1
|
AbuQamar SF, Abd El-Fattah HI, Nader MM, Zaghloul RA, Abd El-Mageed TA, Selim S, Omar BA, Mosa WF, Saad AM, El-Tarabily KA, El-Saadony MT. Exploiting fungi in bioremediation for cleaning-up emerging pollutants in aquatic ecosystems. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106068. [PMID: 37421706 DOI: 10.1016/j.marenvres.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
Aquatic pollution negatively affects water bodies, marine ecosystems, public health, and economy. Restoration of contaminated habitats has attracted global interest since protecting the health of marine ecosystems is crucial. Bioremediation is a cost-effective and eco-friendly way of transforming hazardous, resistant contaminants into environmentally benign products using diverse biological treatments. Because of their robust morphology and broad metabolic capabilities, fungi play an important role in bioremediation. This review summarizes the features employed by aquatic fungi for detoxification and subsequent bioremediation of different toxic and recalcitrant compounds in aquatic ecosystems. It also details how mycoremediation may convert chemically-suspended matters, microbial, nutritional, and oxygen-depleting aquatic contaminants into ecologically less hazardous products using multiple modes of action. Mycoremediation can also be considered in future research studies on aquatic, including marine, ecosystems as a possible tool for sustainable management, providing a foundation for selecting and utilizing fungi either independently or in microbial consortia.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Hassan I Abd El-Fattah
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Maha M Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Rashed A Zaghloul
- Department of Agricultural Microbiology, Faculty of Agriculture, Moshtohor, Benha University, Benha, 13511, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Belal A Omar
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Walid F Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Saibu S, Adebusoye SA, Oyetibo GO. Soil microbiome response to 2-chlorodibenzo-p-dioxin during bioremediation of contaminated tropical soil in a microcosm-based study. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131105. [PMID: 36893594 DOI: 10.1016/j.jhazmat.2023.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
A pristine soil was artificially contaminated with 2-chlorodibenzo-p-dioxin (2-CDD) and separated into three portions. Microcosms SSOC and SSCC were seeded with Bacillus sp. SS2 and a three-member bacterial consortium respectively; SSC was untreated, while heat-sterilized contaminated soil served as overall control. Significant degradation of 2-CDD occurred in all microcosms except for the control where the concentration remained unchanged. Degradation of 2-CDD was highest in SSCC (94.9%) compared to SSOC (91.66%) and SCC (85.9%). There was also a notable reduction in the microbial composition complexity both in species richness and evenness following dioxin contamination, a trend that nearly lasted the study period; particularly in setups SSC and SSOC. Irrespective of the bioremediation strategies, the soil microflora was practically dominated by the Firmicutes and at the genus level, the phylotype Bacillus was the most dominant. Other dominant taxa though negatively impacted were Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria. Overall, this study demonstrated the feasibility of microbial seeding as an effective strategy to cleanup tropical soil contaminated with dioxins and the importance of metagenomics in elucidating the microbial diversities of contaminated soils. Meanwhile, the seeded organisms, owed their success not only to metabolic competence, but survivability, adaptability and ability to compete favourably with autochthonous microflora.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria; Department of Microbiology, Lagos State University, Ojo, Lagos, Nigeria.
| | | | - Ganiyu O Oyetibo
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria.
| |
Collapse
|
3
|
Jain S, Tembhurkar AR. Sustainable amelioration of fly ash dumps linking bio-energy plantation, bioremediation and amendments: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115124. [PMID: 35477138 DOI: 10.1016/j.jenvman.2022.115124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Disposal of fly ash in dumps is posing serious environmental problem causing air pollution, groundwater contamination, and loss of valuable land making it unproductive dumpsites. Cultivation of plants using bioremediation technique is looked upon as one of the sustainable remedial solution to these fly ash dumpsites. In recent years, researches on the plantation of bio-energy crops over the fly ash dumpsites is creating renewed interest, as it serves remediation along with distinct energy outcomes creating a win-win situation. The issue of the slow growth of plants, due to lack of nutrients and microbial activities is being resolved through advances in bioremediation research done in conjunction with organic matter, microbial inoculants, and inclusion of wastewater. New researches are being done with different plants and microbes in the matrix combination and use wastewater to supplement nutrients requirement to find eco-friendly & sustainable solutions. The present paper critically reviews the research on bioremediation and amendments with specific to bio-energy plantation on fly ash dumps.
