1
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
2
|
Basic principles and problems in decontamination of natural disperse systems. The electrokinetic treatment of soils. Adv Colloid Interface Sci 2022; 310:102798. [DOI: 10.1016/j.cis.2022.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/20/2022]
|
3
|
Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149981. [PMID: 34517309 DOI: 10.1016/j.scitotenv.2021.149981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faced with the increasing nitrate pollution in groundwater, in-situ remediation has been widely studied and applied on field-scale as an efficient, economical and less disturbing remediation technology. In this review, we discussed various in-situ remediation for nitrate in groundwater and elaborate on biostimulation, phytoremediation, electrokinetic remediation, permeable reactive barrier and combined remediation. This review described principles of each in-situ remediation, application, the latest progress, problems and challenges on field-scale. Factors affecting the efficiency of in-situ remediation for nitrate in groundwater are also summarized. Finally, this review presented the prospect of in-situ remediation for nitrate pollution in groundwater. The objective of this review is to examine the state of knowledge on in-situ remediation for nitrate in groundwater and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. This helps to better understand the control mechanisms of various in-situ remediation for nitrate pollution in groundwater and the design options available for application to the field-scale.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Yajie Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
4
|
Song Y, Lei C, Yang K, Lin D. Iron-carbon material enhanced electrokinetic remediation of PCBs-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118100. [PMID: 34492528 DOI: 10.1016/j.envpol.2021.118100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/14/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The high toxicity and persistence of polychlorinated biphenyls (PCBs) in the environment demands the development of effective remediation for PCBs-contaminated soils. In this study, electrokinetic (EK) remediation integrated with iron-carbon material (Fe/C) was established and used to remediate PCB28 (1 mg kg-1) contaminated soil under a voltage gradient of 1 V cm-1. Effects of Fe/C dosage, soil type, and remediation time were investigated. The operational condition was optimized as 4 g kg-1 Fe/C, yellow soil, and 14 d-remediation, achieving PCB28 removal efficiency of 58.6 ± 8.8% and energy utilization efficiency of 146.5. Introduction of EK-Fe/C did not significantly affect soil properties except for slight soil moisture content increase and total Fe content loss. Soil electrical conductivity exhibited an increasing trend from anode to cathode attributed to EK-induced electromigration and electroosmosis. EK accelerated the corrosion and consumption of reactive Fe0/Fe3C in Fe/C by generating acid condition. Fe/C in turn effectively prevented EK-induced soil acidification and maintained soil neutral to weak alkaline condition. A synergistic effect between EK and Fe/C was revealed by the order of PCB28 removal efficiency-EK-Fe/C (58.6 ± 8.8%) > EK (37.7 ± 1.6%) > Fe/C (6.8 ± 5.0%). This could be primarily attributed to EK and Fe/C enhanced Fenton reaction, where EK promoted Fe/C dissolution and H2O2 generation. In addition to oxidation by Fenton reaction generated ·OH, EK-mediated electrochemical oxidation, Fe/C-induced reduction and migration of Fe/C adsorbed PCBs were all significant contributors to PCB28 removal in the EK-Fe/C system. These findings suggest that the combination of EK and Fe/C is a promising technology for remediation of organics-contaminated soil.
