1
|
Zengin A, Karakoyun N, Demir DÇ, Bilici M. Molecularly-imprinted pumice as a selective solid-phase extraction adsorbent for kojic acid determination in cosmetic samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126367. [PMID: 40359592 DOI: 10.1016/j.saa.2025.126367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Herein, a highly sensitive molecularly-imprinted pumice (MIP-PMC) was tailored by employed the surface imprinting method and utilized as a solid-phase extraction (SPE) adsorbent for the fast and selective separation of kojic acid (KA) from cosmetic samples. The MIP-PMC was characterized in a systematic manner and found it to be a well-grown polymer layer on the PMC. The adsorption capacity of MIP-PMC was 89.9 mg/g, with an equilibrium adsorption time of 30 min. Moreover, the imprinting factor of MIP-PMC towards KA was found to be 3.28, which further demonstrated its evident selectivity for KA. Under optimized conditions, KA was successfully isolated from cosmetic products using MIP-PMC and quantified via ultraviolet-visible (UV-vis) spectrophotometry. Method validation demonstrated excellent linearity within the range of 0.04-400 mg/L, satisfactory precision (less than 5 %), and high recoveries (98.0-100.4 %). Furthermore, the method exhibited a low limit of detection (LOD) of 12.8 μg/L with a preconcentration factor of 4. Moreover, the sensitivity of the developed method was also checked by using HPLC and the method has comparable analytical performance. The findings indicate that the integration of MIP-PMC based SPE with UV-vis spectrophotometry offers a highly efficient approach for sample pretreatment and the accurate determination of KA in real samples.
Collapse
Affiliation(s)
- Adem Zengin
- Van Yüzüncü Yıl University, Faculty of Science, Department of Chemistry, 65080 Van,Turkey.
| | - Necdet Karakoyun
- Muradiye Vocational School, Chemistry and Chemical Processing Technologies Department, Van Yüzüncü Yıl University, 65080 Van, Turkey
| | - Derya Çay Demir
- Van Yüzüncü Yıl University, Faculty of Science, Department of Chemistry, 65080 Van,Turkey
| | - Mustafa Bilici
- Van Yüzüncü Yıl University, Faculty of Science, Department of Chemistry, 65080 Van,Turkey
| |
Collapse
|
2
|
Wang R, Liang L, Yin W, Huang R, Li G, Lu Z, Fan L. Optimization and characterization of dummy-template molecularly imprinted polymers as sorbents for the selective recognition of the polychlorinated biphenyls. ENVIRONMENTAL RESEARCH 2025:121815. [PMID: 40350008 DOI: 10.1016/j.envres.2025.121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
A diydroxbiphenyl molecularly imprinted polymer (DHBP-MIP) was prepared by virtual imprinting using 4,4'-diydroxbiphenyl as a template and 4-vinylpyridine as a functional monomer for the effective removal of polychlorinated biphenyls (PCBs) from complex environments. To aim at the removal efficiency of PCBs, the material preparation conditions were optimized, and the prepared DHBP-MIP was further characterized. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity, and reusability. The results of the experiments showed that the adsorption capacity of DHBP-MIP could reach 8.43 mg g-1 when the material was injected at 10 mg and the initial concentration of PCBs was 20 mg L-1. The adsorption process of PCBs by DHBP-MIP followed pseudo-second-order kinetic and Freundlich isotherm models. This process is a spontaneous exothermic process. Liquid film diffusion is a factor affecting the removal rate of PCBs. The selectivity studies indicated that the selectivity coefficients for all PCBs and interference substrates in the multi-component system were larger than one and displayed outstanding selective adsorption capability towards PCBs. The DHBP-MIP also showed high reusability and stability.
Collapse
Affiliation(s)
- Rui Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqin Yin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiying Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guanhui Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zexiang Lu
- Department of Chemical Engineering, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Liwei Fan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Gao S, Sui Y, Qi J, Abliz S, Chai L. Characterisation and exceptional adsorption properties of an ion - imprinted polymer for the selective removal of Ni(II) from aqueous solution. Talanta 2025; 294:128181. [PMID: 40273717 DOI: 10.1016/j.talanta.2025.128181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
In this study, a nickel ion imprinted polymer (Ni(II)-IIP) was successfully prepared by thermally induced polymerization using adipic dihydrazide (ADH) as ligand and methacrylic acid (MAA) as functional monomer. The polymer was found to be capable of rapidly and efficiently removing nickel ions from aqueous solutions. During the course of the study, the effects of different preparation conditions on the adsorption properties of Ni(II)-IIP were investigated for the purpose of optimizing its properties. The physicochemical properties of Ni(II)-IIP were investigated by means of various characterization techniques. Furthermore, the adsorption isotherms, adsorption kinetics, selectivity, and adsorption mechanism of Ni(II)-IIP on Ni(II) under different adsorption conditions were investigated. Furthermore, molecular modelling of functional monomers and ligands was conducted, and their electrostatic surface potentials (ESP) and surface electrostatic potential minima were calculated and plotted. This was undertaken to analyze the complexation mechanism of monomers with target ions and to deepen the understanding of the adsorption mechanism. The batch adsorption experiments yielded the following results: the maximum adsorption of Ni(II)-IIP on Ni(II) prepared by Ni(II)-IIP was 47.16 mg g-1, and the adsorption equilibrium could be reached within 105 min. Furthermore, Ni(II)-IIP exhibited both good selectivity and cyclic stability for the capture of Ni(II). The present study demonstrates that Ni(II)-IIP is a promising material for the removal of Ni(II) from water.