Collapse
Affiliation(s)
- Sandeep Jain
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| | - Ajay R Tembhurkar
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
4
|
A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. TOXICS 2022; 10:toxics10060278. [PMID: 35736887 PMCID: PMC9227754 DOI: 10.3390/toxics10060278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022]
Abstract
This article provides a comprehensive assessment of dioxins contaminating the soil and evaluates the bioremediation technology currently being widely used, and also offers recommendations for future prospects. Soil pollution containing dioxins is extremely toxic and hazardous to human health and the environment. Dioxin concentrations in soils around the world are caused by a variety of sources and outcomes, but the main sources are from the consequences of war and human activities. Bioremediation technology (bioaugmentation, biostimulation, and phytoremediation) is considered an optimal and environmentally friendly technology, with the goal of applying native microbial communities and using plant species with a high biomass to treat contaminated dioxins in soil. The powerful bioremediation system is the growth of microorganisms that contribute to the increased mutualistic and competitive relationships between different strains of microorganisms. Although biological treatment technology can thoroughly treat contaminated dioxins in soil with high efficiency, the amount of gas generated and Cl radicals dispersed after the treatment process remains high. Further research on the subject is required to provide stricter control over the outputs noted in this study.
Collapse
|
5
|
Wei J, Li H, Liu J. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117798. [PMID: 34340177 DOI: 10.1016/j.envpol.2021.117798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The variation of municipal solid waste (MSW) components and the improvement of incinerators have an obvious effect on dioxin emissions. However, there is a knowledge gap on dioxin distribution characteristics following China's implementation of MSW classification. To reveal the fate of dioxins under ultra-low emission standards in leading cities in China, a systematic investigation was carried out in a typical modern MSW incinerator in Shenzhen, China. The dioxin mass balance was built using improved models, which included expanded samples, e.g., the leachate, the raw gas and raw ash from boiler, and the chemicals and residuals from air pollution control devices (APCDs). The results indicated a positive dioxin balance of 0.88 μg I-TEQ/t MSW according to the conventional method containing fly ash, bottom ash, and stack gas. In the new model revealing dioxin characteristics after APCDs, a higher value of 0.89 μg I-TEQ/t MSW was found due to the leachate, slaked lime, and activated carbon-containing dioxins. The distribution of dioxins in output samples of fly ash, bottom ash, stack gas, and leachate were 149.0 %, 41.8 %, 1.6 %, and 0.6 % of MSW, respectively. For incineration itself, the balance was 0.85 μg I-TEQ/t MSW, which indicated the possible release owing to the "memory effect" for the other two methods. This study provided new insight for the accurate estimation of dioxin emissions and a typical case report of MSW incineration with ultra-low dioxin emissions.
Collapse
Affiliation(s)
- Junxiao Wei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jianguo Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Kaewlaoyoong A, Chen JR, Cheng CY, Lin C, Cheruiyot NK, Sriprom P. Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117869. [PMID: 34388555 DOI: 10.1016/j.envpol.2021.117869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Mycoremediation of unsterilized PCDD/F-contaminated field soil was successfully demonstrated by solid-state fermentation coupled with Pleurotus pulmonarius utilizing a patented incubation approach. The experiments were carried out in four setups with two as controls. The contaminated soil was homogenously mixed with solid inocula, 1:0.5 dry w/w, resulting in an initial concentration of 4432 ± 623 ng WHO-TEQ kg-1. After a 30-day incubation under controlled conditions, the overall removal (approx. 60%) was non-specific. The removal was attributed to degradation by extracellular ligninolytic enzymes and uptake into the fruiting tissue (~110 ng WHO-TEQ kg-1 of mushroom). Furthermore, less recalcitrant chlorinated metabolites were found, implying ether bond cleavage and dechlorination happened during the mycoremediation. These metabolites resulted from the complex interaction between P. pulmonarius and the indigenous microbes from the unsterilized soil. This study provides a new step toward scaling up this mycoremediation technique to treat unsterilized PCDD/F-contaminated field soil.