Collapse
Affiliation(s)
- Yan Song
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Lei
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Chen Y, Zhi D, Zhou Y, Huang A, Wu S, Yao B, Tang Y, Sun C. Electrokinetic techniques, their enhancement techniques and composite techniques with other processes for persistent organic pollutants remediation in soil: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Zhang M, Lu C, Zhang W, Lin K, Huang K. Desorbing of decabromodiphenyl ether in low permeability soil and the remediation potential of enhanced electrokinetic. CHEMOSPHERE 2020; 258:127376. [PMID: 32563070 DOI: 10.1016/j.chemosphere.2020.127376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, desorption kinetic was determined for decabromodiphenyl ether (BDE209) in a low permeability soil, and the remediation potential of hydroxypropyl-β-cyclodextrin (HPCD) enhanced electrokinetic (EK) technique was investigated. The results indicated that the release rate of BDE209 in slowly and very slowly desorbing process was accounted for 31% and 68% in the whole desorption process, respectively. The final desorption rate of BDE209 was 20.7% after 70 h treatment with 5% HPCD in an ideal solution reaction system (without electric field). However, the removal efficiency of BDE209 in section S5 (near anode) of EK1 and EK2 had reached 22% and 20% after 14 days treatment, respectively. Thus it can be assumed that the interaction between BDE209 (on soil particles) and HPCD had been promoted under the electric field. A higher cumulative EOF did not remove more BDE209 with HPCD as facilitating agent, which might due to the low viscosity of HPCD and it did not react completely with BDE209 in soils. In addition, the removal efficiency of BDE209 in section S5 of CK1 and CK2 (without HPCD) had reached 6% and 10%, respectively, which might attribute to the desorption promoting effect of the uniform electric field on hydrophobic organic contaminants. In summary, it is feasible to use the EK to remove BDE209 in low permeability soils using HPCD as solubilizing agent, and the technique key is maintaining sufficient EOF and ensuring the contact reaction efficiency between HPCD and BDE209 synchronously.
Collapse
Affiliation(s)
- Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shangtex Architectural Design Research Institute, Shanghai, 200060, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Ni M, Tian S, Huang Q, Yang Y. Electrokinetic-Fenton remediation of organochlorine pesticides from historically polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12159-12168. [PMID: 29455352 DOI: 10.1007/s11356-018-1479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination by persistent organic pollutants (POPs) poses a great threat to historically polluted soil worldwide. In this study, soils were characterized, and organochlorine pesticides contained in the soils were identified and quantified. Individual electrokinetic (IE), EK-Fenton-coupled technologies (EF), and enhanced EK-Fenton treatment (E-1, E-2, and E-3) were applied to remediate soils contaminated with hexachloro-cyclohexane soprocide (HCH) and dichloro-diphenyl-trichloroethane (DDT). Variation of pH, electrical conductivity, and electroosmotic flow was evaluated during the EK-Fenton process. The IE treatment showed low removal efficiency for HCHs (30.5%) and DDTs (25.9%). In the EF treatment, the highest removal level (60.9%) was obtained for α-HCH, whereas P,P-DDT was the lowest (40.0%). Low solubility of pollutants impeded the HCH and DDT removal. After enhanced EK-Fenton treatment, final removal of pollutants decreased as follows: β-HCH (82.6%) > γ-HCH (81.6%) > α-HCH (81.2%) > δ-HCH (80.0%) > P,P-DDD (73.8%) > P,P-DDE (73.1%) > P,P-DDT (72.6%) > O,P-DDT (71.5%). The results demonstrate that EK-Fenton is a promising technology for POP removal in historically polluted soil.
Collapse
Affiliation(s)
- Maofei Ni
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulei Tian
- Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qifei Huang
- Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yanmei Yang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
8
|
Sun Y, Gao K, Zhang Y, Zou H. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28142-28151. [PMID: 29019041 DOI: 10.1007/s11356-017-0371-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Zero-valent iron/activated carbon (Fe/C) particles can degrade persistent organic pollutants via micro-electrolysis and therefore, they may be used to develop materials for permeable reactive barriers (PRBs). In this study, surfactant-enhanced electrokinetics (EK) was coupled with a Fe/C-PRB to treat phenanthrene (PHE) and 2,4,6-trichlorophenol (TCP) co-contaminated clay soil. An environment-friendly biosurfactant, rhamnolipid, was selected as the solubility-enhancing agent. Five bench-scale tests were conducted to investigate the performance of EK-PRB on PHE and TCP removal from soil as well as the impact of pH and rhamnolipid concentration. The results show that both PHE and TCP, driven by electro-osmotic flow (EOF), moved toward the cathode and reacted with the Fe/C-PRB. Catholyte acidification and rhamnolipid concentration increase improved the removal efficiencies of PHE and TCP. The highest removal efficiency of PHE in soil column was five times the efficiency of the control group on which only EK was applied (49.89 versus 9.40%). The highest removal efficiency of TCP in soil column was 4.5 times the efficiency of the control group (64.60 versus 14.30%). Desorption and mobility of PHE and TCP improved with the increase of rhamnolipid concentration when this exceeded the critical micelle concentration. This study indicates that the combination of EK and a Fe/C-PRB is efficient and promising for removing persistent organic pollutants (POPs) from contaminated soil with the enhancement of rhamnolipid.