Collapse
Affiliation(s)
- Shuaibing Gao
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Yixin Sui
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Jiaxiang Qi
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Shawket Abliz
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China.
| | - Linlin Chai
- Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
4
|
Guo Y, Wang G, Zhu X, Sun Y, Dai L. Adsorption of Ni(II) from Aqueous Solution by Wheat Straw Modified with Mercaptopropionyl Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5488-5503. [PMID: 39970040 DOI: 10.1021/acs.langmuir.4c05125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mercaptopropionyl wheat straw (MPWS) was prepared as an adsorbent by modifying wheat straw with mercaptopropionyl groups, and the ability of MPWS for the removal of Ni(II) from aqueous solution was examined. The removal of Ni(II) by using MPWS was identified through investigating the impacts of MPWS dosage, adsorption temperature, and adsorption time. Different models for the adsorption isotherm and kinetics were utilized to fit the experimental results and elucidate the mechanism of MPWS for Ni(II). Environmental interference factors, including initial Ni(II) concentration, pH value, inorganic matters, and organic matters in wastewater, were examined to evaluate the antienvironmental disturbance capability of MPWS during Ni(II) adsorption. A removal rate of Ni(II) as high as 99.02% was achieved at pH 6.0 with an adsorption temperature of 30 °C and a contact time of 100 min. The experimental results exhibited excellent alignment with both pseudo-second-order kinetic model, Freundlich isothermal model, Redlich-Peterson model, and Hill model. Furthermore, coexisting substances in the environment could inhibit the adsorption process of Ni(II) by MPWS; however, this inhibition could be mitigated or eliminated by increasing the amount of absorbent MPWS. Overall, MPWS displays remarkable resistance against environmental interference during its application for removing Ni(II) from wastewater.
Collapse
Affiliation(s)
- Yaling Guo
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Gang Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Xiaoyan Zhu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Yongpeng Sun
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Liang Dai
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
5
|
Zhang M, Hong Q, Aocheng Y, Zhang Y, Huang X, Feng M, Mu J. Highly selective capture of Ni 2+ from complex environments by a sandwich-like layered metal sulfide ion exchanger. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136562. [PMID: 39581027 DOI: 10.1016/j.jhazmat.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Radionickel ion (63Ni2+) remediation is critical for public health and the environment, but selectively capturing of Ni2+ from complex environments like seawater presents a challenge. Metal sulfide ion exchangers (MSIEs) are emerging as efficient adsorbents for radionuclides; however, the study of MSIEs for selectively removing Ni2+ is still in its infancy. Herein, the layered metal sulfide K2Cu2Sn2S6 (CTS-1) with a unique sandwich-like anionic framework was synthesized by the hydrothermal method for the first time, representing a novel approach in the selective capture of Ni2+ from complex environments. Single-crystal structural analysis confirmed the sandwich-like framework, in which a [Cu-S] sublayer is sandwiched by two [Sn-S] sublayers with parallel grooves. The charge-balancing K+ ions are located within these grooves. Due to its special structure, CTS-1 exhibits remarkable adsorption capacities for Ni2+ with rapid kinetics (a high rate constant k2 of 7.26 ×10-2 g/(mg·min)), broad pH durability (removal rates >97 % at pH 3-12), and high selectivity (separation factors for Ni2+ >700 against various cations). Impressively, it can efficiently remove Ni2+ from multiple complex environments, achieving a 90.28 % removal rate even in seawater (C0Ni ∼5 mg/L). CTS-1 is environmentally friendly and suitable for use in fixed-bed columns for the practical application. Moreover, Ni2+ ions are captured through ion exchange with K+, and the high selectivity stems from the strong affinity of S2- for Ni2+ and the trapping effect of the grooves within the structure. In summary, this pioneering study demonstrates the highly selective capture of Ni2+ by a sandwich-like layered MSIE, potentially inspiring the development of efficient scavengers for radionuclides.
Collapse
Affiliation(s)
- Mingdong Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Qisheng Hong
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Yuan Aocheng
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yan Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Meiling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China.
| | - Jingli Mu
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
6
|
Bao Y, Zheng X, Guo R, Wang L, Liu C, Zhang W. Biomass chitosan/sodium alginate colorimetric imprinting hydrogels with integrated capture and visualization detection for cadmium(II). Carbohydr Polym 2024; 331:121841. [PMID: 38388049 DOI: 10.1016/j.carbpol.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Due to Cd(II) with highly toxic, persistent and bioaccumulative, the discharge of it into the environment brings serious pollution. Developing strategies that are efficient, low-cost, pollution-free and specific to removing Cd(II) from wastewater is therefore of great urgency and prime importance. A novel chitosan/sodium alginate ionic imprinting(IICA) hydrogels with specific adsorption capacity for Cd(II) was prepared through freeze-thaw and ion imprinting, and finally the colorimetric sensor (IICAS) was prepared via introducing Rhodamine B(RhB) and Victoria blue(VBB) by immersion to achieve visual detection of Cd(II). The IICA hydrogels with imprinted hole structure had higher adsorption capacity and better specific selectivity for Cd(II). As well as internal diffusion, coordination, ion exchange, and hydrogen bonding influenced the adsorption rate. Moreover, the IICAS exhibited good selective detection ability and linearity for Cd(II) with the fitted correlation coefficient (R2) = 0.98, limit of detection (LOD) = 35 nmol/L. Combined with the smartphone platform, portable and quantitative detection of Cd(II) can be achieved, Within the 0-100 mg/L range, R2 remained 0.94, and LOD was 75 nmol/L. This strategy of preparing a novel whole biomass IICAS integrating capture and visual detection provides a new insight into the construction of a promising candidate sensor for the removal and detection of Cd(II).
Collapse
Affiliation(s)
- Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China.
| | - Xi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Ruyue Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Luxuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Chao Liu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
7
|
Sun D, Ma C, Wang G, Liang L, Wang G, Wu J, Ma J. Ion imprinted differential modulation system based on enhanced optic-fiber evanescent wave for sensitive and label-free detection of trace nickel ions. Anal Chim Acta 2024; 1296:342340. [PMID: 38401932 DOI: 10.1016/j.aca.2024.342340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
An optical system with low cost monitoring, high sensitivity, strong selectivity and much lower nickel ion (Ni2+) content in tap water than the World Health Organization (WHO) standard (1.19 μM) has been prepared by a simple strategy. This proposed ion-imprinted differential modulation system is based on the Bragg grating (FBG) and microfiber interferometer structure, and the interferometer sensing surface is coated with a polydopamine (PDA)/graphene oxide (GO) film to enhance its sensitivity. Combined with the ion imprinting technique, the microfiber interferometer sensor sensitivity can reach 0.32 nm/nM with the detection limit of 0.66 nM in the low concentration range (Ni2+ concentration range is 0 nM-100 nM). The experiment not only studies the principle of microfiber interferometer and FBG and their refractive index and temperature performance, but also shows that the FBG power change has a good fitting relationship with wavelength change. In addition, this system performance by the amount of power difference rather than the amount of wavelength shift, which significantly saves on the high cost weight, and size associated with the use of spectral analyzers in traditional inspection systems. This study provides a novel and easy method to develop new sensors with higher comprehensive performance.