Collapse
Affiliation(s)
- Acharee Kaewlaoyoong
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 82445, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jenq-Renn Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 82445, Taiwan
| | - Chih-Yu Cheng
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Pongsert Sriprom
- Program of Food Process Engineering, Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
7
|
Kaewlaoyoong A, Cheng CY, Lin C, Chen JR, Huang WY, Sriprom P. White rot fungus Pleurotus pulmonarius enhanced bioremediation of highly PCDD/F-contaminated field soil via solid state fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139670. [PMID: 32534283 DOI: 10.1016/j.scitotenv.2020.139670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to evaluate the use of white rot fungus, Pleurotus pulmonarius, to treat polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in contaminated soil using solid state fermentation (SSF). The soil was collected from a long-closed pentachlorophenol plant in southern Taiwan. The non-sterilized soil with a total PCDD/F concentration of 14,000 ± 2400 ng I-TEQ kg-1 was mixed directly with the solid fungal inocula at dry w/w ratio of 1:1.4 (ratio-adjusted test) and incubated at 26 ± 2 °C in a controlled environment. The highest PCDD/F decomposition was observed during the mycelium colonization. Pearson correlation coefficient (r) studied during this period (35 days) indicated that laccase had no significant correlation (r = -0.53), while manganese peroxidase had a strong positive correlation (r = 0.88) with PCDD/F decomposition efficiency. After 72 days, the more toxic congeners, tetra- and penta-CDD/Fs were removed to non-detectable levels. Meanwhile, the removal efficiencies of hexa-, hepta-, and octa-CDD/Fs were >80%, >97%, and >90%, respectively. The simultaneous degradation of low and high chlorinated DD/Fs suggested that overall removal was nonspecific. The overall PCDD/F removal was 96%, and the residual concentration (276 ng I-TEQ kg-1) was below the regulatory control limit (1000 ng I-TEQ kg-1). In conclusion, this study shows that P. pulmonarius via SSF can successfully remediate the PCDD/F-contaminated field soil. Furthermore, this SSF technique overcame the well-known intractability of PCDD/F biodegradation in non-sterilized soil, making it promising for actual field application.
Collapse
Affiliation(s)
- Acharee Kaewlaoyoong
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| | - Chih-Yu Cheng
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Jenq-Renn Chen
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| | - Wen-Yen Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Pongsert Sriprom
- Program of Food Process Engineering, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
8
|
Saibu S, Adebusoye SA, Oyetibo GO. Aerobic bacterial transformation and biodegradation of dioxins: a review. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0294-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWaste generation tends to surge in quantum as the population and living conditions grow. A group of structurally related chemicals of dibenzofurans and dibenzo-p-dioxins including their chlorinated congeners collectively known as dioxins are among the most lethal environmental pollutants formed during different anthropogenic activities. Removal of dioxins from the environment is challenging due to their persistence, recalcitrance to biodegradation, and prevalent nature. Dioxin elimination through the biological approach is considered both economically and environmentally as a better substitute to physicochemical conventional approaches. Bacterial aerobic degradation of these compounds is through two major catabolic routes: lateral and angular dioxygenation pathways. Information on the diversity of bacteria with aerobic dioxin degradation capability has accumulated over the years and efforts have been made to harness this fundamental knowledge to cleanup dioxin-polluted soils. This paper covers the previous decades and recent developments on bacterial diversity and aerobic bacterial transformation, degradation, and bioremediation of dioxins in contaminated systems.
