1
|
Wang J, Liang Z, Wang Y, Liu Q, Wang S, Wang J, Duan R, Zhao L, Wei Y, Huang D. Mannose modified graphene oxide drug-delivery system targets cancer stem cells and tumor-associated macrophages to promote immunotherapeutic efficacy. Colloids Surf B Biointerfaces 2025; 253:114710. [PMID: 40286606 DOI: 10.1016/j.colsurfb.2025.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Hepatocellular carcinoma (HCC) ranks among the most lethal tumors globally, characterized by high propensity for recurrence and metastasis. Consequently, the imperative challenge is to pioneer novel pharmaceuticals and therapeutic methodologies for efficacious HCC treatment. In the present study, we successfully synthesized a mannose, polyethylene glycol, and polyethyleneimine modified graphene oxide based LDN193189-delivery system (PGPML) for remodeling the HCC tumor microenvironment (TME) though targeting cancer stem cells. These PGPML nanoparticles possess the capability to target cancer stem cell and M2 tumor-associated macrophages (TAMs) through specific binding to different mannose receptors. Within the acidic tumor microenvironment, the PGPML nanoparticles could inhibit proliferation, migration and reverse the epithelial-mesenchymal transition, which efficiently displayed the anti-tumor efficacy with HCC tumors in vitro and in vivo. Mechanically, the PGPML nanoparticles significantly downregulated the expression of cancer stem cell marker CD133, attenuates PD-L1 expression within TME, thereby reducing tumor stemness characteristics, promoting T cell activation and macrophage M2-M1 repolarization to remodel TME, augments the levels of reactive oxygen species (ROS) and tumor necrosis factor-alpha (TNF-α) in tumor cells, fostering tumor cell demise. Collectively, our findings underscore that a synergistic treatment approach combining cancer stem cell-targeted therapy with immunotherapy holds promise as a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; NHC Key Laboratory of Glycoconjuates Research Department of Biochemistry and Molecular, Biology School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qi Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaojie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruxin Duan
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| |
Collapse
|
2
|
Nallasamy P, Muthalagu SMR, Natarajan S. Fishwaste Derived Hydroxyapatite Nanostructure Combined with Black Rice Wine for Potential Antioxidant and Antimicrobial Response. Curr Microbiol 2024; 81:278. [PMID: 39030448 DOI: 10.1007/s00284-024-03790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
Hospital-acquired infection remains a serious threat globally, due to development of resistance to conventional antibiotics, which necessitates the urge for alternative therapy. Green nanotechnology has emerged as a holistic approach to address antibiotic resistance by combining environmental sustainability with improved therapeutic outcome. Nanostructure hydroxyapatite (HAP) has received significant attention in therapeutic and regenerative purposes due to its porous scaffold structure and biocompatible nature. In the present study, hydroxyapatite (HAP) nanoparticle was fabricated from the fish scale waste of red snapper fish. Black rice wine (BRW) was extracted from black rice commonly termed as Karupu kavuni/forbidden rice known for its nutritious effects. The present study focused on encapsulation of BRW within HAP nanoparticles (HAP@BRW) and evaluated its potential against nosocomial infections. Spectral and microscopic characterization of HAP@BRW revealed uniform encapsulation of BRW in HAP nanoparticles, aggregated irregular-shaped morphology of size 117.6 nm. Maximum release of BRW (72%) within 24 h indicates HAP as suitable drug delivery system suitable for biomedical applications. Antimicrobial studies revealed that HAP@BRW exhibited potent bactericidal effect against MRSA, MSSA, and Pseudomonas aeruginosa. Furthermore, HAP@BRW significantly inhibited the biofilm forming ability of MSSA and P. aeruginosa. Rich antioxidant property of HAP@BRW might be due to the presence of rich source of total polyphenolic, flavonoid, and anthocyanin content in BRW. In vitro and in vivo toxicity studies revealed biocompatible nature of HAP@BRW. Antibiofilm, antimicrobial, antioxidant, and biocompatible nature of HAP@BRW makes it a promising candidate for coating medical implants to avoid implant-associated infections and nosocomial infections.
