1
|
Tang T, Xiong S, Tang J, Li Z, Xue Y, Cao X, Zhao H, Xiao A, Liu H, Liu Q. Uniform phosphazene containing porous organic polymer microspheres for highly efficient and selective silver recovery. J Colloid Interface Sci 2025; 687:507-517. [PMID: 39970590 DOI: 10.1016/j.jcis.2025.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The efficient extraction of silver ions (Ag+) from Ag+-contaminated wastewater is crucial for resource recovery and environmental protection. However, the synthesis of adsorbents with high adsorption capacity and superior selectivity for Ag+ is a significant challenge. Herein, a series of phosphazene-based porous organic polymers (POPs) microspheres with exceptional selectivity and adsorption capacity for Ag+ were rationally designed using phosphazene and aromatic amines. Notably, variations in the types of precursors induced the formation of a microsphere-like morphology with precisely controlled surface smoothness. Considering the advantages of abundant heteroatom active sites, surface charge properties and microsphere-like morphology, the synthesised networks exhibited an exceptional Ag+ adsorption capacity of 818.3 mg/g in aqueous solution at 45 °C, showcasing remarkable selectivity (selectivity coefficient (Kα) 3.39 × 105) and an ultrafast adsorption rate, adsorbing Ag+ in just 5 min. These superior adsorption characteristics surpassed those of most reported POPs. Theoretical simulations further revealed that key structural motifs, particularly phosphazene units, played a critical role in enhancing Ag+ adsorption. This study proposes a promising strategy for the efficient recovery of Ag from wastewater using high-performance porous adsorbents.
Collapse
Affiliation(s)
- Tianzhi Tang
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaohui Xiong
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Li
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yani Xue
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xinxiu Cao
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongwei Zhao
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Anguo Xiao
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China; Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde 415000, China.
| | - Huan Liu
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qingquan Liu
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Wang W, Wan H, Wang Z, Shao L, Liu N, Zhan P, Zhang L, Sun K, Wu Z. Lignin-based porous carbon/palygorskite composites doped with different metals for efficient iodine capture: Structure, performance, and mechanism. Int J Biol Macromol 2025; 308:142549. [PMID: 40154718 DOI: 10.1016/j.ijbiomac.2025.142549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Radioactive iodine waste from the nuclear power industry will cause air and water pollution. Here, a series of metal (Bi, Zn and Fe)-doped lignin-based porous carbon/palygorskite composites (ELC-P-X) were prepared by wet impregnation and carbonization method for enhancing the iodine capture. Their morphology, porosity, and surface functional groups of ELC-P-X were characterized in detail, these metal species showed different sizes of nanoparticles with the oxide form. Zn, Fe doping enhanced its porosity of ELC-P (247.5 m2/g), and up to 359.5 m2/g, while Bi doping had slight negative influence on the porosity. Adsorption experiments showed that the iodine vapor adsorption capacity of ELC-P-X followed an order of ELC-P-Zn > ELC-P-Fe > ELC-P-Bi> ELC-P, the highest adsorption capacity can reach 650.0 mg/g. The results suggested that above metal doping can promote iodine vapor adsorption. Meanwhile, the adsorption capacity of ELC-P-X for iodine in n-hexane solution only showed an increase on ELC-P-Fe (362.2 mg/g), compared to ELC-P (332.0 mg/g). ELC-P-Fe still had good adsorption stability, acid and alkali resistance and cycling performance. We found that the adsorption of iodine vapor could mainly depend on the porosity of ELC-P-X materials, while the surface functional groups, iodine-affinity metal species, and micro-nano structure made a major contribution synergistically to the enhanced adsorption for the iodine solution. The adsorption mechanism study revealed that the Lewis acid-base interaction, electrostatic interactions, and charge transfer action accompanied by weak chemisorption were the main driving force for the iodine molecule adsorption on ELC-P-Fe. This work provided an important reference for the rational preparation of lignin based iodine adsorbents and proposed a kind of universal strategy for enhancing iodine adsorption.
Collapse
Affiliation(s)
- Wanying Wang
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Huan'ai Wan
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhoujian Wang
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Na Liu
- Ministry of Forestry Bioethanol Research Center, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kai Sun
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Mondal B, Bishal Kashyap A, Das G. Unveiling the Potential of Thiophene-Functionalized Porous Organic Polymers for Bromine Adsorption and Selective Separation from Iodine. Chemistry 2025; 31:e202404177. [PMID: 39714993 DOI: 10.1002/chem.202404177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Bromine is a significant environmental threat due to its corrosive nature and contribution to ozone layer depletion. It often coexists with iodine and forms interhalogen complexes (IBr), which require an effective and selective bromine adsorption strategy. Leveraging the electrophilic nature of bromine, we designed an electron-rich thiophene-based porous organic polymer (POF-2). This material exhibits exceptional efficiency for bromine adsorption (2.86 g g-1) and rapid uptake kinetic from aqueous solutions, driven by noncovalent charge transfer interactions. POF-2 also demonstrates selective capture of bromine from a bromine-iodine mixture in cyclohexane. The material's electron-rich sites exhibit a stronger orbital interaction with the σ* orbital of bromine compared to iodine, leading to the observed selectivity in cyclohexane.
Collapse
Affiliation(s)
- Bikram Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akash Bishal Kashyap
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Qiu J, Tang L, Nan Z, Liu L, Li Q, Wang W, Zhuo Z, Zhang D, Huang Y, Zhang L. Synthesis, Structure and Iodine Adsorption Properties of a Ni Cluster-Based Supramolecular Framework. Molecules 2025; 30:989. [PMID: 40076214 PMCID: PMC11901886 DOI: 10.3390/molecules30050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
The capture of radioactive iodine (129I or 131I) is of significant importance for the production of nuclear power and the treatment of nuclear waste. In recent years, crystallized porous materials have been extensively investigated to achieve highly effective adsorption of radioactive iodine. Herein, by using the hydrothermal method, a Ni cluster-based framework (1) was successfully constructed through a self-assembly process. Driven by the π-π stacking interactions between π-electron-rich benzimidazole groups, [Ni5S6] clusters stack in a lattice, forming a porous framework with proper channels, rendering compound 1 as an ideal adsorbent for iodine. Compound 1 delivered a capability of iodine adsorption (2.08 g g-1 and 560 mg g-1 for gaseous and solution iodine, respectively) with stable cyclability.