Collapse
|
9
|
Deng D, Qiao J, Liu M, Kołodyńska D, Zhang M, Dionysiou DD, Ju Y, Ma J, Chang MB. Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of Dioxin and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:279-289. [PMID: 30780024 DOI: 10.1016/j.jhazmat.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The detoxification of municipal solid waste incinerator (MSWI) fly ash dioxins urgently requires an effective treatment technology. In this study, we adopted a single-mode microwave (MW)-based pyrolysis to treat MSWI fly ash under N2 atmosphere and further elucidated the main influencing factors, including the chemical inhibitor, for dioxin control. The results show that (1) the detoxification process was optimized with a mass ratio of fly ash to SiC of 1:9, 23.1% (wt%) urea addition and pyrolysis temperature of ˜ 480 °C; (2) the total polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) destruction efficiency and the bioassay-derived 2,3,7,8-TCDD toxic equivalent (Bio-TEQ) removal efficiency reached 98.5% and 97.9%, respectively, accompanied with ˜ 1.3% of the total amount of dioxin being submitted to exhaust gas; (3) the MW-based pyrolysis of urea (133˜300 °C) was favourable for the generation of hot spots as well as the PCDD/F rapid destruction in fly ash. In addition, the leaching toxicity of heavy metals was also partially reduced after MW pyrolysis reactions. To the best of our knowledge, this is the first report adopting a MW-based pyrolysis to eliminate dioxin in MSWI fly ash with the addition of urea, which is a promising alternative to current methods.
Collapse
Affiliation(s)
- Dongyang Deng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, PR China
| | - Junqin Qiao
- Center of Material Analysis, Nanjing University, Jiangsu Province, Nanjing 210093, PR China
| | - Mingqing Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq.2. 20-031 Lublin, Poland
| | - Manwen Zhang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Yongming Ju
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Guangdong Key Laboratory of Water and Air Pollution Control, Guangzhou 510655, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Moo-Been Chang
- Graduate Institute of Environmental Engineering, National Central University, Chungli 320, Taiwan.
| |
Collapse
|
10
|
Zhiliang C, Minghui T, Shengyong L, Buekens A, Jiamin D, Qili Q, Jianhua Y. Mechanochemical degradation of PCDD/Fs in fly ash within different milling systems. CHEMOSPHERE 2019; 223:188-195. [PMID: 30780029 DOI: 10.1016/j.chemosphere.2019.02.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/12/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Two distinct mechanochemical degradation (MCD) methods are adopted to eliminate the polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) from fly ash in municipal solid waste incinerators. First, experiments are conducted in a planetary ball mill for selecting suitable additives, and an additive system of SiO2-Al is chosen for its high-efficiency, low-price, and good practicability. The I-TEQ value of PCDD/Fs in washed fly ash decreases dramatically from 6.75 to 0.64 ng I-TEQ/g, after 14 h of milling with 10 wt % SiO2-Al, and dechlorination is identified as the major degradation pathway. Then, this additive is applied in a horizontal ball mill, and the results indicate that the degradation of PCDD/Fs follows the kinetic model established in planetary ball mills. However, longer milling time is required for the same supplied-energy because of the lower energy density of horizontal ball mills, resulting in partial loss of Al reactivity and a lower degradation efficiency of PCDD/Fs. During MCD, the evolution of PCDD/F-signatures is analogous, indicating a similar acting mechanism of all additives in both the two milling systems. Finally, a major dechlorination pathway of PCDD-congeners is proposed based on the signature analysis of congeners synthesized from chlorophenols.
Collapse
Affiliation(s)
- Chen Zhiliang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tang Minghui
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lu Shengyong
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Alfons Buekens
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ding Jiamin
- Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Qiu Qili
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Jianhua
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Zhiliang C, Minghui T, Shengyong L, Jiamin D, Qili Q, Yuting W, Jianhua Y. Evolution of PCDD/F-signatures during mechanochemical degradation in municipal solid waste incineration filter ash. CHEMOSPHERE 2018; 208:176-184. [PMID: 29864708 DOI: 10.1016/j.chemosphere.2018.05.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Mechanochemical degradation (MCD) is employed for the dechlorination of polychlorinated dibenzo-p-dioxins (PCDD) and -furans (PCDF) in filter ashes from municipal solid waste incinerators, respectively with the assist of six additive systems. The evolution of PCDD/F-signatures in all eleven samples are systematically monitored and studied at the level of individual congeners, and special attention is paid to CP-route congeners, 2,3,7,8-substitution, 1,9-substitution, and 4,6-PCDF. The PCDD/F-isomers distribution follows an analogous pattern, indicating the similar acting mechanism for all additives: additives transfer electrons to attack the CCl bond and then expulse chlorine. MC dechlorination is not favored for the chlorine on β-position (2,3,7,8-position). The oxygen with stronger electronegativity in PCDD/Fs negatively influences CCl bond to accept donated electrons, hindering the removal of chlorine on 1,9-position for PCDD, and chlroine on 4,6-position for PCDF. Finally, two fair dechlorination pathways for PCDD and PCDF are respectively proposed based on the detailed analysis of CP-route congeners. The evolution of PCDD-signatures is clear, yet obscure for PCDF-signatures, which still requires further investigations.