Collapse
Affiliation(s)
- Yuchao Sun
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China
| | - Ke Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China
| | - Yun Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China
| | - Hua Zou
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
- Jiangsu Collabrative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| |
Collapse
|
9
|
Lofrano G, Libralato G, Minetto D, De Gisi S, Todaro F, Conte B, Calabrò D, Quatraro L, Notarnicola M. In situ remediation of contaminated marinesediment: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5189-5206. [PMID: 28013464 DOI: 10.1007/s11356-016-8281-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/15/2016] [Indexed: 05/26/2023]
Abstract
Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform.
Collapse
Affiliation(s)
- G Lofrano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - G Libralato
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126, Naples, Italy.
| | - D Minetto
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - S De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - F Todaro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - B Conte
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - D Calabrò
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - L Quatraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - M Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Technical University of Bari, Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
10
|
Affiliation(s)
- Thuy Duong Pham
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| |
Collapse
|
11
|
Hamdan SH, Molelekwa GF, Van der Bruggen B. Electrokinetic Remediation Technique: An Integrated Approach to Finding New Strategies for Restoration of Saline Soil and to Control Seawater Intrusion. ChemElectroChem 2014. [DOI: 10.1002/celc.201402071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Fan G, Cang L, Fang G, Zhou D. Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.12.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Hahladakis JN, Calmano W, Gidarakos E. Use and comparison of the non-ionic surfactants Poloxamer 407 and Nonidet P40 with HP-β-CD cyclodextrin, for the enhanced electroremediation of real contaminated sediments from PAHs. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Enhanced solubilisation of six PAHs by three synthetic cyclodextrins for remediation applications: molecular modelling of the inclusion complexes. PLoS One 2012; 7:e44137. [PMID: 23028493 PMCID: PMC3446921 DOI: 10.1371/journal.pone.0044137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and randomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1:1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the randomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation.
Collapse
|
15
|
Tong M, Yuan S. Physiochemical technologies for HCB remediation and disposal: a review. JOURNAL OF HAZARDOUS MATERIALS 2012; 229-230:1-14. [PMID: 22709849 DOI: 10.1016/j.jhazmat.2012.05.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Hexachlorobenzene (HCB) is one of the 12 persistent organic pollutants (POPs) listed in "Stockholm Convention". It is hydrophobic, toxic and persistent in the environment. Due to extensive use in the past, HCB contamination is still a serious environmental problem. Strong adsorption on solid particles makes the remediation difficult. This paper presents an overview of the physiochemical technologies for HCB remediation and disposal. The adsorption/desorption behavior of HCB is firstly described because it comprises the fundamental for most remediation technologies. Physiochemical technologies concerned mostly for HCB remediation and disposal, i.e., chemical enhanced washing, electrokinetic remediation, reductive dechlorination and thermal decomposition, are reviewed in terms of fundamentals, state of the art and perspectives. The other physiochemical technologies including chemical oxidation, radiation induced catalytic dechlorination, ultrasonic assisted treatment and mechanochemical dechlorination are also reviewed. The pilot and large scale tests on HCB remediation or disposal are summarized in the end. This review aims to provide useful information to researchers and practitioners regarding HCB remediation and disposal.
Collapse
Affiliation(s)
- Man Tong
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | | |
Collapse
|
16
|
Gomes HI, Dias-Ferreira C, Ribeiro AB. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. CHEMOSPHERE 2012; 87:1077-1090. [PMID: 22386462 DOI: 10.1016/j.chemosphere.2012.02.037] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field.
