1
|
Jiang G, Ramachandraiah K, Tan C, Cai N, Ameer K, Feng X. Modification of Ginseng Insoluble Dietary Fiber by Enzymatic Method: Structural, Rheological, Thermal and Functional Properties. Foods 2023; 12:2809. [PMID: 37509900 PMCID: PMC10379364 DOI: 10.3390/foods12142809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, the effects of enzymatic modification using cellulase/xylanase on the composition and structural and functional properties of ginseng insoluble dietary fiber (G-IDF) were evaluated. Fourier transform infrared spectroscopy and scanning electron microcopy showed that enzymatic extraction treatment caused obvious structural alterations in ginseng-modified (G-MIDF) samples, which exhibited more porous and completely wrinkled surfaces. Comparing the peak morphology of G-MIDF with untreated IDF using X-ray diffractometry, the G-MIDF sample exhibited split peaks at a 2θ angle of 23.71°, along with the emergence of sharp peaks at 28.02°, 31.78°, and 35.07°. Thermo-gravimetric analysis showed that G-MIDF exhibited a specified range of pyrolysis temperature and is suitable for food applications involving processing at temperatures below 300 °C. Overall, it was evident from rheograms that both G-IDF and G-MIDF exhibited a resemblance with respect to viscosity changes as a function of the shear rate. Enzymatic treatment led to significant (p < 0.05) improvement in water holding, oil retention, water swelling, nitrite ion binding, bile acid binding, cholesterol absorption, and glucose absorption capacities.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | | | - Chaoyi Tan
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Nanjie Cai
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
2
|
Zhang C, Liu Z, Lu S, Xiao L, Xue Q, Jin H, Gan J, Li X, Liu Y, Liang X. Rapid Discrimination and Prediction of Ginsengs from Three Origins Based on UHPLC-Q-TOF-MS Combined with SVM. Molecules 2022; 27:molecules27134225. [PMID: 35807471 PMCID: PMC9268438 DOI: 10.3390/molecules27134225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ginseng, which contains abundant ginsenosides, grows mainly in the Jilin, Liaoning, and Heilongjiang in China. It has been reported that the quality and traits of ginsengs from different origins were greatly different. To date, the accurate prediction of the origins of ginseng samples is still a challenge. Here, we integrated ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with a support vector machine (SVM) for rapid discrimination and prediction of ginseng from the three main regions where it is cultivated in China. Firstly, we develop a stable and reliable UHPLC-Q-TOF-MS method to obtain robust information for 31 batches of ginseng samples after reasonable optimization. Subsequently, a rapid pre-processing method was established for the rapid screening and identification of 69 characteristic ginsenosides in 31 batches ginseng samples from three different origins. The SVM model successfully distinguished ginseng origin, and the accuracy of SVM model was improved from 83% to 100% by optimizing the normalization method. Six crucial quality markers for different origins of ginseng were screened using a permutation importance algorithm in the SVM model. In addition, in order to validate the method, eight batches of test samples were used to predict the regions of cultivation of ginseng using the SVM model based on the six selected quality markers. As a result, the proposed strategy was suitable for the discrimination and prediction of the origin of ginseng samples.
Collapse
Affiliation(s)
- Chi Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Zhe Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoming Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Liujun Xiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Qianqian Xue
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
- Correspondence: (Q.X.); (H.J.)
| | - Hongli Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
- Correspondence: (Q.X.); (H.J.)