Collapse
Affiliation(s)
- Prakashkumar Nallasamy
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Suganthy Natarajan
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
4
|
Hermosillo-Abundis C, Angulo-Molina A, Méndez-Rojas MA. Erythrocyte Vulnerability to Airborne Nanopollutants. TOXICS 2024; 12:92. [PMID: 38276727 PMCID: PMC10818893 DOI: 10.3390/toxics12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The toxicological impact of airborne polluting ultrafine particles (UFPs, also classified as nanoparticles with average sizes of less than 100 nm) is an emerging area of research pursuing a better understanding of the health hazards they pose to humans and other organisms. Hemolytic activity is a toxicity parameter that can be assessed quickly and easily to establish part of a nanoparticle's behavior once it reaches our circulatory system. However, it is exceedingly difficult to determine to what extent each of the nanoparticles present in the air is responsible for the detrimental effects exhibited. At the same time, current hemolytic assessment methodologies pose a series of limitations for the interpretation of results. An alternative is to synthesize nanoparticles that model selected typical types of UFPs in air pollution and evaluate their individual contributions to adverse health effects under a clinical assay of osmotic fragility. Here, we discuss evidence pointing out that the absence of hemolysis is not always a synonym for safety; exposure to model nanopollutants, even at low concentrations, is enough to increase erythrocyte susceptibility and dysfunction. A modified osmotic fragility assay in combination with a morphological inspection of the nanopollutant-erythrocyte interaction allows a richer interpretation of the exposure outcomes. Membrane-nanoparticle interplay has a leading role in the vulnerability observed. Therefore, future research in this line of work should pay special attention to the evaluation of the mechanisms that cause membrane damage.
Collapse
Affiliation(s)
- Cristina Hermosillo-Abundis
- Department of Chemical & Biological Sciences, Universidad de las Américas Puebla, San Andres Cholula, Puebla 72810, Mexico;
| | - Aracely Angulo-Molina
- Department of Chemical Biological Sciences, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Miguel A. Méndez-Rojas
- Department of Chemical & Biological Sciences, Universidad de las Américas Puebla, San Andres Cholula, Puebla 72810, Mexico;
| |
Collapse
|
5
|
Robla S, Calviño RV, Ambrus R, Csaba N. A ready-to-use dry powder formulation based on protamine nanocarriers for pulmonary drug delivery. Eur J Pharm Sci 2023; 185:106442. [PMID: 37019308 DOI: 10.1016/j.ejps.2023.106442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
The use of oral antibiotic therapy for the treatment of respiratory diseases such as tuberculosis has promoted the appearance of side effects as well as resistance to these treatments. The low solubility, high metabolism, and degradation of drugs such as rifabutin, have led to the use of combined and prolonged therapies, which difficult patient compliance. In this work, we develop inhalable formulations from biomaterials such as protamine to improve the therapeutic effect. Rifabutin-loaded protamine nanocapsules (NCs) were prepared by solvent displacement method and were physico-chemically characterized and evaluated for their dissolution, permeability, stability, cytotoxicity, hemocompatibility, internalization, and aerodynamic characteristics after a spray-drying procedure. Protamine NCs presented a size of around 200 nm, positive surface charge, and drug association up to 54%. They were stable as suspension under storage, as well as in biological media and as a dry powder after lyophilization in the presence of mannitol. Nanocapsules showed a good safety profile and cellular uptake with no tolerogenic effect on macrophages and showed good compatibility with red blood cells. Moreover, the aerodynamic evaluation showed a fine particle fraction deposition up to 30% and a mass median aerodynamic diameter of about 5 µm, suitable for the pulmonary delivery of therapeutics.