Collapse
Affiliation(s)
- Jingyi Qiu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, China; (J.Q.); (L.T.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Linxia Tang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, China; (J.Q.); (L.T.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Ziang Nan
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Luyao Liu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Qing Li
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Wei Wang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Zhu Zhuo
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Dongwei Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yougui Huang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China; (Z.N.); (L.L.); (Q.L.); (W.W.); (Y.H.)
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| |
Collapse
|
5
|
Altınışık S, Yayla C, Karaca N, Koyuncu S. Carbazole-Bismaleimide Based Hyper-Cross-Linked Porous Organic Polymer for Efficient Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3259-3268. [PMID: 39874584 DOI: 10.1021/acs.langmuir.4c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups. To produce CzBMI-POP, a free radical polymerization reaction was carried out via the unsaturated double bonds of Bis-Cz(BMI), enabling the construction of the N-rich porous skeleton in a simple and practical way. A high surface area carbazole-bismaleimide-based POP with polymer backbone having affinity for iodine uptake and sponge-like pore structures ranging from 2 to 20 nm showed iodine uptake capacity up to 215 wt %. The study highlights new opportunities to use POPs as iodine capture platform from nuclear waste, highlighting their potential for environmental remediation due to their easy synthesis and low cost.
Collapse
Affiliation(s)
- Sinem Altınışık
- Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey
- Department of Energy Resources and Management, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Cansu Yayla
- Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey
| | - Nurcan Karaca
- Central Research Laboratory Research and Application Center, Yalova University, 77200 Yalova, Turkey
| | - Sermet Koyuncu
- Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey
- Department of Energy Resources and Management, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| |
Collapse
|
6
|
Ravikumar MV, Nipate AB, Deyona MJ, M RR, Lakshmi V. Croconic Acid Integrated Zwitterionic Conjugated Porous Polymer for Effective Iodine Adsorption. Chem Asian J 2024:e202400808. [PMID: 39224074 DOI: 10.1002/asia.202400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Given the rapid growth of the nuclear sector, effective treatment of radioactive iodine is critical. Herein, we report the synthesis and the iodine adsorption properties of croconic acid (CTPB) and squaric acid (STPB) containing π-conjugated novel zwitterionic conjugated porous polymers (CPPs). The CPPs have been synthesized through a condensation reaction of tris(4-aminophenyl)benzene with croconic acid or squaric acid in high yields (~95 %). The ionic nature of the polymers promoted high iodine/polyiodide vapour adsorption capacity of up to 4.6 g/g for CTPB and 3.5 g/g for STPB under ambient pressure at 80 °C. The zwitterionic framework (croconic acid or squaric acid units) coupled with the aromatic units is expected to effectively capture molecular iodine (I2) and polyiodides (I3 - and I5 -). The iodine adsorption properties of the polymers have been studied using Fourier-Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Brauner-Emmett-Teller (BET) analysis, and Raman Spectroscopy. Besides this work, there are only three ionic units for effective iodine adsorption. This work demonstrates the importance of zwitterionic units in the porous network reported for iodine adsorption and separation.
Collapse
Affiliation(s)
- Maruti Vibhuti Ravikumar
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Karnataka, 575025, India
| | - Atul B Nipate
- Department of Chemistry, Indian Institute of Technology Dharwad, Dharwad, Karnataka, 580007
| | - M Jose Deyona
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Karnataka, 575025, India
| | - Rajeswara Rao M
- Department of Chemistry, Indian Institute of Technology Dharwad, Dharwad, Karnataka, 580007
| | - Vellanki Lakshmi
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Karnataka, 575025, India
| |
Collapse
|
7
|
Banerjee F, Bera S, Nath T, Samanta SK. Spirobifluorene-BINOL-based microporous polymer nanoreactor for efficient 1 H-tetrazole synthesis and iodine adsorption with facile charge transfer. NANOSCALE 2024; 16:11999-12006. [PMID: 38775142 DOI: 10.1039/d4nr00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Porous polymeric nanoreactors capable of multitasking are attractive and require a judicious design strategy. Herein, we describe an unusual approach for the synthesis of a porous polymer SBF-BINOL-6 by in situ formation of the BINOL entity taking substituted naphthols and spirobifluorene as co-monomers with high yield (81%). The as-synthesized polymer exhibited nanotube and nanosphere-like morphology, thermal endurance up to 372 °C and a BET surface area as high as 590 m2 g-1. The polymer endowed efficient loading of silver nanoparticles to generate Ag@SBF6, as confirmed from X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. Ag@SBF6 was effectively used as a heterogeneous catalyst towards the [3 + 2] dipolar cycloaddition reaction for the synthesis of biologically important 5-substituted 1H-tetrazoles with yields in the range of 75-99% and recyclability for at least seven times without a significant decline in its catalytic efficiency. Additionally, a superior host-guest interaction by the polymer offered iodine adsorption in the vapour phase with a high uptake capacity of up to 4.0 g g-1. Interestingly, the iodine-loaded polymer, I2@SBF6, demonstrated iodine-promoted increased conductivity (1.3 × 10-3 S cm-1) through facile charge transfer interactions.
Collapse
Affiliation(s)
- Flora Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Sudharanjan Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Tanushree Nath
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
8
|
Tang Z, Xie D, Li S. Synergistic enhancement of iodine capture from humid streams by microporosity and hydrophobicity of activated carbon fiber. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134369. [PMID: 38678709 DOI: 10.1016/j.jhazmat.2024.134369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Activated carbon fibers (ACF) are widely used to remove gaseous radioiodine produced during spent fuel reprocessing owing to their excellent adsorption properties. However, ACF's strong affinity for moisture tends to dominate, significantly reducing its ability to capture iodine in humid environments. The study used a one-step facile modification method of spray-deposited poly(divinylbenzene) (PDVB) nanoparticles on ACF to prepare hydrophobic activated carbon fiber (ACF-PDVB1.5). Compared to the initial ACF, the ACF-PDVB1.5 enhances the specific surface area to 1571 m2/g while maintaining abundant active sites, overcoming the disadvantage of pore reduction caused by traditional modification methods. More importantly, they also have excellent acid and alkali resistance and hydrophobicity (water contact angle 131.1°), with a preference for I2 pores (97 % microporosity). The iodine capture capacity of ACF PDVB 1.5 showed a significant increase compared to the initial ACF, as indicated by both static and dynamic adsorption tests. Notably, the dynamic iodine adsorption capacity of ACF-PDVB1.5 in a mixed iodine-water vapor stream at actual temperature (75 °C) and humid (50 % RH) conditions was 1847.69 mg/g, an increase of 55.47 % over the capacity of initial ACF (1188.71 mg/g). This work improves the overall I2 adsorption performance through hydrophobicity and pore size coordination.
