical granulomas were subjected to dual-colour immunofluorescence imaging and real-time polymerase chain reactions assaying the expression levels of SIRT1, vascular endothelial growth factor (VEGF) and VE-cadherin. The association between Ki-67 and SIRT1 expression was also examined. Human umbilical vein endothelial cells (HUVECs) were treated with a combination of lipopolysaccharide and resveratrol (a SIRT1 activator) or sirtinol (a SIRT1 inhibitor); and the levels of mRNAs encoding SIRT1, VEGF and VE-cadherin were determined. HUVEC tube formation was assayed in the presence of resveratrol or sirtinol. The Mann-Whitney U-test or the Tukey-Kramer test was used for statistical analysis. RESULTS Ki-67-expressing cells, including endothelial cells, lay adjacent to SIRT1-expressing cells in periapical granulomas. In addition, SIRT1-expressing cells were detected adjacent to VEGF-expressing cells and VEGF- or VE-cadherin-expressing endothelial cells. SIRT1, VEGF and VE-cadherin mRNA expression levels in periapical granulomas were significantly higher (P = 0.0054, 0.0090 and 0.0090, respectively) than those in healthy gingival tissues. HUVECs treated with resveratrol exhibited significantly higher expression of mRNAs encoding SIRT1, VEGF and VE-cadherin (P = 0.0019, 0.00005 and 0.0045, respectively) compared with controls, but sirtinol inhibited such expression. Resveratrol caused HUVECs to form tube-like structures, whilst sirtinol inhibited this process. CONCLUSIONS These findings suggest that SIRT1 may stimulate angiogenesis in periapical granulomas by triggering the proliferation of endothelial cells and inducing VEGF and VE-cadherin expression.
Collapse
Affiliation(s)
- H Kudo
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - O Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Hatori
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| | - K Makino
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - K Himi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - B Ogiso
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
19
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
20
|
Kudo H, Takeichi O, Makino K, Hatori K, Ogiso B. Expression of silent information regulator 2 homolog 1 (SIRT1) in periapical granulomas. J Oral Sci 2018; 60:411-417. [DOI: 10.2334/josnusd.17-0412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hiroshi Kudo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Kosuke Makino
- Department of Endodontics, Nihon University School of Dentistry
| | - Keisuke Hatori
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
21
|
Wu Z, Mei X, Ying Z, Sun Y, Song J, Shi W. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci 2017; 86:230-237. [PMID: 28336124 DOI: 10.1016/j.jdermsci.2017.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous studies have reported that ultraviolet B (UVB) inhibits DNA methyltransferase1 (DNMT1) activity in CD4+ T cells from systemic lupus erythematosus (SLE) patients. Silent mating type information regulation 2 homolog 1 (SIRT1) is a type of Class III histone deacetylases (HDACs), and has been reported to play roles in the pathogenesis of different autoimmune diseases and can modulate DNMT1 activity. Moreover, aryl hydrocarbon receptor (AhR) has been reported to link UVB with SLE. However, the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells remain largely unknown. OBJECTIVE To elucidate the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells. METHODS Twenty-two newly diagnosed active SLE patients and 30 healthy controls were enrolled in the study. CD4+ T cells were isolated, cultured and treated. DNMT1 activity assay, quantitative real-time PCR (qRT-PCR), Western blotting, RNA interference using small interfering RNA and Chromatin Immunoprecipitation (ChIP) assay were employed. RESULTS DNMT1 activity was inhibited in si-SIRT1-transfected CD4+ T cells, and increased by the established SIRT1 activator, SRT1720. Moreover, the mRNA and protein expression of SIRT1 were suppressed by UVB exposure in lupus CD4+ T cells. UVB-inhibited DNMT1 activity was reversed by SRT1720 in si-control-transfected lupus CD4+ T cells, but not in si-SIRT1-transfected lupus CD4 + T cells. Furthermore, AhR activation by VAF347 reduced the mRNA and protein expression of SIRT1. ChIP using an antibody against AhR in normal CD4+ T cells revealed a 16-fold stronger signal at the site about 1.6kb upstream from the translation start site of the SIRT1 promoter. Finally, UVB could activate AhR and inhibit the mRNA and protein expression of SIRT1. AhR knockdown abrogated the inhibition of UVB-mediated SIRT1 mRNA and protein expression and DNMT1 activity in lupus CD4+ T cells. CONCLUSION UVB suppressed SIRT1 expression via activating AhR, and subsequently inhibited DNMT1 activity in CD4+ T cells from SLE patients.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Xingyu Mei