Collapse
|
6
|
Yu T, Pu H, Chen X, Kong Q, Chen C, Li G, Jiang Q, Wang Y. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties. Acta Biomater 2023; 160:45-58. [PMID: 36764592 DOI: 10.1016/j.actbio.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Valvular heart disease is a major threat to human health and transcatheter heart valve replacement (THVR) has emerged as the primary treatment option for severe heart valve disease. Bioprosthetic heart valves (BHVs) with superior hemodynamic performance and compressibility have become the first choice for THVR, and more BHVs have been requested for clinical use in recent years. However, several drawbacks remain for the commercial BHVs cross-linked by glutaraldehyde, including calcification, thrombin, poor biocompatibility and difficulty in endothelialization, which would further reduce the BHVs' lifetime. This study developed a dual-functional non-glutaraldehyde crosslinking reagent OX-VI, which can provide BHV materials with reactive double bonds (CC) for further bio-function modification in addition to the crosslinking function. BHV material PBAF@OX-PP was developed from OX-VI treated porcine pericardium (PP) after the polymerization with 4-vinylbenzene boronic acid and the subsequent modification of poly (vinyl alcohol) and fucoidan. Based on the functional anti-coagulation and endothelialization strategy and dual-functional crosslinking reagent, PBAF@OX-PP has better anti-coagulation and anti-calcification properties, higher biocompatibility, and improved endothelial cells proliferation when compared to Glut-treated PP, as well as the satisfactory mechanical properties and enhanced resistance effect to enzymatic degradation, making it a promising candidate in the clinical application of BHVs. STATEMENT OF SIGNIFICANCE: Transcatheter heart valve replacement (THVR) has become the main solution for severe valvular heart disease. However, bioprosthetic heart valves (BHVs) used in THVR exhibit fatal drawbacks such as calcification, thrombin and difficulty for endothelialization, which are due to the glutaraldehyde crosslinking, resulting in a limited lifetime to 10-15 years. A new non-glutaraldehyde cross-linker OX-VI has been designed, which can not only show great crosslinking ability but also offer the BHVs with reactive double bonds (CC) for further bio-function modification. Based on the dual-functional crosslinking reagent OX-VI, a versatile modification strategy was developed and the BHV material (PBAF@OX-PP) has been developed and shows significantly enhanced anticoagulant, anti-calcification and endothelialization properties, making it a promising candidate in the clinical application of BHVs.
Collapse
Affiliation(s)
- Tao Yu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Hongxia Pu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaotong Chen
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Chong Chen
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
7
|
Zhang H, Zhao Z, Sun S, Zhang S, Wang Y, Zhang X, Sun J, He Z, Zhang S, Luo C. Molecularly self-fueled nano-penetrator for nonpharmaceutical treatment of thrombosis and ischemic stroke. Nat Commun 2023; 14:255. [PMID: 36650139 PMCID: PMC9845202 DOI: 10.1038/s41467-023-35895-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Thrombotic cerebro-cardiovascular diseases are the leading causes of disability and death worldwide. However, current drug therapeutics are compromised by narrow therapeutic windows, unsatisfactory thrombolysis effects, severe bleeding events, and high recurrence rates. In this study, we exploit a self-propelling nano-penetrator with high fuel loading and controllable motion features, which is molecularly co-assembled using a photothermal photosensitizer (DiR) and a photothermal-activable NO donor (BNN6). The precisely engineered nano-penetrator of the BNN6-DiR fuel pair shows distinct advantages in terms of NO productivity and autonomous motion under laser irradiation. In animal models of artery/vein thrombosis and acute ischemic stroke, the self-fueled nano-penetrator enables self-navigated thrombus-homing accumulation, self-propelled clot deep penetration, fluorescence image-guided photothermal/mechanical thrombolysis, and NO-mediated prevention of thrombosis recurrence and acute ischemic stroke salvage. As expected, the molecularly self-fueled nano-penetrator displayed favorable therapeutic outcomes without bleeding risk compared to the clinically available thrombolytic drug. This study offers a facile, safe, and effective nonpharmaceutical modality towards the clinical treatment of thrombosis and ischemic stroke.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shengnan Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| |
Collapse
|
8
|
Guan Q, Jiang J, Huang Y, Wang Q, Liu Z, Ma X, Yang X, Li Y, Wang S, Cui W, Tang J, Wan H, Xu Q, Tu Y, Wu D, Xia Y. The landscape of micron-scale particles including microplastics in human enclosed body fluids. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130138. [PMID: 36303360 DOI: 10.1016/j.jhazmat.2022.130138] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
|
9
|
Yedgar S, Barshtein G, Gural A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. MICROMACHINES 2022; 13:mi13122091. [PMID: 36557391 PMCID: PMC9783501 DOI: 10.3390/mi13122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/01/2023]
Abstract
The potential use of nanomaterials in medicine offers opportunities for novel therapeutic approaches to treating complex disorders. For that reason, a new branch of science, named nanotoxicology, which aims to study the dangerous effects of nanomaterials on human health and on the environment, has recently emerged. However, the toxicity and risk associated with nanomaterials are unclear or not completely understood. The development of an adequate experimental strategy for assessing the toxicity of nanomaterials may include a rapid/express method that will reliably, quickly, and cheaply make an initial assessment. One possibility is the characterization of the hemocompatibility of nanomaterials, which includes their hemolytic activity as a marker. In this review, we consider various factors affecting the hemolytic activity of nanomaterials and draw the reader's attention to the fact that the formation of a protein corona around a nanoparticle can significantly change its interaction with the red cell. This leads us to suggest that the nanomaterial hemolytic activity in the buffer does not reflect the situation in the blood plasma. As a recommendation, we propose studying the hemocompatibility of nanomaterials under more physiologically relevant conditions, in the presence of plasma proteins in the medium and under mechanical stress.
