1
|
Liang L, Qin L, Liu Y, Mo L, Dai J, Wang D. Key Component Analysis of the Time Toxicity Interaction of Five Antibiotics to Q67. TOXICS 2024; 12:521. [PMID: 39058173 PMCID: PMC11281310 DOI: 10.3390/toxics12070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Antibiotics are considered as persistent emerging contaminants. The phenomenon of mixed exposure to the environment is a common occurrence causing serious harm to human health and the environment. Therefore, we employed enrofloxacin (ENR), chlortetracycline (CTC), methotrexate (TMP), chloramphenicol (CMP), and erythromycin (ETM) in this study. Nine treatments were designed using the uniform design concentration ratio (UDCR) method to systematically determine the toxicity of individual contaminants and their mixtures on Vibrio qinghaiensis sp.-Q67 through the time-dependent microplate toxicity assay. The combinatorial index (CI) method and the dose reduction index (DRI) were used to analyze the toxic interactions of the mixtures and the magnitude of the contribution of each component to the toxic interactions. The results showed that the toxicities of ENR, CTC, TMR, CMP, and ETM and their mixtures were time-dependent, with toxic effects being enhanced except when exposure time was prolonged. The types of toxic interactions in the ENR-CTC-TMR-CMP-ETM mixtures were found to be correlated with the proportion of each component's concentration, where the proportion of the components exerted the most significant influence. Through DRI extrapolation, it was determined that the primary components of the mixture exhibited a pronounced dependency on time. Specifically, at the 4 h mark, TMP emerged as the predominant component, gradually giving way to ENR as time advanced. Upon analyzing the frequency of mixture interactions under specified effects, the additive effect appeared most frequently (66.6%), while the antagonist effect appeared the least frequently (15.9%) among the nine rays.
Collapse
Affiliation(s)
- Luyi Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; (L.L.); (L.Q.); (Y.L.); (J.D.)
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; (L.L.); (L.Q.); (Y.L.); (J.D.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yongan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; (L.L.); (L.Q.); (Y.L.); (J.D.)
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; (L.L.); (L.Q.); (Y.L.); (J.D.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Junfeng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; (L.L.); (L.Q.); (Y.L.); (J.D.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; (L.L.); (L.Q.); (Y.L.); (J.D.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| |
Collapse
|
2
|
Wang L, Wu D, Yu Z, Huang S, Zhang J. Hormone-mediated multi- and trans-generational reproductive toxicities of 1-ethyl-3-methylimidazolium hexafluorophosphate on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160958. [PMID: 36535467 DOI: 10.1016/j.scitotenv.2022.160958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ionic liquids (ILs) are emergent pollutants and their reproductive toxicities show hormesis, earning attentions on their environmental risk. Yet, their reproductive effects over generations and the mechanisms were seldom explored. In the present study, the reproductive effects of 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2mim]PF6) on Caenorhabditis elegans were measured in 11 continuously exposed generations (F1 to F11) to explore the multi-generational effects, and also in the non-exposed generations of F1 and F11 (i.e., their great-grand-daughters, T4 and T4') to explore the trans-generational effects. In multi-generational reproductive effects, there were concentration-dependent hormetic effects with hazard-benefit alteration between low and high concentrations (e.g., in F3). There were also generation-dependent hormetic effects with hazard-benefit alterations over generations (e.g., between F4 and F5, between F8 and F9, and between F10 and F11). Meanwhile, the results also showed benefit-hazard alteration between F2 and F3, between F6 and F7, and between F9 and F10. Trans-generational effects showed common inhibitions in T4 and T4' at both low and high concentrations. In the biochemical analysis, hormones and hormone-like substances including progesterone (P), estradiol (E2), prostaglandin (PG) and testosterone (T) showed multi- and trans-generational changes with inhibition and stimulation, which contributed to the reproductive outcomes in each generation. Such contribution was also observed in the hormones' precursor cholesterol and the proteins that are essential for reproduction including vitellogenin (Vn) and major sperm protein (MSP). Moreover, the biochemicals showed significant involvement in the connection among generations. Furthermore, the multi- and trans-generational effects of [C2mim]PF6 and histidine showed similar modes of actions despite some differences, implying the contribution of their shared imidazole structure.