| | - Jiapan Gan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (C.Z.); (Z.L.); (S.L.); (L.X.); (J.G.); (Y.L.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China;
| |
Collapse
|
3
|
Lee YY, Yuk HJ, Saba E, Kim SD, Kim DS, Kopalli SR, Oh JW, Rhee MH. Duchesnea indica Extract Ameliorates LPS-Induced Septic Shock in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5783867. [PMID: 35607518 PMCID: PMC9124116 DOI: 10.1155/2022/5783867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Duchesnea indica has been reported for its anti-inflammatory properties. However, its efficacy in sepsis has yet to be reported. In this study, we studied the ability of Duchesnea indica extract (DIE) to rescue mice from septic shock and sepsis. Methods In vitro studies included the measurement of secreted nitric oxide, cell viability, gene and protein expression via real-time polymerase chain reaction and western blot, and confocal microscopy in RAW 264.7 cells. In vivo studies include a model of septic shock and sepsis in BALB/c mice induced by a lethal and sub-lethal dose of lipopolysaccharide (LPS). Results DIE suppressed the expression of proinflammatory cytokines induced by LPS and prevented the translocation of NFκB into the nucleus of RAW 264.7 cells. It also prevented reactive oxygen species damage induced by LPS in murine bone marrow-derived macrophages. Models of sepsis and septic shock were established in BALB/c mice and DIE-rescued mice from septic shock. DIE also reversed the increase in tumor necrosis factor-α and nitrite levels in the serum of mice induced with sepsis. DIE also prevented the translocation of NFκB from the cytosol into the nucleus in murine lungs. Histopathological damage induced by sepsis was reversed in the testis, liver, and lungs of mice. Conclusion In conclusion, DIE is a suitable candidate for development as a therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Yuan Yee Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Sung Dae Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-Gu, Seoul 05006, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Inhibitory Effect of Phellinus baumii Extract on CFA-Induced Inflammation in MH-S Cells through Nuclear Factor- κB and Mitogen-Activated Protein Kinase Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5535630. [PMID: 34733341 PMCID: PMC8560242 DOI: 10.1155/2021/5535630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Phellinus baumii is a mushroom utilized as a traditional medicine for a wide range of human ailments, including diabetes, hypertension, hypercholesterolemia, and cancer, in Asia. The purpose of this study was to find out whether Phellinus baumii extract (PBE) could reduce inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effect of PBE was evaluated by measuring the nitric oxide (NO) concentration after the onset of CFA-stimulated inflammation in MH-S cells. Polymerase chain reaction (PCR) was used to examine inflammatory gene expression. Western blotting and immunofluorescence (IF) studies were used to investigate the inflammatory mechanism in MH-S cells. According to our results, the PBE suppressed CFA-induced NO generation in the MH-S cells dose-dependently. Furthermore, PBE inhibited the proinflammatory mediators and cytokines generated by exposure to CFA, including cyclooxygenase 2 (COX-2) and inducible NO synthase (iNOS), interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). Real-time PCR was also used to determine the inhibiting effect of the PBE on proinflammatory factors such as COX-2, iNOS, IL-1β, IL-6, and TNF-α. Moreover, Western blot was used to assess the effects of the PBE on the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in the CFA-stimulated MH-S cells. The suppressive effect of the PBE on phosphorylated (p)-NF-κB translocation was also investigated using IF analysis. This study showed that the PBE suppressed the CFA-induced inflammation in the MH-S cells by suppressing the NF-κB and MAPK signaling pathways, which suggests its potential usefulness in reducing lung inflammation.
Collapse
|
5
|
Ullah HMA, Kwon TH, Park S, Kim SD, Rhee MH. Isoleucilactucin Ameliorates Coal Fly Ash-Induced Inflammation through the NF-κB and MAPK Pathways in MH-S Cells. Int J Mol Sci 2021; 22:ijms22179506. [PMID: 34502415 PMCID: PMC8430556 DOI: 10.3390/ijms22179506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated whether isoleucilactucin, an active constituent of Ixeridium dentatum, reduces inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effects of isoleucilactucin were assessed by measuring the concentration of nitric oxide (NO) and the expression of pro-inflammatory mediators in MH-S cells exposed to CFA-induced inflammation. We found that isoleucilactucin reduced CFA-induced NO generation dose-dependently in MH-S cells. Moreover, isoleucilactucin suppressed CFA-activated proinflammatory mediators, including cyclooxygenase-2 (COX2) and inducible NO synthase (iNOS), and the proinflammatory cytokines such as interleukin-(IL)-1β, IL-6, and tumor necrosis factor (TNF-α). The inhibiting properties of isoleucilactucin on the nuclear translocation of phosphorylated nuclear factor-kappa B (p-NF-κB) were observed. The effects of isoleucilactucin on the NF-κB and mitogen-activated protein kinase (MAPK) pathways were also measured in CFA-stimulated MH-S cells. These results indicate that isoleucilactucin suppressed CFA-stimulated inflammation in MH-S cells by inhibiting the NF-κB and MAPK pathways, which suggest it might exert anti-inflammatory properties in the lung.