Collapse
Affiliation(s)
- Zengming Tang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China
| | - Dong Xie
- National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China; School of Civil Engineering, University of South China, Hengyang 421001, PR China.
| | - Suzhe Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China
| |
Collapse
|
9
|
Li C, Yan Q, Xu H, Luo S, Hu H, Wang S, Su X, Xiao S, Gao Y. Highly Efficient Capture of Volatile Iodine by Conjugated Microporous Polymers Constructed Using Planar 3- and 4-Connected Organic Monomers. Molecules 2024; 29:2242. [PMID: 38792104 PMCID: PMC11124010 DOI: 10.3390/molecules29102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The effective capture and recovery of radioiodine species associated with nuclear fuel reprocessing is of significant importance in nuclear power plants. Porous materials have been proven to be one of the most effective adsorbents for the capture of radioiodine. In this work, we design and synthesize a series of conjugated microporous polymers (CMPs), namely, TPDA-TFPB CMP, TPDA-TATBA CMP, and TPDA-TECHO CMP, which are constructed based on a planar rectangular 4-connected organic monomer and three triangular 3-connected organic monomers, respectively. The resultant CMPs are characterized using various characterization techniques and used as effective adsorbents for iodine capture. Our experiments indicated that the CMPs exhibit excellent iodine adsorption capacities as high as 6.48, 6.25, and 6.37 g g-1 at 348 K and ambient pressure. The adsorption mechanism was further investigated and the strong chemical adsorption between the iodine and the imine/tertiary ammonia of the CMPs, 3D network structure with accessible hierarchical pores, uniform micromorphology, wide π-conjugated structure, and high-density Lewis-base sites synergistically contribute to their excellent iodine adsorption performance. Moreover, the CMPs demonstrated good recyclability. This work provides guidance for the construction of novel iodine adsorbent materials with high efficiency in the nuclear power field.
Collapse
Affiliation(s)
- Chaohui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China;
| | - Siyu Luo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| |
Collapse
|
10
|
Taheri N, Dinari M, Ramezanzade V. Fabrication of Polysulfone Beads Containing Covalent Organic Polymer as a Versatile Platform for Efficient Iodine Capture. ACS OMEGA 2024; 9:19071-19076. [PMID: 38708203 PMCID: PMC11064206 DOI: 10.1021/acsomega.3c09869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Radioactive iodine poses a significant risk to human health, particularly with regard to reproductive and metabolic functions. Designing and developing highly efficient adsorbent materials for radioactive substances remain a significant challenge. This study aimed to address this issue by the fabricating polymeric beads containing covalent organic polymer (COP) as an effective method for removing iodine vapor. To achieve this, a COP was first synthesized via the Friedel-Crafts reaction catalyzed by anhydrous aluminum chloride. Then, COP-loaded polysulfone (PSf) (COP@PSf) and PSf beads were prepared using a phase separation method. The beads produced in this research have exhibited remarkable proficiency in adsorbing iodine vapor, showing an adsorption capacity of up to 216 wt % within just 420 min, which is higher than that of most other similar beads reported in the literature.
Collapse
Affiliation(s)
- Nazanin Taheri
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Vahid Ramezanzade
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
11
|
Jung YE, Yang JH, Yim MS. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133777. [PMID: 38359759 DOI: 10.1016/j.jhazmat.2024.133777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
In this study, we investigated the use of Bi-mna, a specific type of bismuth metal organic framework (MOF) for the capture and disposal of iodine, a key nuclide of concern in nuclear fuel reprocessing plants and nuclear power plants. To find the suitable form of Bi-mna for the purpose, experiments were performed by synthesizing four different Bi-mna with varying reagent ratios and connecting iodine adsorption and conversion for immobilization. After iodine adsorption and characterization to investigate their adsorption mechanisms, the Bi-mna samples went through conversion for immobilization to fix captured iodine into the adsorbents. The converted materials are characterized to examine their thermal stability. The Bi-2mna, showing the best performance of adsorption and thermal stability after the conversion, was selected to explore its chemical stability. According to the test results, the converted compound showed relatively low leaching rate (3.06 ×10-5 g/m2∙day) compared with other iodine containing waste forms for disposal. Based on the results, we proposed the Bi-2mna as a candidate material as iodine adsorbent as well as waste form precursor. ENVIRONMENTAL IMPLICATION: Radioiodine a key nuclide of concern in nuclear fuel reprocessing plants and nuclear power plants. Once ingested, it is accumulated in thyroid grand, causing negative health effects. Currently, a typical radioiodine adsorbent is silver-based zeolites. Despite a strong affinity to iodine of silver, it has a chemical toxicity that causes a potential issue in disposal. Therefore, it is substantially required to develop new type of adsorbents which are both good for capture and disposal of radioiodine. In this respect, we suggested a bismuth-based metal-organic framework as an alternative adsorbent to manage the life cycle of radioiodine.
Collapse
Affiliation(s)
- Young Eun Jung
- Advanced Fuel Cycle Technology Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 beon-gil, Yuseong-gu, Daejeon 34057, South Korea
| | - Jae Hwan Yang
- Department of Environmental & IT Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| | - Man-Sung Yim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| |
Collapse
|
12
|
Zhang CH, Zhou BX, Lin X, Mo YH, Cao J, Cai SL, Fan J, Zhang WG, Zheng SR. Iodine Adsorption-Desorption-Induced Structural Transformation and Improved Ag + Turn-On Luminescent Sensing Performance of a Nonporous Eu(III) Metal-Organic Framework. Inorg Chem 2024; 63:4185-4195. [PMID: 38364251 DOI: 10.1021/acs.inorgchem.3c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.