Collapse
Affiliation(s)
- Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China.
| | - Chenfei Ma
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - Guoquan Wang
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - Lili Liang
- Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices, Institute of Information Technology, Handan University, Handan, 056005, China
| | - Guanjun Wang
- School of Information and Communication Engineering, Hainan University, Haikou, 570228, China
| | - Jizhou Wu
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| | - Jie Ma
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| |
Collapse
|
8
|
Bai Q, Huang C, Ma S, Gong B, Ou J. Rapid adsorption and detection of copper ions in water by dual-functional ion-imprinted polymers doping with carbon dots. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Shen Y, Miao P, Liu S, Gao J, Han X, Zhao Y, Chen T. Preparation and Application Progress of Imprinted Polymers. Polymers (Basel) 2023; 15:polym15102344. [PMID: 37242918 DOI: 10.3390/polym15102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the specific recognition performance, imprinted polymers have been widely investigated and applied in the field of separation and detection. Based on the introduction of the imprinting principles, the classification of imprinted polymers (bulk imprinting, surface imprinting, and epitope imprinting) are summarized according to their structure first. Secondly, the preparation methods of imprinted polymers are summarized in detail, including traditional thermal polymerization, novel radiation polymerization, and green polymerization. Then, the practical applications of imprinted polymers for the selective recognition of different substrates, such as metal ions, organic molecules, and biological macromolecules, are systematically summarized. Finally, the existing problems in its preparation and application are summarized, and its prospects have been prospected.
Collapse
Affiliation(s)
- Yongsheng Shen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Pengpai Miao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Shucheng Liu
- Institute of Forensic Science, Hunan Provincial Public Security Bureau, Changsha 410001, China
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
10
|
Alnawmasi JS. Construction of amino-thiol functionalized ion-imprinted chitosan for lead (II) ion removal. Carbohydr Polym 2023; 308:120596. [PMID: 36813349 DOI: 10.1016/j.carbpol.2023.120596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Ion-imprinting technique was used to create a lead ion-imprinted sorbent from an amino-thiol chitosan derivative (Pb-ATCS). First, 3-Nitro-4-sulfanylbenzoic acid (NSB) unit's amidized the chitosan, and then the -NO2-residues were selectively reduced to -NH2. Imprinting was accomplished by cross-linking with epichlorohydrin and removing the Pb (II) ions from the across-linked polymeric complex formed from the amino-thiol chitosan polymer ligand (ATCS) and Pb (II) ions. The synthetic steps have been investigated by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), and the sorbent was tested for its ability to selectively bind Pb (II) ions. The produced Pb-ATCS sorbent had a maximum capacity of roughly 300 mg/g, and it showed a greater affinity for the Pb (II) ions than the control NI-ATCS sorbent particle. The pseudo-2nd-order equation was also consistent with the adsorption kinetics of the sorbent, which were quite rapid. This demonstrated that metal ions were chemo-adsorbed onto the Pb-ATCS and NI-ATCS solid surfaces via coordination with the introduced amino-thiol moieties.
Collapse
Affiliation(s)
- Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah, 51452, Qassim, Saudi Arabia.
| |
Collapse
|
11
|
Kang MS, Cho E, Choi HE, Amri C, Lee JH, Kim KS. Molecularly imprinted polymers (MIPs): emerging biomaterials for cancer theragnostic applications. Biomater Res 2023; 27:45. [PMID: 37173721 PMCID: PMC10182667 DOI: 10.1186/s40824-023-00388-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a disease caused by abnormal cell growth that spreads through other parts of the body and threatens life by destroying healthy tissues. Therefore, numerous techniques have been employed not only to diagnose and monitor the progress of cancer in a precise manner but also to develop appropriate therapeutic agents with enhanced efficacy and safety profiles. In this regard, molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. Taken together, the topics discussed in this review provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment. Molecularly imprinted polymers (MIPs), synthetic receptors that recognize targeted molecules with high affinity and selectivity, have been intensively investigated as one of the most attractive biomaterials for cancer theragnostic approaches. This review describes diverse synthesis strategies to provide the rationale behind these synthetic antibodies and provides a selective overview of the recent progress in the in vitro and in vivo targeting of cancer biomarkers for diagnosis and therapeutic applications. The topics discussed in this review aim to provide concise guidelines for the development of novel MIP-based systems to diagnose cancer more precisely and promote successful treatment.
Collapse
Affiliation(s)
- Min Seok Kang
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Euni Cho
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Department of Organic Material Science & Engineering, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
- Institute of Advanced Organic Materials, Pusan National University, 2 Busandaehak-Ro 63 Beon-Gil, Geumjeong-Gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Sharef HY, Jalal AF, Ibrahim BM, Fakhre N, Qader IN. New ion-imprinted polymer for selective removal of Cu 2+ ion in aqueous solution using extracted Aloe vera leaves as a monomer. Int J Biol Macromol 2023; 239:124318. [PMID: 37015282 DOI: 10.1016/j.ijbiomac.2023.124318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
The objective of this project is to create a unique type of polymer known as an ion imprinted polymer (IIP) and a non-imprinted polymer (NIP) utilizing natural waste biosorbent materials. One example of this type of waste is Aloe vera, a plant with many medicinal uses that is grown globally. Aloe vera is considered one of the most valuable medicinal plants with a wide range of applications. Extracted Aloe vera was used as functional monomers for the first time to prepare new IIPs, epichlorohydrin, and Cu2+ ion as the cross-linking agent and template, respectively. The NIP was also synthesized for comparison, without the use of the Cu2+ salt. Following polymerization, the IIP particles were cleansed of template ions through a 0.1 M EDTA leaching process, resulting in the formation of cavities within the particles, these cavities in the polymer provide selective linking zones for these specific template ions. The synthesized IIPs were characterized using the most recent identification instruments. The experimental parameters for adsorption, such as pH of a solution, contact time, initial copper concentration, adsorbent dosage, and temperature have been optimized. The most effective conditions for metal adsorption onto the ionic imprinted polymer were found to be a pH of 8.0, a temperature of 30 °C, a concentration of 0.03 g/100 mL, and a contact time of 50 min. Based on the ANOVA statistical value, the adsorption of Cu2+ ion on IIP is significant with very low probability (p) values (<0.001). The Langmuir isotherm model and a second-order reaction were both used in the adsorption process. According to thermodynamic characteristics, Cu2+ adsorption over IIPs and NIP was an endothermic, spontaneous process. Compared to NIP, the imprinted polymer exhibits a significantly better capacity and selectivity for Cu2+ adsorption, the maximum removal percentage of IIPs and NIP was 96.02 % and 74.3 % respectively. Moreover, the research showed that ion imprinting can be a promising technique for preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metals (Co2+, Cd2+, Ni2+, Zn2+, Fe2+, and Pb2+) The most important point for this new Cu2+-IIPs was shown superior reusability up to 8 cycles with small decrees in uptake capability.