Collapse
Affiliation(s)
- H. M. Arif Ullah
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
| | - Tae-Hyung Kwon
- Department of Research and Development, Chuncheon Bio-Industry Foundation (CBF), Chuncheon 24232, Korea
- Correspondence: (T.-H.K.); (M.H.R.); Tel.: +82-33-258-6993 (T.-H.K.); +82-53-950-5967 (M.H.R.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
- Correspondence: (T.-H.K.); (M.H.R.); Tel.: +82-33-258-6993 (T.-H.K.); +82-53-950-5967 (M.H.R.)
| |
Collapse
|
6
|
Restorative effects of Rg3-enriched Korean red ginseng and Persicaria tinctoria extract on oxazolone-induced ulcerative colitis in mice. J Ginseng Res 2021; 46:628-635. [PMID: 36090686 PMCID: PMC9459072 DOI: 10.1016/j.jgr.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ulcerative colitis (UC) is the large intestine disease that results in chronic inflammation and ulcers in the colon. Rg3-enriched Korean Red Ginseng extract (Rg3-RGE) is known for its pharmacological activities. Persicaria tinctoria (PT) is also used in the treatment of various inflammatory diseases. The aim of this study is to investigate the attenuating effects of Rg3-RGE with PT on oxazolone (OXA)-induced UC in mice. Methods A total of six groups of mice including control group, OXA (as model group, 1.5%) group, sulfasalazine (75 mg/kg) group, Rg3-RGE (20 mg/kg) group, PT (300 mg/kg) group, and Rg3-RGE (10 mg/kg) with PT (150 mg/kg) group. Data on the colon length, body weight, disease activity index (DAI), histological changes, nitric oxide (NO) assay, Real-time PCR of inflammatory factors, ELISA of inflammatory factors, Western blot, and flow cytometry analysis were obtained. Results Overall, the combination treatment of Rg3-RGE and PT significantly improved the colon length and body weight and decreased the DAI in mice compared with the treatment with OXA. Additionally, the histological injury was also reduced by the combination treatment. Moreover, the NO production level and inflammatory mediators and cytokines were significantly downregulated in the Rg3-RGE with the PT group compared with the model group. Also, NLR family pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) were suppressed in the combination treatment group compared with the OXA group. Furthermore, the number of immune cell subtypes of CD4+ T-helper cells, CD19+ B-cells, and CD4+ and CD25+ regulatory T-cells (Tregs) was improved in the Rg3-RGE with the PT group compared with the OXA group. Conclusion Overall, the mixture of Rg3-RGE and PT is an effective therapeutic treatment for UC.
Collapse
|
7
|
Hong YH, Song C, Shin KK, Choi E, Hwang SH, Jang YJ, Taamalli A, Yum J, Kim JH, Kim E, Cho JY. Tunisian Olea europaea L. leaf extract suppresses Freund's complete adjuvant-induced rheumatoid arthritis and lipopolysaccharide-induced inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113602. [PMID: 33246116 DOI: 10.1016/j.jep.2020.113602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olea europaea L. (olive) is traditionally used as a folk remedy and functional food in Europe and Mediterranean countries to treat inflammatory diseases. O. europaea contains phenolic compounds and have been reported to prevent cartilage degradation. However, the function and mechanism of O. europaea in rheumatoid arthritis are not known. AIM OF THE STUDY In this study, we aimed to examine anti-inflammatory and anti-arthritic effects of Tunisian O. europaea L. leaf ethanol extract (Oe-EE). MATERIALS AND METHODS To do this, we employed an in vitro macrophage-like cell line and an in vivo Freund's complete adjuvant (AIA)-induced arthritis model. Levels of inflammatory genes and mediators were determined from in vivo samples. RESULTS The Oe-EE clearly reduced the production of the lipopolysaccharide-mediated inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW264.7 cells. The results of HPLC showed that Oe-EE contained many active compounds such as oleuropein and flavonoids. In AIA-treated rats, swelling of paws, pain, and cartilage degeneration were alleviated by oral Oe-EE administration. Correlating with in vitro data, PGE2 production was significantly reduced in paw samples. Furthermore, the molecular mechanism of Oe-EE was dissected, and Oe-EE regulated the gene expression of interleukin (IL)-6, inducible NO synthase (iNOS), and MMPs and inflammatory signaling activation. CONCLUSION Consequently, Oe-EE possesses anti-inflammatory and anti-rheumatic effects and is a potential effective treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So-Hyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology-Technopole of Borj-Cedria, BP 901, Hammam-Lif, 2050, Tunisia; Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 39524, Saudi Arabia.
