1
|
Zhang Y, Hao R, Chen J, Huang K, Li S, Cao H, Guan X. Gut-Derived Ursodeoxycholic Acid from Saponins of Quinoa Regulated Colitis via Inhibiting the TLR4/NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2415-2429. [PMID: 39827465 DOI: 10.1021/acs.jafc.4c09151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Alteration of the gut microbiota and its metabolites plays a key role in the development of inflammatory bowel disease (IBD). Here, we investigated the mechanism of saponins, a byproduct from quinoa (SQ) processing, in regulating IBD. SQ ameliorated gut microbiota dysbiosis revealed by 16S rRNA sequencing and improved colonic antioxidant activities and barrier integrity in dextran sulfate sodium (DSS)-treated mice. Broad-spectrum antibiotics further proved that the gut-protective effects of SQ were mediated by gut microbiota. Next, fecal microbiota transplantation (FMT) of SQ-induced gut microbiota/metabolites to inoculate DSS-treated mice alleviated colitis significantly. Untargeted metabolomics and lipidomics revealed that ursodeoxycholic acid (UDCA) was enriched as a microbial metabolite after SQ supplementation. UDCA was then found to attenuate DSS-induced colitis in vivo by targeting the TLR4/NF-κB pathway, which was also verified in a Caco-2 cell model treated with a TLR4 agonist/antagonist. Overall, our findings established that gut microbiota-UDCA-TLR4/NF-κB signaling plays a key role in mediating the protective effects of SQ.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Ruojie Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
2
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach. Front Pharmacol 2024; 15:1415844. [PMID: 38966558 PMCID: PMC11222675 DOI: 10.3389/fphar.2024.1415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Arabi SM, Shahraki-Jazinaki M, Abadi MN, Bahrami LS, Chambari M, Bahari H, Sahebkar A. The Effect of Ginseng Supplementation on Lipid Profile: GRADE-assessed Systematic Review and Dose-response Meta-analysis of Randomized Controlled Trials. Curr Pharm Des 2024; 30:2047-2058. [PMID: 38877862 DOI: 10.2174/0113816128306300240522074056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND This systematic review and meta-analysis aimed to evaluate the overall impact of Panax ginseng on lipid profile by synthesizing existing evidence. Cardiovascular Disease (CVD) is the leading cause of morbidity and mortality among the elderly population, and serum lipids play a crucial role in its development. Maintaining optimal levels of triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol is essential in reducing the risk of CVD. Ginsenosides, the active constituents in ginseng, have shown positive effects on lipid metabolism. This review aimed to provide a comprehensive understanding of the potential benefits of ginseng in managing dyslipidemia, which could have significant implications for the prevention and treatment of CVD. METHODS A comprehensive analysis of 29 Randomized Controlled Trials (RCTs) was conducted to assess the effects of ginseng supplementation on lipid profile, including Triglyceride (TG), Total Cholesterol (TC), High-density Lipoprotein Cholesterol (HDL-C), and Low-density Lipoprotein Cholesterol (LDL-C) levels. A systematic search was done in online databases, such as MEDLINE, Scopus, and Clarivate Analytics Web of Science, using relevant keywords and MeSH terms to identify relevant studies until January 2024. RESULTS The Weighted Mean Differences (WMD) and 95% Confidence Intervals (CI) for TG, TC, LDL-C, and HDL-C did not show significant changes with ginseng supplementation. CONCLUSION Taking into account the results, using ginseng did not have a statistically significant influence on lipid profile parameters in individuals with different health conditions. Further, well-designed RCTs focusing on specific diseases are needed to clarify the potential beneficial effects of ginseng and its derivatives on lipid profile.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Maryam Nayyer Abadi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Program of Biomedical Sciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hossein Bahari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
5
|
Shuai M, Yang Y, Bai F, Cao L, Hou R, Peng C, Cai H. Geographical origin of American ginseng (Panax quinquefolius L.) based on chemical composition combined with chemometric. J Chromatogr A 2022; 1676:463284. [DOI: 10.1016/j.chroma.2022.463284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
|
6
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
7
|
Efficacy of the commercial plant products acting against influenza-a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:238. [PMID: 34926706 PMCID: PMC8669228 DOI: 10.1186/s43094-021-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Influenza infection always poses a threat to human and animal health. Vaccines and antiviral drugs are recommended to deal with the situation. The drawback of these remedial agents made the scientist change their focus on an alternative therapy. The anti-influenza effects of plants have been extensively studied, and many pharmaceutical companies have prepared their products on this basis.