Collapse
Affiliation(s)
- Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xian Lin
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yi-Hong Mo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, P. R. China
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Wang X, Meng R, Zhao S, Jing Z, Jin Y, Zhang J, Pi X, Du Q, Chen L, Li Y. Efficient adsorption of radioactive iodine by covalent organic framework/chitosan aerogel. Int J Biol Macromol 2024; 260:129690. [PMID: 38266855 DOI: 10.1016/j.ijbiomac.2024.129690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Radioactive iodine is considered one of the most dangerous radioactive elements in nuclear waste. Therefore, effective capture of radioactive iodine is essential for developing and using nuclear energy to solve the energy crisis. Some materials that have been developed for removing radioactive iodine still suffer from complex synthesis, low removal capacity, and non-reusability. Herein, covalent organic framework (COF)/chitosan (CS) aerogels were prepared using vacuum freeze-drying, and the COF nanoparticles were tightly attached on the green biomass material CS networks. Due to the synergistic effect of both COF and CS, the composite aerogel shows a three-dimensional porous and stable structure in the recycle usage. The COF/CS aerogel exhibits excellent iodine adsorption capacity of 2211.58 mg g-1 and 5.62 g g-1 for static iodine solution and iodine vapor, respectively, better than some common adsorbents. Furthermore, COF/CS aerogel demonstrated good recyclability performance with 87 % of the initial adsorption capacity after 5 cycles. In addition, the interaction between iodine and imine groups, amino groups, and benzene rings of aerogel are the possible adsorption mechanisms. COF/CS aerogel has excellent adsorption properties, good chemical stability, and reusable performance, which is a potential and efficient adsorbent for industrial radioactive iodine adsorption from nuclear waste.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Ruixue Meng
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Jie Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Qiuju Du
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| |
Collapse
|
14
|
Li G, Liang J, Lin J, Li H, Liu Y, Xu G, Yu C, Guo Z, Tang C, Huang Y. Boron nitride aerogels incorporated with metal nanoparticles: Multifunctional platforms for iodine capture and detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132481. [PMID: 37690206 DOI: 10.1016/j.jhazmat.2023.132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Radioactive iodine vapors produced by nuclear fission can pose a significant risk to human health and the environment. Effective monitoring of iodine vapor leakage, capture and storage of radioactive iodine vapor are of great importance for the safety of the nuclear industry. Herein, we report a novel structure-function integrated solid iodine vapor adsorbent based on metal-modified boron nitride (BN) aerogel. Metal-modified BN aerogels incorporated with Cu/Ag nanoparticles (named as BN-Cu and BN-Ag, respectively) are successfully prepared by a metal-induced, ultrasonic-assisted, and in-situ transformation method. The metal-modified BN aerogels show improved mechanical properties in both of the maximum stress and residual deformation. Remarkably, due to the greatly enhanced "host-guest" and "guest-guest" effects by the introduction of metal nanoparticles, the BN-Cu and BN-Ag aerogels exhibit record-breaking iodine vapor adsorption capacities among inorganic adsorbents (1739.8 and 2234.13 wt% respectively), which are even higher than that of most organic adsorbents. Furthermore, an integrated iodine adsorption detection device based on metal-modified aerogels is constructed to realize real-time detection of the electrical properties of aerogels during iodine adsorption. This work provides a foundation for the development of BN aerogels as multifunctional platforms for effective iodine capture and detection. It also introduces new ideas for the use of structural-functional integrated materials in the prevention and control of radioactive iodine pollution.
Collapse
Affiliation(s)
- Gen Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jianli Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jing Lin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| | - Hongyu Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yan Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Guoyang Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chao Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhonglu Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
15
|
Luo S, Yan Q, Wang S, Hu H, Xiao S, Su X, Xu H, Gao Y. Conjugated Microporous Polymers Based on Octet and Tetratopic Linkers for Efficient Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46408-46416. [PMID: 37748106 DOI: 10.1021/acsami.3c10786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Radioactive iodine from nuclear waste poses a huge threat to public safety and raises concerns about environmental pollution. There is thus a growing demand for developing novel adsorbents for highly effective iodine capture. In this work, we design and synthesize three novel conjugated microporous polymers, namely, TPE-PyTTA-CMP, TPE-TAPP-CMP, and TPE-TPDA-CMP, which are constructed by an imidization reaction based on octet and tetratopic linkers. The iodine vapor adsorption experiments show that the three CMPs have an excellent iodine adsorption capacity as high as 3.10, 3.67, and 4.68 g·g-1 under 348 K and ambient pressure conditions, respectively. The adsorbed iodine in the CMPs can be released into methanol in a dramatically rapid manner, and their excellent iodine adsorption performance can still be maintained after multiple cycles. In addition, the CMPs demonstrate good adsorption performance in an n-hexane solution of iodine, and the kinetic experimental data follow the pseudo-second-order model. The hierarchical porosity, extended π-conjugated skeleton, and rich electron-donor nitrogen sites of the CMPs could contribute to their excellent iodine adsorption performance. The knowledge information obtained in this work could open up new possibilities for designing novel CMPs targeting a wide range of environment-related applications.