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zuolin Ying
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
22
|
|
23
|
Peng JS, Chen SY, Wu CL, Chong HE, Ding YC, Shiau AL, Wang CR. Amelioration of Experimental Autoimmune Arthritis Through Targeting of Synovial Fibroblasts by Intraarticular Delivery of MicroRNAs 140-3p and 140-5p. Arthritis Rheumatol 2016; 68:370-81. [DOI: 10.1002/art.39446] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jia-Shiou Peng
- National Cheng Kung University Medical College; Tainan Taiwan
| | - Shih-Yao Chen
- National Cheng Kung University Medical College; Tainan Taiwan
| | - Chao-Liang Wu
- National Cheng Kung University Medical College; Tainan Taiwan
| | - Hao-Earn Chong
- National Cheng Kung University Medical College; Tainan Taiwan
| | - Yun-Chiao Ding
- National Cheng Kung University Medical College; Tainan Taiwan
| | - Ai-Li Shiau
- National Cheng Kung University Medical College; Tainan Taiwan
| | | |
Collapse
|
24
|
Sirtuin 1 attenuates nasal polypogenesis by suppressing epithelial-to-mesenchymal transition. J Allergy Clin Immunol 2016; 137:87-98.e7. [DOI: 10.1016/j.jaci.2015.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/03/2015] [Accepted: 07/24/2015] [Indexed: 01/25/2023]
|
25
|
Pan XF, Gu JQ, Shan ZY. Increased risk of thyroid autoimmunity in rheumatoid arthritis: a systematic review and meta-analysis. Endocrine 2015; 50:79-86. [PMID: 25645464 DOI: 10.1007/s12020-015-0533-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022]
Abstract
Thyroid autoimmunity, which is the most common immune-mediated disease, is frequently together with other organ- as well as nonorgan-specific autoimmune disorders. Meanwhile, rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disorder that mainly results in cartilage destruction as well as synovial joint inflammation, and both the adaptive and innate immune responses involve in the progression of this disease. Considering that autoimmune elements may be common characteristics of thyroid autoimmunity and RA, it is likely that both disorders may coexist within some patients. A great number of studies have researched whether an association between thyroid autoimmunity and RA exists; however, the results of these studies have been inconsistent. Most of these studies have included relatively small sample sizes, which have rendered them insufficiently powerful to determine whether there is a relationship between RA and thyroid autoimmunity. The main objective of this meta-analysis was to provide reliable estimates of the extent of any association between thyroid autoimmunity and RA by combining the primary data from all related studies. Literature databases, including the Embase, Medline, Web of Science, Chinese Wanfang, and CBM databases, were searched for studies published from January 1980 to May 2014, with a language restriction of English and Chinese. A total of 1,021 RA cases and 1,500 healthy controls were included in this study. From these data, the odds ratios (OR) and the corresponding 95 % confidence intervals (95 % CI) were calculated. The results of the meta-analysis showed that the prevalence of thyroid autoantibody positivity in patients with RA was higher than that in healthy controls (TgAb: OR 3.17, 95 % CI 2.24-4.49; TPOAb: OR 2.33, 95 % CI 1.24-4.39). The results of this meta-analysis suggest that thyroid autoimmunity is more prevalent in patients with RA than in the control population.
Collapse
Affiliation(s)
- Xi-Feng Pan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | | | | |
Collapse
|
26
|
Chen X, Lu Y, Zhang Z, Wang J, Yang H, Liu G. Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology. Immunology 2015; 145:455-67. [PMID: 25890999 DOI: 10.1111/imm.12473] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/11/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are evolutionarily conserved class III histone deacetylases that have been the focus of intense scrutiny and interest since the discovery of Sir2 as a yeast longevity factor. Early reports demonstrated an important role of Sirt1 in aging and metabolism, but its critical regulatory role in the immune system has only been unveiled in recent years. In this review we discuss the latest advances in understanding the regulatory role of Sirt1 in immune responses as well as how Sirt1 translates metabolic cues to immune signals, which would bring new insights into both pathogenesis and potential therapeutic strategies of a variety of immune-related diseases, such as cancer, microbial infection, autoimmune diseases and transplantation.