Collapse
Affiliation(s)
- Huda Y Sharef
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Aveen F Jalal
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar M Ibrahim
- Department of Chemistry, College of Science, University of Raparin, Sulaymaneyah, Iraq.
| | - Nabil Fakhre
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Ibrahim N Qader
- Department of Physics, College of Science, University of Raparin, Sulaymaneyah, Iraq
| |
Collapse
|
13
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
14
|
Giove A, El Ouardi Y, Sala A, Ibrahim F, Hietala S, Sievänen E, Branger C, Laatikainen K. Highly selective recovery of Ni(II) in neutral and acidic media using a novel Ni(II)-ion imprinted polymer. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130453. [PMID: 36435044 DOI: 10.1016/j.jhazmat.2022.130453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In this work, an original ion-imprinted polymer (IIP) was synthetized for the highly selective removal of Ni(II) ions in neutral and acidic media. First a novel functional monomer (AMP-MMA) was synthetized through the amidation of 2-(aminomethyl)pyridine (AMP) with methacryloylchloride. Following Ni(II)/AMP-MMA complex formation study, the Ni(II)-IIP was produced via inverse suspension polymerization (DMSO in mineral oil) and characterized with solid state 13C CPMAS NMR, FT-IR, SEM and nitrogen adsorption/desorption experiments. The Ni(II)-IIP was then used in solid-phase extraction of Ni(II) exploring a wide range of pH (from neutral to strongly acidic solution), several initial concentrations of Ni(II) (from 0.02 to 1 g/L), and the presence of competitive ions (Co(II), Cu(II), Cd(II), Mn(II), and Mg(II)). The maximum Ni(II) adsorption capacity at pH 2 and pH 7 reached values of 138.9 mg/g and 169.5 mg/g, that are among the best reported in literature. The selectivity coefficients toward Cd(II), Mn(II), Co(II), Mg(II) and Cu(II) are also very high, with values up to 38.6, 32.9, 25.2, 23.1 and 15.0, respectively. The Ni(II)-IIP showed good reusability of up to 5 cycles both with acidic and basic Ni(II) eluents.
Collapse
Affiliation(s)
- A Giove
- Lappeenranta-Lahti University of Technology LUT, School of Engineering Science, Department of Separation Science, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland; Université de Toulon, MAPIEM, Toulon, France.
| | - Y El Ouardi
- Lappeenranta-Lahti University of Technology LUT, School of Engineering Science, Department of Separation Science, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland
| | - A Sala
- Université de Toulon, MAPIEM, Toulon, France
| | - F Ibrahim
- Université de Toulon, MAPIEM, Toulon, France
| | - S Hietala
- University of Helsinki, Department of Chemistry, PB 55, FIN-00014 Helsinki, Finland
| | - E Sievänen
- University of Jyväskylä, Department of Chemistry, P.O. Box 35, FIN-40014, Finland
| | - C Branger
- Université de Toulon, MAPIEM, Toulon, France.
| | - K Laatikainen
- Lappeenranta-Lahti University of Technology LUT, School of Engineering Science, Department of Separation Science, Yliopistonkatu 34, FIN-53850 Lappeenranta, Finland; Finnish Defence Research Agency, Paroistentie 20, FIN-34100 Lakiala, Finland
| |
Collapse
|
15
|
Saravanan A, Kumar PS, Duc PA, Rangasamy G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. CHEMOSPHERE 2023; 313:137323. [PMID: 36410512 DOI: 10.1016/j.chemosphere.2022.137323] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are hazardous and bring about critical exposure risks to humans and animals, even at low concentrations. An assortment of approaches has been attempted to remove the water contaminants and keep up with water quality, for that microbial bioremediation is a promising way to mitigate these pollutants from the contaminated water. The flexibility of microorganisms to eliminate a toxic pollutant creates bioremediation an innovation that can be applied in various water and soil conditions. This review insight into the sources, occurrence of toxic heavy metals, and their hazardous human exposure risk. In this review, significant attention to microbial bioremediation for pollutant mitigation from various ecological lattices has been addressed. Mechanism of microbial bioremediation in the aspect of factors affecting, the role of microbes and interaction between the microbes and pollutants are the focal topics of this review. In addition, emerging strategies and technologies developed in the field of genetically engineered micro-organism and micro-organism-aided nanotechnology has shown up as powerful bioremediation tool with critical possibilities to eliminate water pollutants.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
16
|
Wang C, Zhang L, Zhou G, Qiu J, Liu Y, Yang R, Chi J, Wang J. Synthesis of environmental-friendly ion-imprinted magnetic nanocomposite bentonite for selective recovery of aqueous Sc(III). J Colloid Interface Sci 2023; 630:738-750. [DOI: 10.1016/j.jcis.2022.10.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
17
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Rapid adsorption of some heavy metals using extracted chitosan anchored with new aldehyde to form a schiff base. PLoS One 2022; 17:e0274123. [PMID: 36084104 PMCID: PMC9462815 DOI: 10.1371/journal.pone.0274123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
A new aldehyde 2,2’-[propane-1,3-diylbis(oxy)] dibenzaldehyde was synthesized from refluxing 2-hydroxy acetophenone and 2-hydroxy 1,3-dichloropropanean in an alcoholic medium. The compositions and properties of the new aldehyde compound were characterized by elemental analysis, FTIR, and nuclear magnetic resonance spectroscopy studies. The extracted chitosan was made to react with a new aldehyde to form a Schiff base by a suitable method. The effects of initial concentration of metal ions, exposure time, imine weight, and pH on the adsorption of Cu(II), Cr(III), and Zn(II) metal ions were examined. An adsorption batch experiment was conducted. The adsorption process followed a second-order reaction and Langmuir model with qe 25 mg/g, 121 mg/g, and 26.31 mg/g for Cu(II), Zn(II), and Cr(III) respectively. The Gibbs free energy showed a negative value and the adsorption/desorption tests provided a high value 5 times.