Collapse
Affiliation(s)
- Siyu Luo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
16
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
17
|
Yang L, Shao L, Wu Z, Zhan P, Zhang L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers (Basel) 2023; 15:2630. [PMID: 37376276 DOI: 10.3390/polym15122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
18
|
Ahad J, Ahmad M, Farooq A, Waheed K, Irfan N. Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27485-1. [PMID: 37231136 DOI: 10.1007/s11356-023-27485-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Radioactive iodine is a hazardous fission product and a major concern for public health. Special attention is paid to iodine out of 80 fission products because of its short half-life of 8.02 days, high activity, and potential health hazards like its irreversible accumulation in thyroid gland and ability to cause thyroid cancer locally. Radioactive iodine can get released in the form of aerosols (cesium iodide), elemental iodine, and organic iodide after a nuclear accident and can cause off-site and on-site contamination. Filtered containment venting system (FCVS) is a safety system whose main objective is mitigation of severe accidents via controlled venting and removal of different forms of iodine to ensure safety of people and environment. After nuclear accidents like Fukushima, extensive research has been done on the removal of iodine by using dry scrubbers. This review paper presents research status of iodine removal by dry adsorbents especially after 10 years of Fukushima to assess the progress, research gap, and challenges that require more attention. A good adsorbent should be cost-effective; it should have high selective adsorption towards iodine, high thermal and chemical stability, and good loading capacity; and its adsorption should remain unaffected by aging and the presence of inhibitors like CO, NO2, CH3Cl, H2O, and Cl2 and radiation. Research on different dry adsorbents was discussed, and their capability as a potential filter for FCVS was reviewed on the basis of all the above-mentioned features. Metal fiber filters have been widely used for removal of aerosols especially micro- and nanoscale aerosols. For designing a metal fiber filter, optimal size or combination of sizes of fibers, number of layers, and loading capacity of filter should be decided according to feasibility and requirement. Balance between flow resistance and removal efficiency is also very important. Sand bed filters were successful in retention of aerosols, but they showed low trapping of iodine and no trapping of methyl iodide at all. For iodine and methyl iodide removal, many adsorbents like activated carbon, zeolites, metal organic frameworks (MOFs), porous organic frameworks (POPs), silica, aerogels, titanosilicates, etc. have been used. Impregnated activated carbon showed good results but low auto-ignition temperature and decline in adsorption due to aging and inhibitors like NOx made them less suitable. Silver zeolites have been very successful in methyl iodide and iodine removal, but they are expensive and affected by presence of CO. Titanosilicates, macroreticular resins, and chalcogels were also studied and they showed good adsorption capacities, but their thermal stability was low. Other adsorbents like silica, MOFs, aerogels, and POPs also showed promising results for iodine adsorption and good thermal stability, but very limited or no research is available on their performance in severe accident conditions. This review will be very helpful for researchers to understand the merits and demerits of different types of dry adsorbents, the important operating parameters that need optimization for designing an efficient scrubber, margin of research, and foreseeable challenges in removal of different forms of iodine.
Collapse
Affiliation(s)
- Jawaria Ahad
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
| | - Masroor Ahmad
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Amjad Farooq
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Khalid Waheed
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Naseem Irfan
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
19
|
Yildirim O, Tsaturyan A, Damin A, Nejrotti S, Crocellà V, Gallo A, Chierotti MR, Bonomo M, Barolo C. Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15819-15831. [PMID: 36926827 PMCID: PMC10064318 DOI: 10.1021/acsami.2c20853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (i.e., Raman, UV-vis), SSNMR and surface (e.g., SEM, BET) techniques, showing a modest surface area (113 m2 g-1) and micropore volume (0.014 cm3 g-1 with an averaged pore size of 5.6-8 Å). Notwithstanding this, TAPB-QOT COP shows a remarkably high iodine (I2) uptake capacity (464 %wt) comparable to or even higher than state-of-the-art porous organic polymers (POPs). These auspicious values are due to the thoughtful design of the polymer with embedded sulfur sites and a conjugated scaffold with the ability to counterbalance the relatively low pore volumes. Indeed, both morphological and Raman data, supported by computational analyses, prove the very high affinity between the S atom in our COP and the I2. As a result, TAPB-QOT COP shows the highest volumetric I2 uptake (i.e., the amount of I2 uptaken per volume unit) up to 331 g cm-3 coupled with a remarkably high reversibility (>80% after five cycles).
Collapse
Affiliation(s)
- Onur Yildirim
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Arshak Tsaturyan
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- Institute
of Physical and Organic Chemistry, Southern
Federal University, 344006 Rostov-on-Don, Russia
- Université
Jean Monnet Saint-Etienne, CNRS, Institut d’Optique Graduate
School, Laboratoire Hubert Curien UMR 5516, F-42023 Saintt-Etienne, France
| | - Alessandro Damin
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Stefano Nejrotti
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Valentina Crocellà
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Angelo Gallo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Michele Remo Chierotti
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Matteo Bonomo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Claudia Barolo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
- ICxT
Interdepartmental Centre, Università
degli Studi di Torino, Via Lungo Dora Siena 100, 10153 Torino, Italy
| |
Collapse
|
20
|
Sacourbaravi R, Ansari-Asl Z, Darabpour E. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Thurakkal L, Cheekatla SR, Porel M. Superfast Capture of Iodine from Air, Water, and Organic Solvent by Potential Dithiocarbamate-Based Organic Polymer. Int J Mol Sci 2023; 24:ijms24021466. [PMID: 36674984 PMCID: PMC9861013 DOI: 10.3390/ijms24021466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Organic polymers are widely explored due to their high stability, scalability, and more facile modification properties. We developed cost-effective dithiocarbamate-based organic polymers synthesized using diamides, carbon disulfide, and diamines to apply for environmental remediation. The sequestration of radioiodine is a serious concern to tackle when dealing with nuclear power for energy requirements. However, many of the current sorbents have the problem of slower adsorption for removing iodine. In this report, we discuss the utilization of an electron-rich dithiocarbamate-based organic polymer for the removal of iodine in a very short time and with high uptake. Our material showed 2.8 g/g uptake of vapor iodine in 1 h, 915.19 mg/g uptake of iodine from cyclohexane within 5 s, 93% removal of saturated iodine from water in 1 min, and 1250 mg/g uptake of triiodide ions from water within 30 s. To the best of our knowledge, the iodine capture was faster than previously observed for any existing material. The material was fully recyclable when applied for up to four cycles. Hence, this dithiocarbamate-based polymer can be a promising system for the fast removal of various forms of iodine and, thus, enhance environmental security.