Collapse
Affiliation(s)
- Saul Yedgar
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Alexander Gural
- Blood Bank, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
10
|
A lignocellulose-based nanocomposite hydrogel with pH-sensitive and potent antibacterial activity for wound healing. Int J Biol Macromol 2021; 191:1249-1254. [PMID: 34634323 DOI: 10.1016/j.ijbiomac.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
Hydrogel dressings with similar structural characteristics to the extracellular matrix and tunable physicochemical properties have become promising candidates for wound healing. However, the fabrication of an ideal hydrogel dressing with low-cost, good biocompatibility, excellent hemostatic capacity, potent and broad-spectrum antibacterial activity remains a huge challenge. Herein, a lignocellulose-based nanocomposite hydrogel (ATC/SA/PVA) is fabricated by simply mixing Ag nanoparticles loaded, tannic acid-decorated lignocellulose nanofibrils with sodium alginate and polyvinyl alcohol. Based on the dynamic borate ester bonds and multiple weak hydrogen bonds, the fabricated hydrogel exhibits excellent flexibility and self-healing performance. Its highly porous structure endows the gel excellent blood and tissue exudates absorption ability. Interestingly, the release behavior of Ag nanoparticles from hydrogel displays pH dependence, which can facilitate the accumulation of Ag nanoparticles at the wound site, thereby accelerating the process of wound healing. In vitro antibacterial assay demonstrates the potent antibacterial ability of hydrogel against both Gram-positive (S. aureus) and negative bacteria (E. coli). More importantly, in vivo investigations reveal that such hydrogel can effectively accelerate tissue regeneration and wound healing with no obvious adverse effects. All these results suggest that this nanocomposite hydrogel would be a promising candidate to accelerate wound healing.
Collapse
|
11
|
Zhong Y, Qin X, Wang Y, Qu K, Luo L, Zhang K, Liu B, Obaid EAMS, Wu W, Wang G. "Plug and Play" Functionalized Erythrocyte Nanoplatform for Target Atherosclerosis Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33862-33873. [PMID: 34256560 DOI: 10.1021/acsami.1c07821] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For atherosclerosis (AS) management, a therapeutic drug intervention is the most widely used strategy. However, there are some problems such as low location specificity, high intake, and side effects. Nanomedicine can prolong the half-life of drug solubilization, reduce toxic and side effects, and improve the distribution of drug objects. Herein, to overcome the challenges, an erythrocyte-based "plug and play" nanoplatform was developed by incorporating the vascular cell adhesion molecule-1 (VCAM-1) targeting and the acid stimulus responsibility. After the function moieties conjugated with DSPE-PEG, the targeting peptide and the acid-sensitive prodrug were conveniently integrated into red blood cells' surface for enhancing target AS drug delivery and controlling local drug release. As a proof of principle, a plug and play nanoplatform with targeted drug delivery and acid-control drug release is demonstrated, achieving a marked therapeutic effect for AS.