| | - Jinwhoa Yum
- National Institute of Biological Resources, Ministry of Environment, Incheon, 22689, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Ulmus parvifolia Jacq. Exhibits Antiobesity Properties and Potentially Induces Browning of White Adipose Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9358563. [PMID: 33425000 PMCID: PMC7773463 DOI: 10.1155/2020/9358563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
The bark of Ulmus parvifolia Jacq. (UP) was traditionally used as a diuretic and to treat intestinal inflammation. With modern evidence of the correlation of diuretics, gut inflammation, and obesity, our study has shown the antiobesity effects of the bark of UP. UP treatment reduced lipid production and adipogenic genes in vitro. In vivo studies revealed that UP 100 mg/kg and UP 300 mg/kg treatment significantly reduced mouse weight without reducing food intake, indicating increased energy expenditure. UP significantly reduced the weight of epididymal and subcutaneous adipose tissue and decreased liver weight. Histological analysis revealed improvement in the progression of nonalcoholic fatty liver disease and epididymal white adipose tissue hypertrophy induced by a HFD. Real-Time PCR of epididymal adipose tissue revealed significant increases of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression after UP 300 mg/kg treatments. Phosphorylation of AMP-activated protein α (AMPKα) was increased, while phosphorylation of Acetyl-CoA Carboxylase (ACC) was reduced. Our findings reveal the ability of UP to reduce the occurrence of obesity through increased browning of white adipose tissue via increased AMPKα, PPARγ, PGC-1α, and UCP-1 expression.
Collapse
|
9
|
Saba E, Lee YY, Rhee MH, Kim SD. Alleviation of Ulcerative Colitis Potentially through th1/th2 Cytokine Balance by a Mixture of Rg3-enriched Korean Red Ginseng Extract and Persicaria tinctoria. Molecules 2020; 25:molecules25225230. [PMID: 33182623 PMCID: PMC7696147 DOI: 10.3390/molecules25225230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
Ginseng is a vastly used herbal supplement in Southeast Asian countries. Red ginseng extract enriched with Rg3 (Rg3-RGE) is a formula that has been extensively studied owing to its various biological properties. Persicaria tinctoria (PT), belonging to the Polygonaceae family, has also been reported for its anti-inflammatory properties. Ulcerative colitis (UC) is inflammation of the large intestine, particularly in the colon. This disease is increasingly common and has high probability of relapse. We investigated, separately and in combination, the effects of Rg3-RGE and PT using murine exemplary of UC induced by DSS (Dextran Sulfate Sodium). For in vitro and in vivo experiments, nitric oxide assay, qRT-Polymerase Chain Reaction (PCR), Western blot, ulcerative colitis introduced by DSS, Enzyme Linked Immunosorbent Assay (ELISA), and flow cytometry analysis were performed. The results obtained demonstrate that treatment with Rg3-RGE + PT showed synergism to suppress inflammation (in vitro) in RAW 264.7 cells via mitogen-activated protein kinase and nuclear factor κB pathways. Moreover, in C57BL/6 mice, this mixture exhibits strong anti-inflammatory effects in restoring colon length, histopathological damage, pro-inflammatory mediators, and cytokines amount, and decreasing levels of NLRP3 inflammasome (in vivo). Our results recommend that this mixture can be used for the prevention of UC as a prophylactic/therapeutic supplement.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan;
| | - Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (M.H.R.); (S.-D.K.); Tel.: +82-53-950-5967 (M.H.R.); +82-51-720-5179 (S.-D.K.); Fax: +82-53-950-5955(M.H.R.); +82-51-720-5929 (S.-D.K.)
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Korea
- Correspondence: (M.H.R.); (S.-D.K.); Tel.: +82-53-950-5967 (M.H.R.); +82-51-720-5179 (S.-D.K.); Fax: +82-53-950-5955(M.H.R.); +82-51-720-5929 (S.-D.K.)
| |
Collapse
|
10
|
Lee YY, Yang WK, Han JE, Kwak D, Kim TH, Saba E, Kim SD, Lee YC, Kim JS, Kim SH, Rhee MH. Hypericum ascyron L. extract reduces particulate matter-induced airway inflammation in mice. Phytother Res 2020; 35:1621-1633. [PMID: 33150724 DOI: 10.1002/ptr.6929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
The consequences of increased industrialization increased the risk of asthma and breathing difficulties due to increased particulate matter in the air. We aim to investigate the therapeutic properties of Hypericum ascyron L. extract (HAE) in airway inflammation and unravel its mechanism of action. We conducted nitric oxide and cell viability assay, real-time PCR and western blot analyses along with in vitro studies. in vivo studies include a model of coal fly ash and diesel exhaust particle (CFD)-induced airway inflammation in mice. HAE reduced coal fly ash (CFA)-induced nitric oxide secretion without exhibiting cytotoxicity in MH-S cells. HAE also reduced the mRNA expression of pro-inflammatory cytokines and reduced the expression of proteins in the NFκB and MAPK pathways. In a mice model of CFD-induced airway inflammation, HAE effectively reduced neutrophil infiltration in bronchoalveolar lavage fluid (BALF) and increased the amount of T cells in the BALF, lungs, and blood while reducing all other immune cell subtypes to reduce airway inflammatory response. CXCL-1, IL-17, MIP-2, and TNF-α expression in the BALF were also reduced. HAE effectively reduced MIP-2 and TNF-α mRNA expression in the lung tissue of mice. In a nutshell, HAE is effective in preventing airway inflammation induced by CFA in MH-S cells, as well as inflammation induced by CFD in mice.