Collapse
Affiliation(s)
- Chen Zhiliang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tang Minghui
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lu Shengyong
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ding Jiamin
- Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Qiu Qili
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wang Yuting
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Jianhua
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Liu MC, Chang SH, Chang MB. Catalytic hydrodechlorination of PCDD/Fs from condensed water with Pd/γ-Al2O3. CHEMOSPHERE 2016; 154:583-589. [PMID: 27088535 DOI: 10.1016/j.chemosphere.2016.03.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/27/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
A continuous pyrolysis system (CPS) with effective air pollution control devices (APCDs) is designed and constructed to remediate the soil containing high-concentration PCDD/Fs. The quench tower of the APCDs system can capture the pollutants of high boiling points from the flue gas of CPS and produces condensed water of high PCDD/Fs concentration (16-44 ng I-TEQ/L), and needs further treatment. First, the result of activated carbon adsorption test displays the PCDD/Fs toxicity concentration of effluents meet the regulatory standards as the liquid to solid ratio is controlled at 3: 1. However, large amount of activated carbon need to achieve the high removal efficiency leads to high cost, so catalytic hydrodechlorination technology with Pd/Al2O3 as catalyst is applied to treat the condensed water. The PCDD/Fs mass removal efficiency achieved without the reducing agent is 53.21% with the operating time of 180 min. As 5% reducing agent (methanol) is added, the removal efficiency increases to 71.86%. In addition, to better understand the differences between molecular hydrogen and hydrogen donor, the condensed water was pre-aerated with hydrogen and catalytic hydrodechlorination test with palladium as catalyst was conducted. The results show that the PCDD/Fs mass removal efficiency increases to 97.34% with the operating time of 180 min, demonstrating the high PCDD/Fs removal efficiency of catalytic hydrodechlorination.
Collapse
Affiliation(s)
- Mei-Chen Liu
- Graduate Institute of Environmental Engineering, National Central University, 300 Jhongda Rd., Jhongli District, Taoyuan City, 320, Taiwan, ROC
| | - Shu-Hao Chang
- Graduate Institute of Environmental Engineering, National Central University, 300 Jhongda Rd., Jhongli District, Taoyuan City, 320, Taiwan, ROC
| | - Moo-Been Chang
- Graduate Institute of Environmental Engineering, National Central University, 300 Jhongda Rd., Jhongli District, Taoyuan City, 320, Taiwan, ROC.
| |
Collapse
|
13
|
Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N Biotechnol 2015; 32:620-8. [DOI: 10.1016/j.nbt.2015.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
|
14
|
Park MJ, Yoon MH, Nam IH. Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil. ACTA ACUST UNITED AC 2014. [DOI: 10.7745/kjssf.2014.47.6.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Tu YT, Liu JK, Lin WC, Lin JL, Kao CM. Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: microcosm, pilot-scale, and gene studies. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:433-443. [PMID: 24997259 DOI: 10.1016/j.jhazmat.2014.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, microcosm and pilot-scale experiments were performed to investigate the capability and effectiveness of Pseudomonas mendocina NSYSU (P. mendocina NSYSU) on the bioremediation of octachlorodibenzo-p-dioxin (OCDD)-contaminated soils. The objectives were to evaluate the (1) characteristics of P. mendocina NSYSU, (2) feasibility of enhancing OCDD biodegradation with the addition of P. mendocina NSYSU and lecithin, and (3) variation in microbial diversity and genes responsible for the dechlorination of OCDD. P. mendocina NSYSU was inhibited when salinity was higher than 7%, and it could biodegrade OCDD under reductive dechlorinating conditions. Lecithin could serve as the solubilization agent causing the enhanced solubilization and dechlorination of OCDD. Up to 71 and 62% of OCDD could be degraded after 65 days of incubation under anaerobic conditions with and without the addition of lecithin, respectively. Decreased OCDD concentrations caused significant increase in microbial diversity. Results from the pilot-scale study show that up to 75% of OCDD could be degraded after a 2.5-month operational period with lecithin addition. Results from the gene analyses show that two genes encoding the extradiol/intradiol ring-cleavage dioxygenase and five genes encoding the hydrolase in P. mendocina NSYSU were identified and played important roles in OCDD degradation.