Collapse
Affiliation(s)
- Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Boyan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Essam Abdo Mohammed Saad Obaid
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
12
|
Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma. Biointerphases 2020; 15:051003. [DOI: 10.1116/6.0000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Kargl R, Kleinschek KS. How can we understand the influence of nanoparticles on the coagulation of blood? Nanomedicine (Lond) 2020; 15:1923-1926. [PMID: 32677508 DOI: 10.2217/nnm-2020-0177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Rupert Kargl
- Institute for Chemistry & Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.,Institute for Automation, Faculty of Electrical Engineering & Computer Science, University of Maribor, Smetanova Ulica 17, Maribor, 2000, Slovenia
| | - Karin Stana Kleinschek
- Institute for Chemistry & Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.,Institute for Automation, Faculty of Electrical Engineering & Computer Science, University of Maribor, Smetanova Ulica 17, Maribor, 2000, Slovenia
| |
Collapse
|
14
|
Song Y, Zhu P, Xu Z, Chen J. Dual-Responsive Dual-Drug-Loaded Bioinspired Polydopamine Nanospheres as an Efficient Therapeutic Nanoplatform against Drug-Resistant Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:5730-5740. [DOI: 10.1021/acsabm.0c00512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yiyan Song
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Clinical laboratory, The Fifth People’s Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Ping Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhihui Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Wekwejt M, Michno A, Truchan K, Pałubicka A, Świeczko-Żurek B, Osyczka AM, Zieliński A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1114. [PMID: 31382557 PMCID: PMC6722923 DOI: 10.3390/nano9081114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Anna Michno
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Karolina Truchan
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland
- Department of Surgical Oncologic, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Beata Świeczko-Żurek
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Zieliński
- Biomaterials Division, Department of Materials Engineering and Bonding, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
16
|
Fröhlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:1091-1107. [PMID: 29956556 PMCID: PMC6214528 DOI: 10.1080/21691401.2018.1479709] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Humans are exposed to a wide variety of nanoparticles (NPs) present in the environment, in consumer, health and medical products, and in food. Conventional cytotoxicity testing compared to animal testing is less expensive, faster and avoids ethical problems at the expense of a lower predictive value. New cellular models and exposure conditions have been developed to overcome the limitations of conventional cell culture and obtain more predictive data. The use of three-dimensional culture, co-culture and inclusion of mechanical stimulation can provide physiologically more relevant culture conditions. These systems are particularly relevant for oral, respiratory and intravenous exposure to NPs and it may be assumed that physiologically relevant application of the NPs can improve the predictive value of in vitro testing. Various groups have used advanced culture and exposure systems, but few direct comparisons between data from conventional cultures and from advanced systems exist. In silico models may present another option to predict human health risk by NPs without using animal studies. In the absence of validation, the question whether these alternative models provide more predictive data than conventional testing remains elusive.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Bahuguna S, Kumar M, Sharma G, Kumar R, Singh B, Raza K. Fullerenol-Based Intracellular Delivery of Methotrexate: A Water-Soluble Nanoconjugate for Enhanced Cytotoxicity and Improved Pharmacokinetics. AAPS PharmSciTech 2018; 19:1084-1092. [PMID: 29159749 DOI: 10.1208/s12249-017-0920-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/05/2017] [Indexed: 11/30/2022] Open
Abstract
Derivatization of fullerenes to polyhydroxylated fullerenes, i.e., fullerenols (FLU), dramatically decreases their toxicity and has been reported to enhance the solubility as well as cellular permeability. In this paper, we report synthesis of FLU as nanocarrier and subsequent chemical conjugation of Methotrexate (MTX) to FLU with a serum-stable and intracellularly hydrolysable ester bond between FLU and MTX. The conjugate was characterized for physiochemical attributes, micromeritics, drug-loading, and drug-release and evaluated for cancer cell-toxicity, cellular-uptake, hemocompatibility, protein binding, and pharmacokinetics. The developed hemocompatible FL-MTX offered lower protein binding vis-à-vis naïve drug and substantially higher drug loading. The conjugate offered pH-dependent release of 38.20 ± 1.19% at systemic pH and 85.67 ± 3.39% at the cancer cell pH. FLU-MTX-treated cells showed significant reduction in IC50 value vis-à-vis the cells treated with pure MTX. Analogously, the results from confocal scanning laser microscopy also confirmed the easy access of the dye-tagged FLU-MTX conjugate to the cell interiors. In pharmacokinetics, the AUC of MTX was enhanced by approx. 6.15 times and plasma half-life was enhanced by 2.45 times, after parenteral administration of single equivalent dose in rodents. FLU-MTX offered enhanced availability of drug to the biological system, meanwhile improved the cancer-cell cytotoxicity, sustained the effective plasma drug concentrations, and offered substantial compatibility to erythrocytes.
Collapse
|
18
|
Thotakura N, Sharma G, Singh B, Kumar V, Raza K. Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1763-1772. [DOI: 10.1080/21691401.2017.1392314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Bhupinder Singh
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|