Collapse
Affiliation(s)
- Lei Wang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Di Wu
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shidi Huang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
3
|
Mo L, Yang Y, Zhao D, Qin L, Yuan B, Liang N. Time-Dependent Toxicity and Health Effects Mechanism of Cadmium to Three Green Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710974. [PMID: 36078688 PMCID: PMC9518188 DOI: 10.3390/ijerph191710974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 05/31/2023]
Abstract
As algae are extremely sensitive to heavy-metal ions and can be critical biological indicators in the heavy-metal toxicity analyses conducted by environmental health researchers, this paper explores the sensitivity to temporal toxicity of three species of green algae: Scenedesmus obliquus, Chlorella pyrenoidosa, and Selenastrum capricornutum. The method of time-dependent microplate toxicity analysis was used to systematically investigate the changes in the toxicities of the three green-algae species induced by different concentrations of cadmium (Cd). The chlorophyll a content, antioxidant enzyme activity, and malondialdehyde (MDA) content in the algae were analyzed to explore the mechanism of Cd toxicity after 96 h of exposure. The results showed that the toxic effects of Cd on the three algae species were time-dependent. By comparing the toxic effect of Cd, indicated by pEC50 (the negative logarithm of EC50), on the algae species at four durations of exposure (24, 48, 72, and 96 h), this study found that the indicator organisms had different sensitivities to Cd. The order of sensitivity was C. pyrenoidosa > S. obliquus > S. capricornutum. Cd exposure had significant effects on the chlorophyll a and MDA content and on the enzyme activity of superoxide dismutase (SOD) and catalase (CAT) in the algae species. The chlorophyll a content in the cells of the algae decreased with increasing Cd concentration. The enzyme activity of CAT and content of MDA increased with increasing Cd concentration, which indicated that Cd had an oxidative stress effect on the three algae species.
Collapse
Affiliation(s)
- Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Yanshan, Guilin 541006, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Yanshan, Guilin 541006, China
| | - Yilin Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Yanshan, Guilin 541006, China
| | - Danna Zhao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Yanshan, Guilin 541006, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Yanshan, Guilin 541006, China
- Technology Innovation Center for Mine Geological Environment Restoration Engineering in Southern Shishan Region, Ministry of Natural Resources, Xixiangtang, Nanning 530028, China
| | - Baikang Yuan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Yanshan, Guilin 541006, China
| | - Nan Liang
- Geological Environment Monitoring Station of the Guangxi Zhuang Autonomous Region, Xixiangtang, Nanning 530029, China
| |
Collapse
|
4
|
Qu R, Hou H, Xiao K, Liu B, Liang S, Hu J, Bian S, Yang J. Prediction on the combined toxicities of stimulation-only and inhibition-only contaminants using improved inverse distance weighted interpolation. CHEMOSPHERE 2022; 287:132045. [PMID: 34563772 DOI: 10.1016/j.chemosphere.2021.132045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The evaluation of ecological risks of contaminant mixtures to organisms is very challenging due to the non-linear response of organisms to each component, especially under the co-existence of both stimulators and inhibitors. Whether the stimulatory effect can reduce or even offset the inhibitory effect would be critical to the risk assessment and the treatment measures of mixed pollutants. Here, the combined toxicity of sodium fluoride (NaF), a stimulator with stimulation rate >100%, and six compounds that cannot induce hormesis (four ionic liquids (ILs) and two pesticides) were studied. The time-dependent toxicity of each toxicant on Vibrio qinghaiensis sp.-Q67 was investigated at 0.25, 2, 4, 6, 8, 10 and 12 h. Results showed that four ILs and two pesticides failed to induce hormesis, while NaF induced hormesis from 2 to 6 h and induced stimulation only after 6 h and reached its maximum (650%) at 12 h. All mixture rays with NaF induced hormesis at different times. In the four NaF-IL mixture systems, the absolute value of maximum stimulation demonstrated an upwards and then a downwards trend with the increasing of mixture ratio of IL. In two NaF-pesticide systems, the maximum stimulation effect declined with the increasing of the mixture ratio of pesticide. The toxicities of the mixture were successfully predicted by the improved inverse distance weighted interpolation, which are not able to be predicted by the commonly used concentration addition or independent action models. This paper shed lights on evaluating the hormesis of mixtures and the ecological risk of fluoride.
Collapse
Affiliation(s)
- Rui Qu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China.