Collapse
Affiliation(s)
- Y T Tu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - J K Liu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - W C Lin
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J L Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
16
|
Bioresources for control of environmental pollution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 147:137-83. [PMID: 25312333 DOI: 10.1007/10_2014_276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Environmental pollution is one of the biggest threats to human beings. For practical reasons it is not possible to stop most of the activities responsible for environmental pollution; rather we need to eliminate the pollutants. In addition to other existing means, biological processes can be utilized to get rid of toxic pollutants. Degradation, removal, or deactivation of pollutants by biological means is known as bioremediation. Nature itself has several weapons to deal with natural wastage and some of them are equally active for eliminating nonnatural pollutants. Several plants, microorganisms, and some lower eukaryotes utilize environmental pollutants as nutrients and some of them are very efficient for decontaminating specific types of pollutants. If exploited properly, these natural resources have enough potential to deal with most elements of environmental pollution. In addition, several artificial microbial consortia and genetically modified organisms with high bioremediation potential were developed by application of advanced scientific tools. On the other hand, natural equilibria of ecosystems are being affected by human intervention. Rapid population growth, urbanization, and industrialization are destroying ecological balances and the natural remediation ability of the Earth is being compromised. Several potential bioremediation tools are also being destroyed by biodiversity destruction of unexplored ecosystems. Pollution management by bioremediation is highly dependent on abundance, exploration, and exploitation of bioresources, and biodiversity is the key to success. Better pollution management needs the combined actions of biodiversity conservation, systematic exploration of natural resources, and their exploitation with sophisticated modern technologies.
Collapse
|
17
|
Lin WC, Chang-Chien GP, Kao CM, Newman L, Wong TY, Liu JK. Biodegradation of Polychlorinated Dibenzo--Dioxins by Strain NSYSU. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:349-357. [PMID: 25602569 DOI: 10.2134/jeq2013.06.0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dioxin-degrading bacterium strain NSYSU (NSYSU strain) has been isolated from dioxin-contaminated soil by selective enrichment techniques. In the present study, the NSYSU strain was investigated for its capability to biodegrade polychlorinated dibenzo--dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) under aerobic and anaerobic conditions. High-resolution gas chromatography-mass spectrometry and a chemically activated luciferase gene expression bioassay were performed to determine the presence of dioxin compounds. The results indicate that the NSYSU strain could degrade PCDDs and PCDFs under anaerobic conditions in liquid cultures. The main intermediates of the dechlorination process were identified. The results of the bioreactor test indicate that the NSYSU strain could also degrade PCDDs and PCDFs effectively in soil slurries under aerobic conditions. Results from the bioreactor experiment show that approximately 98 and 97% of octachlorodibenzofuran and OCDD were degraded, respectively. The dioxin concentrations in soil slurry decreased from 5823 to 1198 pg toxic equivalency g, resulting in total dioxin removal of 79%. These first findings suggest that the NSYSU strain has the potential to be an effective tool for the bioremediation of soils contaminated with highly recalcitrant organic compounds.
