1
|
Islam MS, Alatishe A, Lee-Lopez CC, Serrano F, Yukl ET. H-NOX Influences Biofilm Formation, Central Metabolism, and Quorum Sensing in Paracoccus denitrificans. J Proteome Res 2024; 23:4988-5000. [PMID: 39370609 PMCID: PMC11536421 DOI: 10.1021/acs.jproteome.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The transition from planktonic to biofilm growth in bacteria is often accompanied by greater resistance to antibiotics and other stressors, as well as distinct alterations in physical traits, genetic activity, and metabolic restructuring. In many species, the heme nitric oxide/oxygen binding proteins (H-NOX) play an important role in this process, although the signaling mechanisms and pathways in which they participate are quite diverse and largely unknown. In Paracoccus denitrificans, deletion of the hnox gene results in a severe biofilm-deficient phenotype. Quantitative proteomics was used to assemble a comprehensive data set of P. denitrificans proteins showing altered abundance of those involved in several important metabolic pathways. Further, decreased levels of pyruvate and elevated levels of C16 homoserine lactone were detected for the Δhnox strain, associating the biofilm deficiency with altered central carbon metabolism and quorum sensing, respectively. These results expand our knowledge of the important role of H-NOX signaling in biofilm formation.
Collapse
Affiliation(s)
- Md. Shariful Islam
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
- Department
of Mathematics and Physics, North South
University, Bashundhara
RA, Dhaka 1229, Bangladesh
| | - Aishat Alatishe
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Cameron C. Lee-Lopez
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Fred Serrano
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Erik T. Yukl
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
2
|
Rosa-Masegosa A, Rodriguez-Sanchez A, Gorrasi S, Fenice M, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review. Microorganisms 2024; 12:433. [PMID: 38543484 PMCID: PMC10972187 DOI: 10.3390/microorganisms12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2025] Open
Abstract
Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Jesus Gonzalez-Lopez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| |
Collapse
|
3
|
Zhai Y, Guo W, Li D, Chen B, Xu X, Cao X, Zhao L. Size-dependent influences of nanoplastics on microbial consortium differentially inhibiting 2, 4-dichlorophenol biodegradation. WATER RESEARCH 2024; 249:121004. [PMID: 38101052 DOI: 10.1016/j.watres.2023.121004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Nanoplastics (NPs), as a type of newly emerging pollutant, are ubiquitous in various environmental systems, one of which is coexistence with organic pollutants in wastewater, potentially influencing the pollutants' biodegradation. A knowledge gap exists regarding the influence of microbial consortium and NPs interactions on biodegradation efficiency. In this work, a 2,4-dichlorophenol (DCP) biodegradation experiment with presence of polystyrene nanoplastics (PS-NPs) with particle sizes of 100 nm (PS100) or 20 nm (PS20) was conducted to verify that PS-NPs had noticeable inhibitory effect on DCP biodegradation in a size-dependent manner. PS100 at 10 mg/L and 100 mg/L both prolonged the microbial stagnation compared to the control without PS-NPs; PS20 exacerbated greater, with PS20 at 100 mg/L causing a noticeable 6-day lag before the start-up of rapid DCP reduction. The ROS level increased to 1.4-fold and 1.8-fold under PS100 and PS20 exposure, respectively, while the elevated LDH under PS20 exposure indicated the mechanical damage to cell membrane by smaller NPs. PS-NPs exposure also resulted in a decrease in microbial diversity and altered the niches of microbial species, e.g., they decreased the abundance of some functional bacteria such as Brevundimonas and Comamonas, while facilitated some minor members to obtain more proliferation. A microbial network with higher complexity and less competition was induced to mediate PS-NPs stress. Functional metabolism responded differentially to PS100 and PS20 exposure. Specifically, PS100 downregulated amino acid metabolism, while PS20 stimulated certain pathways in response to more severe oxidative stress. Our findings give insights into PS-NPs environmental effects concerning microflora and biological degradation.