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
5
|
Wang ZJ, Chen F, Xu YQ, Huang P, Liu SS. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. BIOLOGY 2021; 10:638. [PMID: 34356493 PMCID: PMC8301110 DOI: 10.3390/biology10070638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
Bioluminescent bacteria are mainly found in marine habitats. Vibrio qinghaiensis sp.-Q67 (Q67), a nonpathogenic freshwater bacterium, has been a focus due to its wide use in the monitoring of environmental pollution and the assessment of toxicity. However, the lack of available crystal structures limits the elucidation of the structures of the functional proteins of the quorum-sensing (QS) system that regulates bacterial luminescence in Q67. In this study, 19 functional proteins were built through monomer and oligomer modeling based on their coding proteins in the QS system of Q67 using MODELLER. Except for the failure to construct LuxM due to the lack of a suitable template, 18 functional proteins were successfully constructed. Furthermore, the relationships between the function and predicted structures of 19 functional proteins were explored one by one according to the three functional classifications: autoinducer synthases and receptors, signal transmission proteins (phosphotransferases, an RNA chaperone, and a transcriptional regulator), and enzymes involved in bacterial bioluminescence reactions. This is the first analysis of the whole process of bioluminescence regulation from the perspective of nonpathogenic freshwater bacteria at the molecular level. It provides a theoretical basis for the explanation of applications of Q67 in which luminescent inhibition is used as the endpoint.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Fu Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Su Y, Liu C, Jiang X, Wei W. Different bacterial host-based lux reporter array for fast identification and toxicity indication of multiple metal ions. Anal Bioanal Chem 2020; 412:8127-8134. [PMID: 32918558 DOI: 10.1007/s00216-020-02943-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
Although luminescent bacteria-based bioluminescence inhibition assay has been widely used in the toxicity assessment of environmental pollutants, the response of a luminescent bacterium usually lacks specificity to a target analyte. Recently, some specific analyte inductive promoters were fused to the lux genes for the purpose of selective bioluminescent sensing, and suits of specific promoters were fused to lux genes to compose a bioluminescent array sensor for simultaneous identification of multiple analytes. However, specific promoter-based methods still suffer from drawbacks including limited selectivity, slow responding time, expensive to construct different promoters involved plasmids, and laborious to find new promoters. Herein, we proposed a novel strategy to construct a lux reporter array sensor by directly transforming the natural lux genes in different bacterial hosts without the involvement of any specific promoters. Due to the distinct pathways of signal production, the responding time of the current different bacterial host (DBH)-based lux reporter array has nearly an order of magnitude faster than with specific promoter-based methods. The DBH-based lux reporter array was successfully used for simultaneous identification, quantification, and toxicity/bioactivity assessment of multiple metal ions. Obviously, all the chemical synthetic material-based metal ion sensing methods cannot simultaneously achieve analysis and toxicity evaluation. This approach possessed additional advantages of facile construction, easy operation, high selectivity, fast response, and strong adaptability to other analytes. A different bacterial host-based lux reporter array was established for simultaneous analysis and toxicity assessment of multiple metal ions.
Collapse
Affiliation(s)
- Yuchen Su
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Chunlan Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xuemei Jiang
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Weili Wei
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Liu C, Li G, Mo L, Hou M, Zhang J. Alteration in concentration-response curves of four N-alkylpyridinium chloride by exposure concentration, time and in their mixtures by uniform design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136493. [PMID: 31935547 DOI: 10.1016/j.scitotenv.2020.136493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The concentration-response curves (CRCs) of chemicals are important in extrapolating their effects from laboratory studies to their risk assessment in the field. Yet, the CRCs can be altered by exposure concentration and mixture conditions, and also by exposure time in recent reports. Presently, ionic liquids (N-alkylpyridinium chloride, [apyr]Cl) were used for CRC-alteration studies. In individual effects on Vibrio qinghaiensis sp. Q67 (Q67) from 0.25 to 24 h, the CRCs of [epyr]Cl and [bpyr]Cl changed from S- to J-shaped with decreases in inhibition and increases in stimulation, while the CRCs of [hpyr]Cl changed from S- to flat-shape with decreases in inhibition but without stimulation. In mixture effects on Q67, the CRCs all changed from S- to J-shaped from 0.25 to 24 h. By means of the variable selection and modeling method based on the prediction (VSMP), the CRC-alterations of mixtures were positively contributed by [epyr]Cl but negatively contributed by [bpyr]Cl. Furthermore, a parameter was developed by the area of a triangular that combined acute inhibition (EC50,0.25h) and chronic stimulation (Zero-effect Point, i.e., ZEP24h and the minimum inhibition effect, i.e., Emin,24h). This parameter successfully evaluated the CRC-alterations in both individual and mixture effects over time, and indicated potential interactions in CRC-alteration in mixtures.