Collapse
|
19
|
Li J, Li Y, Cui K, Li H, Feng J, Pu X, Xiong W, Liu N, Yuan G. Novel MOFs-based ion-imprinted polymer for selective separation of cobalt ions from waste battery leaching solution. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Niedbała J, Popczyk M, Hawełek Ł, Orda S, Okła H, Gabor J, Stach S, Swinarew AS. Production of Electrolytic Composite Powder by Nickel Plating of Shredded Polyurethane Foam. MATERIALS 2022; 15:ma15113895. [PMID: 35683192 PMCID: PMC9181888 DOI: 10.3390/ma15113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
Ni–poly(DPU) composite powder was produced under galvanostatic conditions from a nickel bath with the addition of pulverized polymer obtained during the shredding of polyurethane foam (poly(DPU)). The Ni–poly(DPU) composite powder was characterized by the presence of polymer particles covered with an electrolytical amorphous-nanocrystalline nickel coating. The phase structure, chemical composition, morphology, and the distribution of elements was investigated. The chemical analysis showed that the powder contains 41.7% Ni, 16.4% C, 15.7% O, 8.2% P and 0.10% S. The other components were not determined (nitrogen and hydrogen). The phase analysis showed the presence of NiC phase. Composite powder particles are created as a result of the adsorption of Me ions on the fragmented polymer. The current flowing through the galvanic bath forces the flow of the particles. The foam particles with adsorbed nickel ions are transported to the cathode surface, where the Ni2+ is discharged. The presence of compound phosphorus in galvanic solution generates the formation of amorphous-nanocrystalline nickel, which covers the polymer particles. The formed nickel–polymer composite powder falls to the bottom of the cell.
Collapse
Affiliation(s)
- Jolanta Niedbała
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland; (Ł.H.); (S.O.)
- Correspondence: (J.N.); (M.P.); (A.S.S.)
| | - Magdalena Popczyk
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (H.O.); (J.G.); (S.S.)
- Correspondence: (J.N.); (M.P.); (A.S.S.)
| | - Łukasz Hawełek
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland; (Ł.H.); (S.O.)
| | - Szymon Orda
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland; (Ł.H.); (S.O.)
| | - Hubert Okła
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (H.O.); (J.G.); (S.S.)
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (H.O.); (J.G.); (S.S.)
| | - Sebastian Stach
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (H.O.); (J.G.); (S.S.)
| | - Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (H.O.); (J.G.); (S.S.)
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland
- Correspondence: (J.N.); (M.P.); (A.S.S.)
| |
Collapse
|
21
|
Masoumi H, Ghaemi A, Gilani HG. Experimental and RSM study of Hypercrosslinked polystyrene in elimination of lead, cadmium and nickel ions in single and multi-component systems. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Ren Z, Wang J, Zhang H, Zhang F, Tian S, Zhou Z. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Veloz Martínez I, Ek JI, Ahn EC, Sustaita AO. Molecularly imprinted polymers via reversible addition-fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv 2022; 12:9186-9201. [PMID: 35424874 PMCID: PMC8985154 DOI: 10.1039/d2ra00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Molecularly imprinted polymers (MIP) have shown their potential as artificial and selective receptors for environmental monitoring. These materials can be tailor-made to achieve a specific binding event with a template through a chosen mechanism. They are capable of emulating the recognition capacity of biological receptors with superior stability and versatility of integration in sensing platforms. Commonly, these polymers are produced by traditional free radical bulk polymerization (FRP) which may not be the most suitable for enhancing the intended properties due to the poor imprinting performance. To improve the imprinting technique and the polymer capabilities, controlled/living radical polymerization (CRP) has been used to overcome the main drawbacks of FRP. Combining CRP techniques such as RAFT (reversible addition-fragmentation chain transfer) with MIP has achieved higher selectivity, sensitivity, and sorption capacity of these polymers when implemented as the transductor element in sensors. The present work focuses on RAFT-MIP design and synthesis strategies to enhance the binding affinities and their implementation in environmental contaminant sensing applications.
Collapse
Affiliation(s)
- Irvin Veloz Martínez
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Jackeline Iturbe Ek
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Ethan C Ahn
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio San Antonio TX 78249 USA
| | - Alan O Sustaita
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| |
Collapse
|
24
|
Wang R, Hu QH, Wang QY, Xiang YL, Huang SH, Liu YZ, Li SY, Chen QL, Zhou QH. Efficiently selective removal of Pb(II) by magnetic ion-imprinted membrane based on polyacrylonitrile electro-spun nanofibers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
27
|
Xi Y, Shi H, Liu R, Yin X, Yang L, Huang M, Luo X. Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd 2+ selective separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125772. [PMID: 33831704 DOI: 10.1016/j.jhazmat.2021.125772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Ion imprinted polymers exhibit great potential in ion separation from wastewater. However, the difficulty of ion separation by membrane is proverbial, which severely restricts the application of membrane in metal resource recovery from industrial wastewater. Herein, a rational molecular-level design approaches for membrane fabrication was developed to modify a layer of ion imprinted polymer onto the PVDF membrane. Batch rebind and permeation experiments suggest that specific host-guest binding sites had been fabricated along the membrane pore in ion imprinted membranes (IIM). A higher monomer dose leads to a higher rejection of Cd2+, and the more bind sites in IIM. The binding of IIM to Cd2+ was 1.84 times that of non-ion imprinted membranes (NIM). Permselectivity factors (γ) of IIM are larger than 5.39 in mixture ions solutions. Chemical characterization and density functional theory (DFT) calculation reveal that the Cd2+ recognition sites of functional groups are C-S and C˭S. Cd2+ mass transport in IIM suggest that the imprint effects provide a binding force that would delay Cd2+ to permeate through IIM, so as to selectively separate Cd2+ with other ions. The imprint effects may enlighten a novel molecular-level design approaches for membrane fabrication to enhance the selectivity of ion-ion.