Collapse
Affiliation(s)
- Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, South Korea
| | - Jee Eun Han
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Dongmi Kwak
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Tae-Hwan Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sung-Dae Kim
- Research Department of Oncology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, South Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju, South Korea
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, South Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
11
|
Yang L, Zou H, Gao Y, Luo J, Xie X, Meng W, Zhou H, Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev 2020; 52:125-138. [PMID: 31984805 DOI: 10.1080/03602532.2020.1714645] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal microbiota and host co-evolve into a complex 'super-organism,' and this relationship plays a vital role in many physiological processes, such as drug metabolism. Ginseng is an important medicinal resource and the main ingredients are ginsenosides, which are less polar, difficult to absorb, and have low bioavailability. However, studies have shown that the biological activity of ginsenosides such as compound K (CK), ginsenoside Rg3 (Rg3), ginsenoside Rh2 (Rh2), 20(S)-protopanaxatriol (20(S)-PPT), and 20(S)-protopanaxadiol (20(S)-PPD) is closely related to the gastrointestinal microbiota. In this paper, the metabolic pathway of gastrointestinal microbiota-generated ginsenosides and the main pharmacological effects of these metabolites are discussed. Furthermore, our study provides a new insight into the discovery of novel drugs. Specifically, in new drug screening process, candidates with low biological activity and bioavailability should not be excluded. Because their metabolites may exhibit good pharmacological effects due to the involvement of the gastrointestinal microbiota. In addition, in further research studies to develop probiotics, a combination of agents could exert greater efficacy than single agents. Moreover, differences in lifestyle and diet lead to differences in the gastrointestinal microbiota in the human body. Therefore, administration of the same drug dose to different individuals could elicit different therapeutic effects, owing to the involvement of the gastrointestinal microbiota. Thus, treatment accuracy could be achieved by detecting the gastrointestinal microbiota before drug treatment.HighlightsGastrointestinal microbiota plays a decisive role in bioactivities of ginsenosides.The metabolic pathway and main pharmacological effects of ginsenoside metabolites are discussed.It provides new insights into novel drug discovery and further research to find probiotic, combinations to exert greater efficacy.Differences in lifestyle and diet, varies the gastrointestinal microbiota in the human body. However, the same dose of a drug producing different therapeutic effects may involve gastrointestinal microbiota.
Collapse
Affiliation(s)
- Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, Hunan, PR China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Junjia Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Xiaonv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| |
Collapse
|
12
|
Saba E, Jeong D, Irfan M, Lee YY, Park SJ, Park CK, Rhee MH. Anti-Inflammatory Activity of Rg3-Enriched Korean Red Ginseng Extract in Murine Model of Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6874692. [PMID: 30405742 PMCID: PMC6201491 DOI: 10.1155/2018/6874692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Ginseng has therapeutic effects on various bodily disorders ranging from minor inflammation to major cardiovascular diseases. In our study, we explored the anti-inflammatory effects of Rg3-enriched red ginseng extract (Rg3-RGE), a ginsenoside belonging to the panaxadiol group. We employed nitric oxide assay (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), western blot, and hematoxylin and eosin staining (H&E) to elucidate the anti-inflammatory activity of Rg3-RGE. Rg3-RGE potently suppressed NO production in the murine macrophage cell line, RAW 264.7 cells, without any cytotoxicity across dosages. Additionally, it inhibited the mRNA expression of proinflammatory mediators and cytokines like iNOS, COX-2, IL-1β, IL-6, and TNF-α. Moreover it also inhibited the levels of malondialdehyde levels in serum of septic shock mice. Immunoblot analysis showed that Rg3-RGE induced anti-inflammatory signal transduction via the NF-κB and MAPK pathways. A remarkable attenuation of inflammation by oral treatment with Rg3-RGE in mice was observed in the survival study. The in vivo study using a septic shock mouse model also showed similar results as the in vitro study. Our findings suggest that Rg3-RGE can potentially be a potent anti-inflammatory agent that likely mediates its anti-inflammatory effects via the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dahye Jeong
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yuan Yee Lee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Joon Park
- Laboratory of Histology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chae-Kyu Park
- R&D Headquarters, Korean Ginseng cooperation, Daejeon 34520, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|