Collapse
Affiliation(s)
- Chaonan Liu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Gaotian Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Lingyun Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin 541004, PR China
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
8
|
Li L, Wu S, Yang P, Liu Q, Tang S. Rapid detection and toxicity assessment of ochratoxin A by
Photobacterium leiognathi
in drinking water. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Li
- Department of Food Science and Engineering Jinan University Guangzhou 510632 China
| | - Shizheng Wu
- Department of Food Science and Engineering Jinan University Guangzhou 510632 China
| | - Panpan Yang
- Department of Food Science and Engineering Jinan University Guangzhou 510632 China
| | - Qianyu Liu
- Department of Food Science and Engineering Jinan University Guangzhou 510632 China
| | - Shuze Tang
- Department of Food Science and Engineering Jinan University Guangzhou 510632 China
| |
Collapse
|
9
|
Sui N, Zhang Z, Zhang J. Alteration between inhibition and stimulation in individual and mixture effects of [amim]Br and [apyr]Br on Aliivibrio fischeri: Time and side-chain dependence. CHEMOSPHERE 2019; 233:292-299. [PMID: 31176130 DOI: 10.1016/j.chemosphere.2019.05.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
The exposure reality of chemicals is usually in mixtures, the effects of which are usually extrapolated from individual results. Yet, such extrapolation is challenged by the alteration between monotonic concentration-response curves (CRCs) and non-monotonic hormetic CRCs in individual and mixture effects. In the present study, we aimed to investigate the occurrence of such alterations using 1-alkylimidazolium bromide ([amim]Br) and 1-alkylpyridinium bromide ([apyr]Br) ionic liquids (ILs) as model chemicals. Effects of four [amim]Br, four [apyr]Br, and their quaternary mixtures designed by uniform design were measured on Aliivibrio fischeri in a time-dependent fashion. Results showed that the individual [amim]Br showed monotonic CRCs. Their inhibition increased over the length of the side-chain and decreased over the exposure time. The [amim]Br mixtures showed non-monotonic hormetic CRCs, where the stimulations increased over exposure time. The individual [apyr]Br had non-monotonic hormetic CRCs, and their stimulation increased over the length of the side-chain. Meanwhile, the [apyr]Br mixtures had monotonic CRCs without any stimulation. Notably, the positive contributors to the mixture effects were [emim]Br or [epyr]Br which had the shortest side-chain among the components. The findings can facilitate accurate prediction on the environmental effects of ILs with specific considerations on hormetic and mixture effects.
Collapse
Affiliation(s)
- Ning Sui
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Zhiguo Zhang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Zhang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541004, PR China.
| |
Collapse
|
10
|
Zhuang LL, Yu H, Yang T, Sun S, Wang J. A novel light source provided by photobacteria to improve the growth of microalgal biofilm. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Xu YQ, Liu SS, Li K, Wang ZJ, Xiao QF. Polyethylene glycol 400 significantly enhances the stimulation of 2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:240-246. [PMID: 30612011 DOI: 10.1016/j.ecoenv.2018.12.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previous studies demonstrated long-term stimulation of some commercial personal care products (PCPs) on freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67 (Q67). However, whether a certain component can affect mixture's hormetic effect is still unknown. In this paper, two of ingredients in PCPs, 2-phenoxyethanol (PhE) and polyethylene glycol 400 (PEG400), were selected as object compounds to explore the relationship between concentration-response (CR) of mixtures and that of a single component. It was found that PEG400 has monotonic CR (MCR) on Q67 both at the short-term (0.25 h) and long-term (12 h) exposures while PhE has MCR at 0.25 h and hormetic CR (HCR) at 12 h. Here, the concentration-response curves (CRCs) of PEG400 at 0.25 and 12 h are overlapped each other and the CRCs of PEG400 are on the right of PhE. If the pEC50 is taken as a toxic index, the toxicities of PEG400 at two times are basically the same, and those of PhE are the same, too, but PhE is twice as toxic as PEG400. For the mixtures of PEG400 and PhE, all rays except R1 have MCRs at 0.25 h while all rays have HCRs at 12 h where the higher the mixture ratio of PhE is, the more negative the maximum stimulation effect is. More importantly, the Emin values of all rays are more negative (1.79-3.17-fold) than that of PhE worked alone, which implies that the introduction of PEG400 significantly enhances stimulative effect of PhE. At 0.25 h, all binary mixture rays but R1 produce a low-concentration additive action and high-concentration synergism. At 12 h, all rays display additive action, antagonism, additive action, and synergism in turn when the concentration changes from low to high. The overall findings suggested toxicological interactions should be considered in the risk assessment of PCPs and their potential impacts on ecological balances.
Collapse
Affiliation(s)
- Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Kai Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ze-Jun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qian-Fen Xiao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Yu Z, Zhang J, Hou M. Time-dependent disturbances of chloride salts on overall redox reaction and luminescence in Vibrio fischeri. CHEMOSPHERE 2018; 199:122-129. [PMID: 29433025 DOI: 10.1016/j.chemosphere.2018.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F-, Cl-, Br- and I-) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K+, Mg2+ and Ca2+, whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl2 and CaCl2, and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl2 > MgCl2 > KCl. The changes of NADH/NADPH ratios over time in CaCl2, MgCl2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments.
Collapse
Affiliation(s)
- Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051 PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541004, PR China.
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| |
Collapse
|