Collapse
Affiliation(s)
- Liya Thurakkal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Subba Rao Cheekatla
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
| | - Mintu Porel
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, India
- Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad 678557, India
- Correspondence:
| |
Collapse
|
22
|
Wang ST, Liu YJ, Zhang CY, Yang F, Fang WH, Zhang J. Cluster-Based Crystalline Materials for Iodine Capture. Chemistry 2023; 29:e202202638. [PMID: 36180419 DOI: 10.1002/chem.202202638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
The treatment of radioactive iodine in nuclear waste has always been a critical issue of social concern. The rational design of targeted and efficient capture materials is of great significance to the sustainable development of the ecological environment. In recent decades, crystalline materials have served as a molecular platform to study the binding process and capture mechanism of iodine molecules, enabling people to understand the interaction between radioactive iodine guests and pores intuitively. Cluster-based crystalline materials, including molecular clusters and cluster-based metal-organic frameworks, are emerging candidates for iodine capture due to their aggregative binding sites, precise structural information, tunable pores/packing patterns, and abundant modifications. Herein, recent progress of different types of cluster materials and cluster-dominated metal-organic porous materials for iodine capture is reviewed. Research prospects, design strategies to improve the affinity for iodine and possible capture mechanisms are discussed.
Collapse
Affiliation(s)
- San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fan Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
23
|
An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Molecules 2022; 27:molecules27196297. [PMID: 36234834 PMCID: PMC9572897 DOI: 10.3390/molecules27196297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The strong radioactivity of iodine compounds derived from nuclear power plant wastes has motivated the development of highly efficient adsorbents. Porous aromatic frameworks (PAFs) have attracted much attention due to their low density and diverse structure. In this work, an azo group containing PAF solid, denoted as LNU-58, was prepared through Suzuki polymerization of tris-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)-amine and 3,5-dibromoazobenzene building monomers. Based on the specific polarity properities of the azo groups, the electron-rich aromatic fragments in the hierarchical architecture efficiently capture iodine molecules with an adsorption capacity of 3533.11 mg g−1 (353 wt%) for gaseous iodine and 903.6 mg g−1 (90 wt%) for dissolved iodine. The iodine uptake per specific surface area up to 8.55 wt% m−2 g−1 achieves the highest level among all porous adsorbents. This work illustrates the successful preparation of a new type of porous adsorbent that is expected to be applied in the field of practical iodine adsorption.
Collapse
|
24
|
A chiral porous organic polymer COP-1 used as stationary phase for HPLC enantioseparation under normal-phase and reversed-phase conditions. Mikrochim Acta 2022; 189:360. [PMID: 36042107 DOI: 10.1007/s00604-022-05448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/07/2022] [Indexed: 10/14/2022]
Abstract
A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.
Collapse
|
25
|
Synthesis of Electron-Rich Porous Organic Polymers via Schiff-Base Chemistry for Efficient Iodine Capture. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165161. [PMID: 36014397 PMCID: PMC9415008 DOI: 10.3390/molecules27165161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
As one of the main nuclear wastes generated in the process of nuclear fission, radioactive iodine has attracted worldwide attention due to its harm to public safety and environmental pollution. Therefore, it is of crucial importance to develop materials that can rapidly and efficiently capture radioactive iodine. Herein, we report the construction of three electron-rich porous organic polymers (POPs), denoted as POP-E, POP-T and POP-P via Schiff base polycondensations reactions between Td-symmetric adamantane knot and four-branched “linkage” molecules. We demonstrated that all the three POPs showed high iodine adsorption capability, among which the adsorption capacity of POP-T for iodine vapor reached up to 3.94 g·g−1 and the removal rate of iodine in n-hexane solution was up to 99%. The efficient iodine capture mechanism of the POP-T was investigated through systematic comparison of Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after iodine adsorption. The unique π-π conjugated system between imine bonds linked aromatic rings with iodine result in charge-transfer complexes, which explains the exceptional iodine capture capacity. Additionally, the introduction of heteroatoms into the framework would also enhance the iodine adsorption capability of POPs. Good retention behavior and recycling capacity were also observed for the POPs.
Collapse
|
26
|
Qiao Y, Lv N, Xue X, Zhou T, Che G, Xu G, Wang F, Wu Y, Xu Z. Highly Efficient Iodine Capture and CO
2
Adsorption using a Triazine‐Based Conjugated Microporous Polymers. ChemistrySelect 2022. [DOI: 10.1002/slct.202200234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Qiao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Na Lv
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Xiangxin Xue
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Environmental Science and Engineering Jilin Normal University Siping 136000 PR China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Fujun Wang
- Asset Management Division Jilin Normal University Siping 136000 PR China
| | - Yuanyuan Wu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| | - Zhanlin Xu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University) Ministry of Education Changchun 130103 P. R. China
- College of Chemistry Jilin Normal University Siping 136000 PR China
| |
Collapse
|
27
|
Yang M, Shi W, Liu S, Xu K. Multifunctional diphenyl ether-based, cross-linked polyisocyanide for efficient iodine capture and NO2-/SO32- electrochemical probing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Geng TM, Wang K, Zhou XH, Dong XQ. Nanoarchitectonics of bipyrazole-based porous organic polymer for iodine absorption and fluorescence sensing picric acid and formation of liquid complex of its (poly)iodide ions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Metal organic frameworks as a versatile platform for the radioactive iodine capture: State of the art developments and future prospects. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Fang XC, Geng TM, Wang FQ, Xu WH. The synthesis of conjugated microporous polymers via Friedel–Crafts reaction of 2,4,6-trichloro-1,3,5-triazine with thienyl derivatives for fluorescence sensing to 2,4-dinitrophenol and capturing iodine. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Triazine-based porous organic polymers for reversible capture of iodine and utilization in antibacterial application. Sci Rep 2022; 12:2638. [PMID: 35173259 PMCID: PMC8850422 DOI: 10.1038/s41598-022-06671-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
The capture and safe storage of radioactive iodine (129I or 131I) are of a compelling significance in the generation of nuclear energy and waste storage. Because of their physiochemical properties, Porous Organic Polymers (POPs) are considered to be one of the most sought classes of materials for iodine capture and storage. Herein, we report on the preparation and characterization of two triazine-based, nitrogen-rich, porous organic polymers, NRPOP-1 (SABET = 519 m2 g−1) and NRPOP-2 (SABET = 456 m2 g−1), by reacting 1,3,5-triazine-2,4,6-triamine or 1,4-bis-(2,4-diamino-1,3,5-triazine)-benzene with thieno[2,3-b]thiophene-2,5-dicarboxaldehyde, respectively, and their use in the capture of volatile iodine. NRPOP-1 and NRPOP-2 showed a high adsorption capacity of iodine vapor with an uptake of up to 317 wt % at 80 °C and 1 bar and adequate recyclability. The NRPOPs were also capable of removing up to 87% of iodine from 300 mg L−1 iodine-cyclohexane solution. Furthermore, the iodine-loaded polymers, I2@NRPOP-1 and I2@NRPOP-2, displayed good antibacterial activity against Micrococcus luteus (ML), Escherichia coli (EC), and Pseudomonas aeruginosa (PSA). The synergic functionality of these novel polymers makes them promising materials to the environment and public health.