Collapse
Affiliation(s)
- Yu Xi
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ru Liu
- Waste Valorization and Water Reuse Group (WVWR), Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaocui Yin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| |
Collapse
|
28
|
Viltres-Portales M, Alberto MDL, Ye L. Synthesis of molecularly imprinted polymers using an amidine-functionalized initiator for carboxylic acid recognition. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Kalak T, Marciszewicz K, Piepiórka-Stepuk J. Highly Effective Adsorption Process of Ni(II) Ions with the Use of Sewage Sludge Fly Ash Generated by Circulating Fluidized Bed Combustion (CFBC) Technology. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3106. [PMID: 34198936 PMCID: PMC8201213 DOI: 10.3390/ma14113106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.
Collapse
Affiliation(s)
- Tomasz Kalak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland;
| | - Kinga Marciszewicz
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, 61-875 Poznań, Poland;
| | - Joanna Piepiórka-Stepuk
- Department of Mechanical Engineering, Division of Food Industry Processes and Facilities, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland;
| |
Collapse
|
30
|
Tang B, Luan L, Liu Y, Liu Y, Zhang B, Wang A, Niu Y. Removal of aqueous Cd(II) and Ni(II) by aminopyridine functionalized magnetic Fe3O4 nanocomposites. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Li J, Zheng Y, Feng X, Lv C, Liu X, Zhao Y, Chen L. Adsorption removal of Ni(II) and phenol from aqueous solution by modified attapulgite and its composite hydrogel. ENVIRONMENTAL TECHNOLOGY 2021; 42:2413-2427. [PMID: 31880961 DOI: 10.1080/09593330.2019.1703821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Attapulgite (ATP) and its organically modified products have been investigated for potential applications in environmental remediation. In this work, a variety of modifiers with different functional groups, including saturated sodium chloride solution (NaCl), cetyltrimethyl ammonium bromide (CTAB) and humic acid (HA), were used to treat attapulgite clay firstly, and then with the modified ATP as adsorbent and acrylamide (AAm) as monomer, polyacrylamide/modified attapulgite (PAAm/modified ATP) composite hydrogel which could adsorb heavy metal ions Ni(II) and organic pollutants phenol were synthesized. The structure of the raw ATP and modified ATP was specified with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Transmission electron microscope (TEM). The experiments indicated that the modified ATP and composite hydrogel possessed good adsorption properties for Ni(II) ions and phenol. The adsorption capacity of PAAm/HA-ATP hydrogel for Ni(II) was as high as 64.3 mg/g, which was 194.9% of pure hydrogel. The adsorption isotherm of HA-modified ATP (HA-ATP) and adsorption kinetics of PAAm/HA-ATP composite hydrogel was particularly concerned. The adsorption isotherm equation fitted well on the Langmuir model and RL values ranged from 0.04 to 0.12 with different temperatures, indicated that the HA-ATP was a suitable adsorbent for adsorption of Ni(II) ions from wastewater. The obtained kinetics data for Ni(II) ions adsorption onto the PAAm/HA-ATP were described well by the pseudo-second-order model (R2 > 0.99). As for the adsorption of phenol, double-modification proved to be the most effective method, and its optimal adsorption capacity was obtained on PAAm/CTAB-HA-ATP hydrogel.
Collapse
Affiliation(s)
- Jianjian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People's Republic of China
| | - Yiwei Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People's Republic of China
| | - Xia Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People's Republic of China
| | - Chao Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People's Republic of China
| | - Xingtian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People's Republic of China
| | - Yiping Zhao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Li Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
32
|
Synthesis, characterization and analytical applications of Ni(II) ion-imprinted polymer prepared by N-(2-hydroxyphenyl)acrylamide. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02542-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Wu P, He Y, Lu S, Wang S, Yi J, He Y, Zhang J, Xiang S, Ding P, Kai T, Pan H. A regenerable ion-imprinted magnetic biocomposite for selective adsorption and detection of Pb 2+ in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124410. [PMID: 33187799 DOI: 10.1016/j.jhazmat.2020.124410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
A regenerable ion-imprinted magnetic biocomposite (IIMB) was successfully synthesized for simultaneous removal of Pb2+ using Serratia marcescens and carboxymethyl chitosan (CMC) as functional carriers, Pb2+ was utilized as the imprinted ion, while Fe3O4 served as the magnetic component. The structure and properties of IIMB were characterized by various techniques. The adsorption kinetics, isotherms and thermodynamics were applied to interpret the Pb2+ adsorption process on IIMB. The results showed the IIMB possessed prominent uptake ability toward Pb2+. The pseudo-second-order kinetic (R2 = 0.9989) and Langmuir models (R2 = 0.9555) fitted the data well. Adsorption thermodynamics revealed that the adsorption was a spontaneous endothermic reaction. The possible adsorption mechanisms involved physical adsorption, electrostatic attraction and complexing. Moreover, because Pb2+ can be specifically and strongly adsorbed on IIMB, a simple method for detection of Pb2+ was established by coupling IIMB with flame atomic absorption spectrometry (IIMB-FAAS). The developed IIMB-FAAS assay can sensitively detect Pb2+ with a linear range from 5.0 to 500.0 μg/L. The detection limit (LOD) of 0.95 μg/L as well as a quantification limit (LOQ) of 3.20 μg/L were obtained. This work proved that the IIMB could selective and efficient adsorb Pb2+, which provided some insights into wastewater treatment, water quality inspection and environmental remediation.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Yayuan He
- Hunan Testing Institute of Product and Commodity Supervision, Changsha, Hunan, 410007, China
| | - Siyu Lu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Pudong, Shanghai 201318, China.
| |
Collapse
|
34
|
Experimental and DFT studies on highly selective separation of indium ions using silica gel/graphene oxide based ion-imprinted composites as a sorbent. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Chaipuang A, Phungpanya C, Thongpoon C, Watla‐iad K, Inkaew P, Machan T, Suwantong O. Effect of ethylene diamine tetra‐acetic acid and functional monomers on the structure and adsorption properties of copper (
II
) ion‐imprinted polymers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Angkana Chaipuang
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Chalida Phungpanya
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Chalermporn Thongpoon
- Program of Chemistry, Faculty of Science and Technology Pibulsongkram Rajabhat University Phitsanulok Thailand
| | - Kanchana Watla‐iad
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Prachak Inkaew
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Theeraphan Machan
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| | - Orawan Suwantong
- School of Science Mae Fah Luang University Chiang Rai Thailand
- Center of Chemical Innovation for Sustainability Mae Fah Luang University Chiang Rai Thailand
| |
Collapse
|
36
|
Kong Z, Du Y, Wei J, Zhang H, Fan L. Synthesis of a new ion-imprinted polymer for selective Cr(VI) adsorption from aqueous solutions effectively and rapidly. J Colloid Interface Sci 2021; 588:749-760. [DOI: 10.1016/j.jcis.2020.11.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023]
|
37
|
Kusumkar VV, Galamboš M, Viglašová E, Daňo M, Šmelková J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1083. [PMID: 33652580 PMCID: PMC7956459 DOI: 10.3390/ma14051083] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.