Collapse
Affiliation(s)
- Helena I Gomes
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | |
Collapse
|
17
|
Yeung AT, Gu YY. A review on techniques to enhance electrochemical remediation of contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:11-29. [PMID: 21889259 DOI: 10.1016/j.jhazmat.2011.08.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 05/27/2023]
Abstract
Electrochemical remediation is a promising remediation technology for soils contaminated with inorganic, organic, and mixed contaminants. A direct-current electric field is imposed on the contaminated soil to extract the contaminants by the combined mechanisms of electroosmosis, electromigration, and/or electrophoresis. The technology is particularly effective in fine-grained soils of low hydraulic conductivity and large specific surface area. However, the effectiveness of the technology may be diminished by sorption of contaminants on soil particle surfaces and various effects induced by the hydrogen ions and hydroxide ions generated at the electrodes. Various enhancement techniques have been developed to tackle these diminishing effects. A comprehensive review of these techniques is given in this paper with a view to providing useful information to researchers and practitioners in this field.
Collapse
Affiliation(s)
- Albert T Yeung
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | |
Collapse
|
18
|
Wan J, Li Z, Lu X, Yuan S. Remediation of a hexachlorobenzene-contaminated soil by surfactant-enhanced electrokinetics coupled with microscale Pd/Fe PRB. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:184-190. [PMID: 20813457 DOI: 10.1016/j.jhazmat.2010.08.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/01/2010] [Accepted: 08/06/2010] [Indexed: 05/29/2023]
Abstract
Treatment of soils contaminated with chlorinated hydrophobic organic compounds (CHOCs) remains a challenge for environmental scientists worldwide. In this study surfactant-enhanced electrokinetics (SEEK) was coupled with permeable reactive barrier (PRB) composed of microscale Pd/Fe to treat a hexachlorobenzene (HCB)-contaminated soil. A nonionic surfactant, Triton X-100 (TX-100), was selected as the solubility-enhancing agent. Five bench-scale tests were conducted to investigate the performance of EK-PRB on HCB removal from soils. Results showed that the HCB removal was generally increased by a factor of 4 by EK coupled with PRB compared with EK alone (60% versus 13%). In the EK-PRB system, HCB was removed from soil through several sequential processes: the movement driven by electroosmotic flow (EOF) in the anode column, the complete adsorption/degradation by the reactive Pd/Fe particles in PRB, and the consequent movement by EOF and probable electrochemical reactions in the cathode column. TX-100 was supposed to be a superior enhancement agent for HCB removal, not only in the EOF movement process but also in the Pd/Fe degradation process. This study indicates that the combination of SEEK and Pd/Fe PRB is efficient and promising to remove CHOCs from contaminated soils.
Collapse
Affiliation(s)
- Jinzhong Wan
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhirong Li
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaohua Lu
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Songhu Yuan
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
19
|
Li T, Yuan S, Wan J, Lin L, Long H, Wu X, Lu X. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-beta-cyclodextrin. CHEMOSPHERE 2009; 76:1226-1232. [PMID: 19560795 DOI: 10.1016/j.chemosphere.2009.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 05/28/2023]
Abstract
This study deals with the efficiency of a pilot-scale electrokinetic (EK) treatment on real aged sediments contaminated with hexachlorobenzene (HCB) and Zn. A total of 0.5m(3) of sediments were treated under a constant voltage in a polyvinyl chloride reactor. The changes of sediment pH, electrical conductivity (EC), organic content (OC), the transport of contaminants in sediments and the consumption of electric energy were evaluated. After 100 d processing, sediment pH slightly increased compared with the initial values, particularly in the bottom layer close to cathodic section, while sediment EC in most sections significantly decreased. Sediment OC in all sections increased, which implied that hydroxypropyl-beta-cyclodextrin (HPCD) was successfully penetrated across sediments by electroosmosis. Significant movement of contaminants was observed across sediments with negligible removals. Both HCB and Zn generally moved from sections near anode and accumulated near cathode. Upon the completion of treatment, the electric energy consumption was calculated as 563 kWhm(-3). This pilot-scale EK test indicates that it is difficult to achieve great removal of hydrophobic organic compounds (HOCs), or HOCs and heavy metal mixed contaminants, by EK treatment in large scale with the use of HPCD.
Collapse
Affiliation(s)
- Taiping Li
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | | | | | | | |
Collapse
|