Collapse
Affiliation(s)
- Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
4
|
Kipgen L, Singha NA, Lyngdoh WJ, Nongdhar J, Singh AK. Degradation and metagenomic analysis of 4-chlorophenol utilizing multiple metal tolerant bacterial consortium. World J Microbiol Biotechnol 2024; 40:56. [PMID: 38165520 DOI: 10.1007/s11274-023-03855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Chlorophenols are persistent environmental pollutants used in synthesizing dyes, drugs, pesticides, and other industrial products. The chlorophenols released from these processes seriously threaten the environment and human health. The present study describes 4-chlorophenol (4-CP) degradation activity and metagenome structure of a bacterial consortium enriched in a 4-CP-containing medium. The consortium utilized 4-CP as a single carbon source at a wide pH range, temperature, and in the presence of heavy metals. The immobilized consortium retained its degradation capacity for an extended period. The 4-aminoantipyrine colorimetric analysis revealed complete mineralization of 4-CP up to 200 mg/L concentration and followed the zero-order kinetics. The addition of glycerol and yeast extract enhanced the degradation efficiency. The consortium showed both ortho- and meta-cleavage activity of catechol dioxygenase. Whole genome sequence (WGS) analysis revealed the microbial compositions and functional genes related to xenobiotic degradation pathways. The identified genes were mapped on the KEGG database to construct the 4-CP degradation pathway. The results exhibited the high potential of the consortium for bioremediation of 4-CP contaminated sites. To our knowledge, this is the first report on WGS analysis of a 4-CP degrading bacterial consortium.
Collapse
Affiliation(s)
- Lhinglamkim Kipgen
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Ningombam Anjana Singha
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Waniabha J Lyngdoh
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Jopthiaw Nongdhar
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
5
|
Gomeiz AT, Sun Y, Newborn A, Wang ZW, Angelotti B, Van Aken B. Metagenomic Analysis of a Continuous-Flow Aerobic Granulation System for Wastewater Treatment. Microorganisms 2023; 11:2328. [PMID: 37764172 PMCID: PMC10535324 DOI: 10.3390/microorganisms11092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Aerobic granulation is an emerging process in wastewater treatment that has the potential to accelerate sedimentation of the microbial biomass during secondary treatment. Aerobic granulation has been difficult to achieve in the continuous flow reactors (CFRs) used in modern wastewater treatment plants. Recent research has demonstrated that the alternation of nutrient-abundant (feast) and nutrient-limiting (famine) conditions is able to promote aerobic granulation in a CFR. In this study, we conducted a metagenomic analysis with the objective of characterizing the bacterial composition of the granular biomass developed in three simulated plug flow reactors (PFRs) with different feast-to-famine ratios. Phylogenetic analyses revealed a clear distinction between the bacterial composition of aerobic granules in the pilot simulated PFRs as compared with conventional activated sludge. Larger and denser granules, showing improved sedimentation properties, were observed in the PFR with the longest famine time and were characterized by a greater proportion of bacteria producing abundant extracellular polymeric substances (EPS). Functional metagenomic analysis based on KEGG pathways indicated that the large and dense aerobic granules in the PFR with the longest famine time showed increased functionalities related to secretion systems and quorum sensing, which are characteristics of bacteria in biofilms and aerobic granules. This study contributes to a further understanding of the relationship between aerobic granule morphology and the bacterial composition of the granular biomass.