Main body The present review documents the successfully launched anti-influenza commercial products. In specific, it exposes the scientifically validated and evidence-based supporting inhibitory action of influenza and its strains. Conclusion This review highlighted the efficacy of the commercial products which effectively combat influenza. It provides a complementary strategy to deal with the worst-case scenario of flu. Meanwhile, to face the emerging strains, brand new products are in great necessity besides prevailing and available drugs.
Collapse
|
8
|
Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021; 27:6551-6571. [PMID: 34754152 PMCID: PMC8554406 DOI: 10.3748/wjg.v27.i39.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Information about the coronavirus disease 2019 (COVID-19) pandemic is still evolving since its appearance in December 2019 and has affected the whole world. Particularly, a search for an effective and safe treatment for COVID-19 continues. Botanical mixtures contain secondary metabolites (such as flavonoids, phenolics, alkaloids, essential oils etc.) with many therapeutic effects. In this study, the use of herbal treatments against COVID-19 was evaluated. Medical synthetic drugs focus mainly on respiratory symptoms, however herbal therapy with plant extracts may be useful to relieve overall symptoms of COVID-19 due to the variety of bioactive ingredients. Since COVID-19 is a virus that affects the respiratory tract, the antiviral effects of botanicals/plants against respiratory viruses have been examined through clinical studies. Data about COVID-19 patients revealed that the virus not only affects the respiratory system but different organs including the gastrointestinal (GI) system. As GI symptoms seriously affect quality of life, herbal options that might eliminate these problems were also evaluated. Finally, computer modeling studies of plants and their active compounds on COVID-19 were included. In summary, herbal therapies were identified as potential options for both antiviral effects and control of COVID-19 symptoms. Further data will be needed to enlighten all aspects of COVID-19 pathogenesis, before determining the effects of plants on severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Ufuk Koca Caliskan
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| | - Methiye Mancak Karakus
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
9
|
Jung SJ, Oh MR, Lee DY, Lee YS, Kim GS, Park SH, Han SK, Kim YO, Yoon SJ, Chae SW. Effect of Ginseng Extracts on the Improvement of Osteopathic and Arthritis Symptoms in Women with Osteopenia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2021; 13:nu13103352. [PMID: 34684351 PMCID: PMC8539988 DOI: 10.3390/nu13103352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Ginsenosides are active compounds that are beneficial to bone metabolism and have anti-osteoporosis properties. However, very few clinical investigations have investigated the effect of ginseng extract (GE) on bone metabolism. This study aims to determine the effect of GE on improving bone metabolism and arthritis symptoms in postmenopausal women with osteopenia. A 12-week randomized, double-blind, placebo-controlled clinical trial was conducted. A total of 90 subjects were randomly divided into a placebo group, GE 1 g group, and GE 3 g group for 12 weeks based on the random 1:1:1 assignment to these three groups. The primary outcome is represented by bone metabolism indices consisting of serum osteocalcin (OC), urine deoxypyridinoline (DPD), and DPD/OC measurements. Secondary outcomes were serum CTX, NTX, Ca, P, BsALP, P1NP, OC/CTX ratio, and WOMAC index. The GE 3 g group had a significantly increased serum OC concentration. Similarly, the GE 3 g group showed a significant decrease in the DPD/OC ratio, representing bone resorption and bone formation. Moreover, among all the groups, the GE 3 g group demonstrated appreciable improvements in the WOMAC index scores. In women with osteopenia, intake of 3 g of GE per day over 12 weeks notably improved the knee arthritis symptoms with improvements in the OC concentration and ratios of bone formation indices like DPD/OC.