Collapse
Affiliation(s)
- Vipul Vilas Kusumkar
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Michal Galamboš
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Eva Viglašová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Martin Daňo
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19 Prague, Czech Republic;
| | - Jana Šmelková
- Department of Administrative Law and Environmental Law, Faculty of Law, Comenius University in Bratislava, Safarikovo namestie 6, 810 00 Bratislava, Slovakia;
| |
Collapse
|
38
|
Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Su R, Song Y, Wang Y. Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143871. [PMID: 33293086 DOI: 10.1016/j.scitotenv.2020.143871] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Layer-structured graphene oxide excellent carrier for modifications; however, its poor recoverability and stability preclude its application in wastewater treatment fields. Herein, three-dimensional magnetic fungal hyphal/graphene oxide nanofibers (MFHGs) were assembled by a reductive self-assembly (RSA) strategy for the efficient capture of Co(II) and Ni(II) from high-salinity aqueous solution. The RSA strategy is inexpensive, eco-friendly and easy to scale up. The obtained MFHGs enhanced the dispersity and stability of graphene oxide and exhibited excellent magnetization and large coercivity, leading to satisfactory solid-liquid separation performance and denser sediment. The results of batch removal experiments showed that the maximum removal capacity of MFHGs for Ni(II) and Co(II) was 97.44 and 104.34 mg/g, respectively, in 2 g/L Na2SO4 aqueous solution with a pH of 6.0 at 323 K, and the effects of initial pH and ionic strength on Co(II) and Ni(II) removal were explored. Yield residue analysis indicated that the high porosity and oxygen-containing functional groups of MFHGs remarkably improved their Co(II)- and Ni(II)-removal capacities. According to the analysis, hydroxyl groups and amine groups participated in the chemical reaction of Co(II) and Ni(II) removal, and cation-exchange chemical adsorption was dominant during the Co(II)- and Ni(II)-removal process. Based on the attributes of MFHGs, a continuous-flow recycle reactor (CFRR) was proposed for emergency aqueous solution treatment and exhibited satisfactory removal efficiency and regeneration performance. The combination of MFHGs and the proposed CFRR is a promising water treatment strategy for rapid treatment applications.
Collapse
Affiliation(s)
- Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuying Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Si Wan
- Hunan Research Institute for Nonferrous Metals, Changsha 410100, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shunhong Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuxia Song
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China.
| |
Collapse
|
39
|
Mesa RL, Villa JEL, Khan S, Peixoto RRA, Morgano MA, Gonçalves LM, Sotomayor MDPT, Picasso G. Rational Design of an Ion-Imprinted Polymer for Aqueous Methylmercury Sorption. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2541. [PMID: 33348754 PMCID: PMC7766906 DOI: 10.3390/nano10122541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg+) is a mercury species that is very toxic for humans, and its monitoring and sorption from environmental samples of water are a public health concern. In this work, a combination of theory and experiment was used to rationally synthesize an ion-imprinted polymer (IIP) with the aim of the extraction of MeHg+ from samples of water. Interactions among MeHg+ and possible reaction components in the pre-polymerization stage were studied by computational simulation using density functional theory. Accordingly, 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzothiazole (MBT), acrylic acid (AA) and ethanol were predicted as excellent sulfhydryl ligands, a functional monomer and porogenic solvent, respectively. Characterization studies by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) revealed the obtention of porous materials with specific surface areas of 11 m2 g-1 (IIP-MBI-AA) and 5.3 m2 g-1 (IIP-MBT-AA). Under optimized conditions, the maximum adsorption capacities were 157 µg g-1 (for IIP-MBI-AA) and 457 µg g-1 (for IIP-MBT-AA). The IIP-MBT-AA was selected for further experiments and application, and the selectivity coefficients were MeHg+/Hg2+ (0.86), MeHg+/Cd2+ (260), MeHg+/Pb2+ (288) and MeHg+/Zn2+ (1510), highlighting the material's high affinity for MeHg+. The IIP was successfully applied to the sorption of MeHg+ in river and tap water samples at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Ruddy L. Mesa
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
| | - Javier E. L. Villa
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Rafaella R. Alves Peixoto
- Department of Analytical Chemistry, Fluminense Federal University (UFF), Niterói, RJ 24020-150, Brazil;
| | | | | | - Maria D. P. T. Sotomayor
- Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP 14800-060, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP 14800-060, Brazil
| | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; (R.L.M.M.); (S.K.)
| |
Collapse
|
40
|
Wang Y, Zhu L, Song Y, Lou Z, Shan W, Xiong Y. Novel chitosan-based ions imprinted bio-adsorbent for enhanced adsorption of gallium(III) in acidic solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Liu P, Jia W, Ou X, Liu C, Zhang J, Chen Z, Li X. Study on Synthesis and Adsorption Properties of ReO 4 - Ion-Imprinted Polymer. ACS OMEGA 2020; 5:24356-24366. [PMID: 33015452 PMCID: PMC7528184 DOI: 10.1021/acsomega.0c02634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, an ion imprinted polymer (ReO4 --IIP) of the perrhenate ion based on acrylamide (AM) and acrylic acid (AA) was prepared by solution polymerization using ReO4 - as a template ion, N,N-methylenebisacrylamide (NMBA) as cross-linkers, hydrogen peroxide-vitamin C (H2O2-Vc) as an initiator, and a mixed solution of water (H2O) and methanol (CH3OH) with volume ratio v(H2O)/v(CH3OH) = 3:7 as a solvent. During the process of synthesis condition investigation and optimization, the adsorption capacity (Q) and the separation degree (R) in the equimolar concentration mixture solutions of NH4ReO4 and KMnO4 were adopted as indexes, and the obtained optimal conditions were as follows: the molar ratios of NMBA, NH4ReO4, AA, H2O2, and Vc to AM were 5.73, 0.052, 1.29, 0.02, and 0.003, and the temperature and time of polymerization were 40 °C and 28 h, respectively. Under optimal conditions, the sample with indexes, Q and R of 0.064 mmol/g and 3.20, were harvested. What is more, a further reusability study found that good adsorption selectivity was maintained after repeating the experiment 9 times. Taking the non-IP prepared under the same conditions as a control, Fourier transform infrared spectroscopy, transmission electron microscopy, and Brunauer Emmett Teller were used to characterize the structure of the ReO4 --IIP prepared under the optimal conditions. Finally, the kinetic study results showed that the zero-order kinetic model could better describe the adsorption process. The thermodynamic study results showed that the Langmuir model was more suitable for describing the isotherm adsorption process of the IIP.