Collapse
|
18
|
Chen WY, Wu JH, Lin YY, Huang HJ, Chang JE. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: microcosm study and microbial community analysis. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:351-61. [PMID: 23959255 DOI: 10.1016/j.jhazmat.2013.07.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 05/18/2023]
Abstract
Highly chlorinated dibenzo-p-dioxins/dibenzofurans (DD/Fs) are main hazardous dioxins, and ubiquitously distributed in the environment. To study the feasibility of bioremediation for remedying contamination of highly chlorinated dioxins, closed microcosms were constructed with soil from a chronological site under oxygen-stimulated conditions. The results showed that high levels of near-fully and fully chlorinated DD/Fs, particularly octachlorodibenzofuran were effectually reduced without accumulation of less substituted congeners. The clone library analysis of PCR-amplified 16S rRNA gene from the octachlorodibenzofuran-degrading consortia showed that 98.3% of the detected sequences were affiliated with Proteobacteria. The obtained strains with putative aromatic dioxygenase genes and abilities to repetitively grow in octachlorodibenzofuran-containing agars were closely related to members within Actinobacteria, Firmicutes, and Proteobacteria. Among them, certain Rhodococcus, Micrococcus, Mesorhizobium and Bacillus isolates could degrade octachlorodibenzofuran with efficiencies of 26-43% within 21 days. Hierarchical oligonucleotide primer extension analysis further showed that Micrococcus, Rhizobium, Pseudoxanthomonas, and Brevudimonas populations increased largely when high concentrations of octachlorodibenzofuran were reduced. Overall, our results suggest that a distinctive microbial composition and population dynamic could be required for the enhanced degradation of highly chlorinated DD/Fs in the batch microcosm and highlight a potential of bioremediation technologies in remedying polychlorinated dioxins in the polluted sites.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, Taiwan, ROC
| | | | | | | | | |
Collapse
|
19
|
Chang YM, Dai WC, Tsai KS, Chen SS, Chen JH, Kao JCM. Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution. CHEMOSPHERE 2013; 91:864-868. [PMID: 23453433 DOI: 10.1016/j.chemosphere.2013.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
Microwave peroxide oxidation (MPO) is an energy-efficient and low GHG emission technology to destroy the hazardous organic compounds in solid waste. The objective of this paper is to explore the reduction feasibility of PCDDs/Fs in MSWI fly ash using the MPO in H2SO4/HNO3 solution. Nearly all PCDDs/Fs, 99% in the original fly ash, can be reduced in 120min at the temperature of 150°C using the MPO treatment. It was also found that a change occurred in the content distribution profiles of 17 major PCDD/F congeners before and after MPO treatment. This provides the potential to reduce the actual PCDDs/Fs content more than I-TEQ contents of PCDDs/Fs. The percentile distribution profile has a tendency of higher chlorinated PCDDs/Fs moving to the lower ones. It concludes that a significant reduction efficiency of I-TEQ toxicity was achieved and showed sufficient reduction of toxic level to lower than 1.0ngI-TEQ(gdw)(-1). The treatment temperature would be a critical factor facilitating the dissolution because higher temperature leads more inorganic salt (parts of fly ash) dissolution. Some problems caused by the MPO method are also delineated in this paper.
Collapse
Affiliation(s)
- Yu-Min Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
20
|
Yao J, Li W, Xia F, Zheng Y, Fang C, Shen D. Heavy metals and PCDD/Fs in solid waste incinerator fly ash in Zhejiang province, China: chemical and bio-analytical characterization. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:3711-3720. [PMID: 21769557 DOI: 10.1007/s10661-011-2218-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
Fly ash samples were taken from solid waste incinerators with different feeding waste, furnace type, and air pollution control device in six cities of Zhejiang province. The solid waste incinerators there constitute one fifth of incinerators in China. Heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in the fly ash. Moreover, the fly ash samples were extracted by toxicity characteristic leaching procedure (TCLP). The biotoxicity of the leachate was evaluated by Chlorella pyrenoidosa. High variation and contents were found for both the heavy metals and PCDD/Fs. The contents of Zn, Cu, As, Pb, Cd, Cr, Ni, and Hg in the fly ash samples varied from 300 to 32,100, 62.1-1175, 1.1-57, 61.6-620, 0.4-223, 16.6-4380, 1.2-94.7, and 0.03-1.4 μg g(-1) dw, respectively. The total contents of 17 PCDD/Fs varied from 0.1128 to 127.7939 μg g(-1) dw, and the 2,3,7,8-TeCDD toxic equivalents (TEQ) of PCDD/Fs ranged from 0.009 to 6.177 μg g(-1) dw. PCDF congeners were the main contributor to the TEQ. The leachate of the fly ash showed biotoxicity to C. pyrenoidosa. A significant correlation was found between the Cd and EC(50) values. Further research is required to investigate the environmental impact of the various pollutants in the fly ash.