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea; (S.-J.J.); (M.-R.O.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea
| | - Mi-Ra Oh
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea; (S.-J.J.); (M.-R.O.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Chungbuk, Korea; (D.Y.L.); (Y.-S.L.); (G.-S.K.); (Y.-O.K.)
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Chungbuk, Korea; (D.Y.L.); (Y.-S.L.); (G.-S.K.); (Y.-O.K.)
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Chungbuk, Korea; (D.Y.L.); (Y.-S.L.); (G.-S.K.); (Y.-O.K.)
| | - Soo-Hyun Park
- Korea Food Research Institute, Wanju 55365, Jeonbuk, Korea;
| | - Soog-Kyoung Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896, Jeonbuk, Korea;
| | - Young-Ock Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Chungbuk, Korea; (D.Y.L.); (Y.-S.L.); (G.-S.K.); (Y.-O.K.)
| | - Sun-Jung Yoon
- Department of Orthopedic Surgery, Medical School, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896, Jeonbuk, Korea;
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea; (S.-J.J.); (M.-R.O.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Korea
- Correspondence: ; Tel.: +82-63-2593040
| |
Collapse
|
10
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
11
|
Antonelli M, Donelli D, Firenzuoli F. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis. Complement Ther Med 2020; 52:102457. [PMID: 32951718 PMCID: PMC7305750 DOI: 10.1016/j.ctim.2020.102457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The aim of the review was to assess whether ginseng can be a useful supplementation for seasonal acute upper respiratory infections (SAURIs). METHODS All clinical studies investigating ginseng efficacy for the treatment or prevention of SAURIs were included in the review. Medline, EMBASE, Web of Science, Scopus, Cochrane Library, Google Scholar were systematically screened for relevant articles up to May 26th, 2020. The risk of bias was assessed with the Cochrane tool (RoB 2). RESULTS Nine articles (describing ten trials about P. ginseng or P. quinquefolius) were included in the review. Evidence globally indicated some useful activity of intervention when administered in adjunct to influenza vaccination. The results of our quantitative synthesis suggested a significant effect on SAURIs incidence (RR = 0.69 [95 % C.I. 0.52 to 0.90], p < 0.05), as well as a significant reduction of their duration if only studies with healthy individuals were included in the analysis (MD=-3.11 [95 % C.I.-5.81 to -0.40], p < 0.05). However, the risk of bias was high-to-unclear for most included trials, and publication bias couldn't be excluded. DISCUSSION Limitations of existing evidence don't allow to draw conclusions on the topic. Nevertheless, it is not excluded that ginseng supplementation in adjunct to influenza vaccination and standard care might be useful for SAURIs prevention and management in healthy adult subjects, but further high-quality trials are needed to support this hypothesis. OTHER This research was not funded. The protocol was registered in PROSPERO under the following code: CRD42020156235.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, Parma, Italy; Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy; Institute of Public Health, University of Parma, Parma, Italy.
| | - Davide Donelli
- Terme di Monticelli, Parma, Italy; Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy; AUSL-IRCCS Reggio Emilia, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy
| |
Collapse
|
12
|
Ghavami A, Ziaei R, Foshati S, Hojati Kermani MA, Zare M, Amani R. Benefits and harms of ginseng supplementation on liver function? A systematic review and meta-analysis. Complement Ther Clin Pract 2020; 39:101173. [DOI: 10.1016/j.ctcp.2020.101173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
|
13
|
Iqbal H, Rhee DK. Ginseng alleviates microbial infections of the respiratory tract: a review. J Ginseng Res 2020; 44:194-204. [PMID: 32148400 PMCID: PMC7031735 DOI: 10.1016/j.jgr.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.
Collapse
Key Words
- ARI, acute respiratory illness
- Bacteria
- COPD, chronic obstructive pulmonary disease
- Clinical trials
- GSLS, ginseng stem–leaf saponins
- Ginseng
- HRV, human rhinovirus
- IFN, interferon
- IL, interleukin
- IgA, immunoglobulin A
- PD, protopanaxadiol
- PT, protopanaxatriol
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- RTIs, respiratory tract infections
- Respiratory tract infections
- TNF-α, tumor necrosis factor-alpha
- Virus
Collapse
Affiliation(s)
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|