Collapse
Affiliation(s)
- Pu Liu
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
- Baiyin
Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, Gansu, China
| | - Weiwei Jia
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Xiaojian Ou
- State
Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchang 737100, Gansu, China
| | - Chunli Liu
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Jun Zhang
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Zhenbin Chen
- State
Key Laboratory of Advanced Processing and Recycling of Nonferrous
Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
- School
of Materials Science and Engineering, Lanzhou
University of Technology, Lanzhou 730050, Gansu, China
| | - Xiaoming Li
- Baiyin
Research Institute of Novel Materials of Lanzhou University of Technology, Baiyin 730900, Gansu, China
| |
Collapse
|
42
|
Andaç M, Tamahkar E, Denizli A. Molecularly imprinted smart cryogels for selective nickel recognition in aqueous solutions. J Appl Polym Sci 2020. [DOI: 10.1002/app.49746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Müge Andaç
- Department of Environmental Engineering Hacettepe University, Beytepe Ankara Turkey
| | - Emel Tamahkar
- Department of Chemical Engineering Hitit University Çorum Turkey
| | - Adil Denizli
- Department of Chemistry Hacettepe University Ankara Turkey
| |
Collapse
|
43
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
44
|
Zhang X, Jia W, Li D, Liu C, Wang R, Li K, Li H, Chen Z, Sun Y, Ruso JM, Hu D, Liu Z. Study on synthesis and adsorption properties of ReO4− ion imprinted polymer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Elsayed NH, Alatawi A, Monier M. Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104570] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Pawlaczyk M, Schroeder G. Efficient Removal of Ni(II) and Co(II) Ions from Aqueous Solutions Using Silica-based Hybrid Materials Functionalized with PAMAM Dendrimers. SOLVENT EXTRACTION AND ION EXCHANGE 2020. [DOI: 10.1080/07366299.2020.1766742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mateusz Pawlaczyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
47
|
Su Q, Yang S, He Y, Qin Z, Cui X. Prepared self-growing supported nickel catalyst by recovering Ni (Ⅱ) from metal wastewater using geopolymer microspheres. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121919. [PMID: 31879113 DOI: 10.1016/j.jhazmat.2019.121919] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
Here, new and effective microsphere adsorbents were synthesized by NaOH activating slag based geopolymer (Na-SGS). These microsphere adsorbents upset the adsorption equilibrium with the maximum Ni2+ adsorption capacity of 414.38 mg/g which is much larger than that of other geopolymer materials. After Ni2+ adsorption from simulated nickel electroplating wastewater, more active positions for the adsorption Ni2+ ions on Na-SGS were provided as shifts from the average pore diameter of 22.00-7.44 nm, the pore volume of 0.06 to 0.25 cm3/g, the Brunauer-Emmett-Teller (BET) surface area of 10.46-125.35 m2/g and the apparent change of new morphology. Moreover, the adsorbed Ni2+ species were distributed uniformly on Na-SGS. Thermodynamic performance reflected an exothermic, spontaneous and molecular disorder adsorption process, which can be easily controlled by the pH, dosage, initial concentration, contact time and temperature. Through the controllable adsorption, Na-SGS after Ni2+ adsorption (Na-SGS-Ni) was recycled and then reduced to be directly supported nickel catalysts (red-Na-SGS-Ni), which showed superior catalytic activity for CO2 methanation. Although the highest percent of CO2 conversation (XCO2 =99.54%) and methane selectivity (SCH4 =99.5%) are both at 300 °C, red-Na-SGS-Ni performed good XCO2 (99.48%) and SCH4 (98.2%) at low temperatures (100 °C).
Collapse
Affiliation(s)
- Qiaoqiao Su
- School of Chemistry and Chemical Engineering, Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Sijie Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Yan He
- School of Chemistry and Chemical Engineering, Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Xuemin Cui
- School of Chemistry and Chemical Engineering, Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
48
|
Yang Z, Wang H, Sun H, Tang H, Nie G. Preparation of molecular imprinted polymer based on attapulgite and evaluation of its performance for adsorption of benzoic acid in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2176-2188. [PMID: 32701495 DOI: 10.2166/wst.2020.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to reduce the environmental impact of benzoic acid (BA), molecular imprinted polymers based on attapulgite were facilely prepared by molecular imprinted technique. The samples were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The adsorption performance, regeneration stability, and competitive selectivity of BA by benzoic acid-surface molecular imprinted polymers (BA-MIP) were systematically investigated by experiments. For this material, it has a high adsorption capacity of 41 mg/g and an equilibrium adsorption time of about 150 min. Compared with non-imprinted polymers, BA-MIP has a higher adsorption capacity for BA, and the dynamic adsorption behavior of BA by both of them conforms to the quasi-second-order kinetic model. The Langmuir adsorption isotherm equation was fitted the isothermal adsorption experiment. The thermodynamic analysis shows that the adsorption process is an exothermic reaction. The adsorption capacity of BA first increases and then decreases with an increase in pH, and the maximum adsorption capacity is reached at pH = 5. BA-MIP also has excellent selective adsorption capacity and regeneration stability for BA.
Collapse
Affiliation(s)
- Zekun Yang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China E-mail:
| | - Hailing Wang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China E-mail:
| | - Huiming Sun
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China E-mail:
| | - Haifeng Tang
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China E-mail:
| | - Guangze Nie
- School of Environmental Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing 211816, China E-mail:
| |
Collapse
|
49
|
Pauletto P, Dotto G, Salau N. Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
|