Collapse
Affiliation(s)
- Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Yun Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Zhengguo Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| | - Guangwei Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre and Institute of Immunobiology, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Coppedè F, Lopomo A, Migliore L. Epigenetic Biomarkers in Personalized Medicine. PERSONALIZED EPIGENETICS 2015:183-220. [DOI: 10.1016/b978-0-12-420135-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Kiyak Caglayan E, Engin-Ustun Y, Gocmen AY, Polat MF, Aktulay A. Serum sirtuin 1 levels in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2014; 35:608-11. [DOI: 10.3109/01443615.2014.990428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol 2014; 171:4981-5010. [PMID: 25060293 PMCID: PMC4253452 DOI: 10.1111/bph.12848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy.
Collapse
Affiliation(s)
- David F Tough
- Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Epinova DPU, Stevenage, UK
| | | | | | | | | |
Collapse
|
30
|
Van den Bossche J, Neele AE, Hoeksema MA, de Winther MPJ. Macrophage polarization: the epigenetic point of view. Curr Opin Lipidol 2014; 25:367-73. [PMID: 25188918 DOI: 10.1097/mol.0000000000000109] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The first functions of macrophages to be identified by Metchnikoff were phagocytosis and microbial killing. Although these are important features, macrophages are functionally very complex and involved in virtually all aspects of life, from immunity and host defense, to homeostasis, tissue repair and development. To accommodate for this, macrophages adopt a plethora of polarization states. Understanding their transcriptional regulation and phenotypic heterogeneity is vital because macrophages are critical in many diseases and have emerged as attractive targets for therapy. Here, we review how epigenetic mechanisms control macrophage polarization. RECENT FINDINGS It is becoming increasingly clear that chromatin remodelling governs multiple aspects of macrophage differentiation, activation and polarization. In recent years, independent research groups highlighted the importance of epigenetic mechanisms to regulate enhancer activity. Moreover, distinct histone-modifying enzymes were identified that control macrophage activation and polarization. SUMMARY We recap epigenetic features of distinct enhancers and describe the role of Jumonji domain-containing protein 3 (Jmjd3) and Hdac3 as crucial mediators of macrophage differentiation, activation and polarization. We hypothesize that epigenetic enzymes could serve as the link between environment, cellular metabolism and macrophage phenotype. To conclude, we propose epigenetic intervention as a future pharmacological target to modulate macrophage polarization and to treat inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Jan Van den Bossche
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands *Both Jan Van den Bossche and Annette E. Neele contributed equally to the article
| | | | | | | |
Collapse
|
31
|
Abstract
A major biomedical advance from recent years was the finding that gene expression and phenotypic traits may be shaped by potentially reversible and heritable modifications that occur without altering the sequence of the nucleotides, and became known as epigenetic changes. The term 'epigenetics' dates back to the 1940s, when it was first used in context of cellular differentiation decisions that are made during development. Since then, our understanding of epigenetic modifications that govern development and disease expanded considerably. The contribution of epigenetic changes to shaping phenotypes brings at least two major clinically relevant benefits. One of these, stemming from the reversibility of epigenetic changes, involves the possibility to therapeutically revert epigenetic marks to re-establish prior gene expression patterns. The strength and the potential of this strategy are illustrated by the first four epigenetic drugs that were approved in recent years and by the additional candidates that are at various stages in preclinical studies and clinical trials. The second particularity is the finding that epigenetic changes precede the appearance of histopathological modifications. This has the potential to facilitate the emergence of epigenetic biomarkers, some of which already entered the clinical arena, catalysing a major shift in prophylactic and therapeutic strategies, and promising to fill a decades-old gap in preventive medicine.
Collapse
Affiliation(s)
- R A Stein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|