Collapse
Affiliation(s)
- Jun Yao
- Department of Environmental Engineering, Taizhou College, Linhai 317000, China
| | | | | | | | | | | |
Collapse
|
21
|
Nam IH, Chon CM, Kim JG. Biodegradation of fluorene and bioremediation study by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated soil. ACTA ACUST UNITED AC 2011. [DOI: 10.7857/jsge.2011.16.5.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chang YM, Fan WP, Dai WC, Hsi HC, Wu CH, Chen CH. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:521-529. [PMID: 21689885 DOI: 10.1016/j.jhazmat.2011.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
Different from most previous studies with quantity-limited data, this paper presents PCDD/F content characterization in the fly ash discharged from sixteen large-scale commercial MSWIs. From the results with over hundreds of data using periodically sampling and analysis, it was found that the PCDD/F contents in the fly ash were from 9.07 to 46.68ng/g, d.w., and if based on international toxicity equivalent quantity, they were from 0.78 to 2.86ng I-TEQ/g, d.w. The higher chlorinated PCDDs likely dominated more than lower chlorinated PCDDs, but this tendency was not for PCDFs. The OCDD had the highest contribution to the total PCDD/F content, but if based on I-TEQ content, 2,3,4,7,8-PeCDF is the PCDD/F congener with the highest toxicity contribution. Moreover, the PCDD/F characteristic index (DCI) is suggested using the representative congener content of 2,3,4,7,8-PeCDF to characterize the fly ash. The DCI is 0.875±7.6% for the fly ash discharged from the MSWI with the APCD assembly of SD, AC and BF. The findings obtained in this work provide overview information on the PCDD/F content characterization in fly ash. They will provide PCDD/F fingerprint information to distinguish from other PCDD/F sources, like steel refinery industry, hazardous waste incinerators, or cement kilns, and thus be applied to fly ash management in the environment.
Collapse
Affiliation(s)
- Yu-Min Chang
- Graduate Institute of Environmental Engineering and Management, National Taipei University of Technology, Chung-Shiao E.Road, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
23
|
Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates. OPEN CHEM 2011. [DOI: 10.2478/s11532-010-0140-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn this work the application of hybrid materials, containing TEOS as source of SiO2 and k-carrageenan in different percentage, synthesized by the sol-gel method at room temperature was studied. They were used as matrices for entrapment of whole Bacillus sp. UG-5B cells, producers of thermostable nitrilase. The effect of the surface area and size and quantity of pores in the synthesized materials on the enzyme activity was evaluated. The process of biodegradation of different concentrations of toxic, potentially carcinogenic and mutagenic substrates by the obtained biocatalysts was investigated. The enzyme reaction takes place by the nitrilase pathway, catalysing nitrile hydrolysis directly to the corresponding carboxylic acid, forming ammonia. At batch experiments the influence of the substrate concentration of different nitriles was tested and 20 mM concentration was found most suitable. A two-step biodegradation process in a laboratory-scale column bioreactor of o-, m- and p-tolunitrile as a mixture was followed. After operation of the system for nine hours for the mixture of substrates at a flow rate of 45 mL h−1 and at 60°C, the overall conversion realized was above 90%, showing a good efficiency of the investigated process.
Collapse
|
24
|
Valerio F. Environmental impacts of post-consumer material managements: recycling, biological treatments, incineration. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:2354-61. [PMID: 20573498 DOI: 10.1016/j.wasman.2010.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 04/22/2010] [Accepted: 05/21/2010] [Indexed: 05/19/2023]
Abstract
The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended.
Collapse
Affiliation(s)
- F Valerio
- National Institute for Cancer Research, Department of Epidemiology and Prevention, Environmental Chemistry, Genoa 16132, Italy.
| |
Collapse
|