Collapse
|
32
|
Jiang L, Yin Z, Chu J, Song C, Kong A. Scale synthesis of spherical porous porphyrinic organic polymers for efficient iodine capture and CO2 adsorption. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Yan X, Yang Y, Li G, Zhang J, He Y, Wang R, Lin Z, Cai Z. Thiophene-based covalent organic frameworks for highly efficient iodine capture. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Yu YN, Yin Z, Cao LH, Ma YM. Organic porous solid as promising iodine capture materials. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01128-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Tian Z, Ye X, Zhou P, Zhu Z, Li J, Sun H, Liang W, Liu Y, Li A. Bifunctional conjugated microporous polymer based filters for highly efficient PM and gaseous iodine capture. Polym Chem 2022. [DOI: 10.1039/d2py00529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-linked conjugated microporous polymers (CMPs) based air filters obtained by a one-step cross-coupling reaction for effective capture of particulate matter and gaseous iodine from dusty air.
Collapse
Affiliation(s)
- Zhuoyue Tian
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Xingyun Ye
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Peilei Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Yin Liu
- Gansu Research Institute of chemical Industry Co., Ltd., Guchengping Road 1, Lanzhou 730050, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
36
|
Liao P, Feng X, Fang H, Yang Z, Zhang J. Stabilized nanotube and nanofiber gel materials toward multifunctional adsorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Pourebrahimi S, Pirooz M. Reversible iodine vapor capture using bipyridine-based covalent triazine framework: Experimental and computational investigations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
38
|
Wu Z, Wei W, Ma J, Luo J, Zhou Y, Zhou Z, Liu S. Adsorption of Iodine on Adamantane‐Based Covalent Organic Frameworks. ChemistrySelect 2021. [DOI: 10.1002/slct.202102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhineng Wu
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| | - Wei Wei
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| | - Jianguo Ma
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| | - Jianqiang Luo
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| | - Yueming Zhou
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| | - Zhiyi Zhou
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| | - Shujuan Liu
- State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang 330013 China
| |
Collapse
|
39
|
Tesfay Reda A, Zhang D, Xu X, Pan M, Chang C, Muhire C, Liu X, Jiayi S. Bismuth-impregnated aluminum/copper oxide-pillared montmorillonite for efficient vapor iodine sorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Zahid M, Zhang D, Xu X, Pan M, Ul Haq MH, Reda AT, Xu W. Barbituric and thiobarbituric acid-based UiO-66-NH 2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125835. [PMID: 34492792 DOI: 10.1016/j.jhazmat.2021.125835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Efficient iodine gas capture is necessitated in many industries like spent nuclear fuel off-gas treatment in view of environmental protection and resource recycling. However, the adsorption efficiency and stability of the current adsorbents are limited. In the present work, efficient and stable barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents (i.e., UiO-66-NH-B.D and UiO-66-NH-T.D, respectively) have been synthesized by post-synthetic covalent modification. Characterization approaches, including SEM-EDS, TEM, XRD, FTIR, XPS, 1H NMR, TGA and BET, are used to obtain information on the properties and adsorption mechanisms of these metal-organic framework (MOF) adsorbents. The kinetics and mechanisms involved are studied in detail. The treatment efficiency and recyclability of the adsorbents are checked and compared with the adsorbents reported in previous works. The results show that the current adsorbents are potentially suitable for efficient iodine gas capture. High maximum iodine adsorption amount by UiO-66-NH-B.D and UiO-66-NH-T.D (1.17 and 1.33 g/g) was achieved under 75 °C. These new adsorbents are thermally stable for iodine adsorption and regenerated and reused with good performance. The adsorption mechanisms were revealed based on experimental results, indicating that iodine is adsorbed by both physisorption and chemisorption.
Collapse
Affiliation(s)
- Muhammad Zahid
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dongxiang Zhang
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiyan Xu
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Meng Pan
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Hammad Ul Haq
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Alemtsehay Tesfay Reda
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenguo Xu
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
41
|
Avais M, Kumari S, Chattopadhyay S. Degradable and processable polymer monoliths with open-pore porosity for selective CO 2 and iodine adsorption. SOFT MATTER 2021; 17:6383-6393. [PMID: 34232242 DOI: 10.1039/d1sm00441g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A task-specific design of biodegradable and processable porous polymers is one of the primary requisite for their efficient day-to-day use to minimize polymer waste. Herein, a surfactant (or additive)-free method is reported for the synthesis of a processable and degradable aliphatic open-pore porous polyelectrolyte monolith for the removal of gaseous pollutants such as iodine and CO2. This is achieved via a colloidal templating method. In the 1st stage, cationic colloidal nanoparticles containing reactive amines and acrylamide groups were formed via the phase separation of hyperbranched polyaminoamides in water (sol). These cationic nanoparticles (which acted as both templates and macromers) further reacted to form a gel, which upon freeze-drying leads to the formation of a polymer monolith with an open-pore porous morphology and hierarchical porosity throughout its structure. During gelation, the shape of the monolith can be controlled using suitable templates and a similar strategy was used to prepare porous thin films. The monolith has shown excellent iodine adsorption ability (5000 mg g-1 in the vapor phase and 2663 mg g-1 in the solution phase) with good reusability and CO2 adsorption ability (60 mg g-1), with CO2/CH4 and CO2/N2 selectivities of 18.5 and 6.7, respectively. The degradability of the materials was studied in detail at different pH, confirming their easy degradability in aqueous solutions and a higher degradability at basic pH.
Collapse
Affiliation(s)
- Mohd Avais
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Sulbha Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| |
Collapse
|
42
|
One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118352] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Wang Y, An L, Zhang Y, Zhang X, Gao Z, Zhang Y. Improving iodine adsorption performance of porous organic polymers by rational decoration with nitrogen heterocycle. J Appl Polym Sci 2020. [DOI: 10.1002/app.50054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu‐Ting Wang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Lian‐Cai An
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Yun‐Qin Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Xin‐Kun Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Zhu‐Feng Gao
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Ying‐Hui Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| |
Collapse
|
44
|
Huang P, Yue G, Chen J, Chen J, Yang X, Huang D, Zhao P. Polyvinyl Alcohol (PVA)-based Hyper-crosslinked Polymers (HCPs) and Their Ultrahigh Iodine Adsorption Capacity. CHEM LETT 2020. [DOI: 10.1246/cl.200245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu Huang
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou, Sichuan 621908, P. R. China
| | - Guozong Yue
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou, Sichuan 621908, P. R. China
| | - Jiazhou Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, P. R. China
| | - Jinfan Chen
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou, Sichuan 621908, P. R. China
| | - Xiaojiao Yang
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou, Sichuan 621908, P. R. China
| | - Deshun Huang
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou, Sichuan 621908, P. R. China
| | - Pengxiang Zhao
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou, Sichuan 621908, P. R. China
| |
Collapse
|
45
|
Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing. Sci Rep 2020; 10:15943. [PMID: 32994515 PMCID: PMC7525493 DOI: 10.1038/s41598-020-72697-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/04/2020] [Indexed: 11/08/2022] Open
Abstract
A novel triazene-anthracene-based fluorescent aminal linked porous organic polymer (TALPOP) was prepared via metal free-Schiff base polycondensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)anthracene and 2-furaldehyde. The polymer has exceptional chemical and thermal stabilities and exhibit good porosity with Brunauer–Emmett–Teller surface area of 401 m2g−1. The combination of such porosity along with the highly conjugated heteroatom-rich framework enabled the polymer to exhibit exceptional iodine vapor uptake of up to 314 wt % and reversible iodine adsorption in solution. Because of the inclusion of the anthracene moieties, the TALPOP exhibited excellent detection sensitivity towards iodine via florescence quenching with Ksv value of 2.9 × 103 L mol−1. The cost effective TALPOP along with its high uptake and sensing of iodine, make it an ideal material for environmental remediation.
Collapse
|
46
|
Geng T, Ma L, Chen G, Zhang C, Zhang W, Niu Q. Fluorescent conjugated microporous polymers containing pyrazine moieties for adsorbing and fluorescent sensing of iodine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20235-20245. [PMID: 32239401 DOI: 10.1007/s11356-019-06534-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/12/2019] [Indexed: 06/11/2023]
Abstract
Two kinds of fluorescent conjugated microporous polymers containing pyrazine moieties were prepared by the polymerization reaction of 2,5-di-triphenylamine-yl-pyrazine (DTPAPz) and N,N,N',N'-tetrapheny-2,5-(diazyl) pyrazine (TDPz) with 2,4,6-trichloro-1,3,5-triazine (TCT) through Friedel-Crafts reaction using the methanesulfonic acid as a catalysts. Both CMPs have high thermal stability and decomposition temperature reaches above 596 and 248 °C under nitrogen atmosphere, respectively. By right of porous morphology and electron-donating nitrogen, as well as electron-rich π-conjugated structures, the adsorption performance for iodine vapor on the CMPs is very excellent, which can reach 441% and 312%. In addition, fluorescence studies showed that the two CMPs exhibited high fluorescence sensitivity to electron-deficient iodine, o-nitrophenol (o-NP), and picric acid (PA) via fluorescence quenching.
Collapse
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
| | - Lanzhen Ma
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Guofeng Chen
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Weiyong Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Qingyuan Niu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
47
|
Geng T, Liu M, Zhang C, Hu C, Xu H. Synthesis of secondary amine‐based fluorescent porous organic polymers via Friedel–Crafts polymerization reaction for adsorbing and fluorescent sensing iodine. J Appl Polym Sci 2020. [DOI: 10.1002/app.49255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials School of Chemistry and Chemical Engineering, Anqing Normal University Anqing China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials School of Chemistry and Chemical Engineering, Anqing Normal University Anqing China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials School of Chemistry and Chemical Engineering, Anqing Normal University Anqing China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials School of Chemistry and Chemical Engineering, Anqing Normal University Anqing China
| | - Heng Xu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials School of Chemistry and Chemical Engineering, Anqing Normal University Anqing China
| |
Collapse
|
48
|
Zhang S, Li X, Gong W, Sun T, Wang Z, Ning G. Pillar[5]arene-Derived Microporous Polyaminal Networks with Enhanced Uptake Performance for CO2 and Iodine. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05871] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiyue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| | - Tianjun Sun
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Marine Engineering College of Dalian Maritime University, Dalian 116023, P. R. China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, Dalian, Liaoning Province 116024, P. R. China
| |
Collapse
|
49
|
Feng C, Xu G, Xie W, Zhang S, Yao C, Xu Y. Polytriazine porous networks for effective iodine capture. Polym Chem 2020. [DOI: 10.1039/c9py01948k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein we present a rational strategy for the development of nitrogen-enriched conjugated microporous polymers (CMPs) (TBTT-CMP@1, 2 and 3) via a BH coupling reaction under mild conditions, for the super absorption of iodine. TBTT-CMP@1 exhibited iodine capture amount up to 442 wt%.
Collapse
Affiliation(s)
- Chenchen Feng
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| |
Collapse
|
50
|
Huang M, Yang L, Li X, Chang G. An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation–π and electrostatic forces. Chem Commun (Camb) 2020; 56:1401-1404. [DOI: 10.1039/c9cc08699d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recyclable indole-based POP was successfully achieved, which was capable of visual colorimetric iodine capture in water via cation–π and electrostatic interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Xiuyun Li
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| |
Collapse
|