Collapse
Affiliation(s)
- Alison T. Gomeiz
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA;
| | - Yewei Sun
- Hazen and Sawyer, 4035 Ridge Top Road, Fairfax, VA 22030, USA;
| | - Aaron Newborn
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA;
| | - Bob Angelotti
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, USA;
| | - Benoit Van Aken
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| |
Collapse
|
6
|
Wang X, Wang W, Wang W, Dong L, Zhai T, Gao Z, Wang K, Wang W, Wang S, Kong F. Enhanced effect and mechanism of nano Fe-Ca bimetallic oxide modified substrate on Cu(II) and Ni(II) removal in constructed wetland. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131689. [PMID: 37245372 DOI: 10.1016/j.jhazmat.2023.131689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
In this study, Fe2O3 nanoparticles (Fe2O3 NPs) and CaO NPs were loaded on the zeolite sphere carrier to create nano Fe-Ca bimetallic oxide (Fe-Ca-NBMO) modified substrate, which was introduced into constructed wetland (CW) to remove Cu(II) and Ni(II) via constructing "substrate-microorganism" system. Adsorption experiments showed that the equilibrium adsorption capacities of Fe-Ca-NBMO modified substrate for Cu(II) and Ni(II) were respectively 706.48 and 410.59 mg/kg at an initial concentration of 20 mg/L, 2.45 and 2.39 times of gravel. The Cu(II) and Ni(II) removal efficiencies in CW with Fe-Ca-NBMO modified substrate respectively reached 99.7% and 99.9% at an influent concentration of 100 mg/L, significantly higher than those in gravel-based CW (47.0% and 34.3%). Fe-Ca-NBMO modified substrate could promote Cu(II) and Ni(II) removal by increasing electrostatic adsorption, chemical precipitation, as well as the abundances of resistant microorganisms (Geobacter, Desulfuromonas, Zoogloea, Dechloromonas, and Desulfobacter) and functional genes (copA, cusABC, ABC.CD.P, gshB, and exbB). This study provided an effective method to enhance Cu(II) and Ni(II) removal of electroplating wastewater by CW with Fe-Ca-NBMO modified substrate.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenpeng Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liu Dong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Tianyu Zhai
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zijing Gao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Kang Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenshu Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Biochemical and molecular characterization of a new heme peroxidase from Aspergillus niger CTM10002, and its application in textile reactive dye decolorization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Jagaba AH, Kutty SRM, Isa MH, Ghaleb AAS, Lawal IM, Usman AK, Birniwa AH, Noor A, Abubakar S, Umaru I, Saeed AAH, Afolabi HK, Soja UB. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmad Hussaini Jagaba
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Universiti Teknologi PETRONAS Centre of Urban Resource Sustainability Institute of Self-Sustainable Building 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Mohamed Hasnain Isa
- Universiti Teknologi Brunei Civil Engineering Programme Faculty of Engineering Tungku Highway BE1410 Gadong Brunei Darussalam
| | - Aiban Abdulhakim Saeed Ghaleb
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ibrahim Mohammed Lawal
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
- University of Strathclyde Department of Civil and Environmental Engineering Glasgow United Kingdom
| | | | | | - Azmatullah Noor
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Sule Abubakar
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Ibrahim Umaru
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Anwar Ameen Hezam Saeed
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Haruna Kolawole Afolabi
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Usman Bala Soja
- Federal University Dutsin-Ma Department of Civil Engineering P.M.B. 5001 Dutsin-Ma Katsina State Nigeria
| |
Collapse
|
9
|
Hernández-Guzmán M, Pérez-Hernández V, Gómez-Acata S, Jiménez-Bueno N, Verhulst N, Muñoz-Arenas LC, Navarro-Noya YE, Luna-Guido ML, Dendooven L. Application of young maize plant residues alters the microbiome composition and its functioning in a soil under conservation agriculture: a metagenomics study. Arch Microbiol 2022; 204:458. [PMID: 35788780 DOI: 10.1007/s00203-022-03060-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
To increase our knowledge on how application of organic material alters soil microbial populations and functionality, shotgun metagenomic sequencing was used to determine the microbial communities and their potential functionality in an arable soil amended with young maize plants (Zea mays L.) in a laboratory experiment after 3 days. The relative abundance of bacterial and viral groups was strongly affected by organic material application, whereas that of the archaeal, protist and fungal groups was less affected. Cellulose degraders with copiotrophic lifestyle (e.g., Betaproteobacteria) were enriched in the amended soil, whereas the groups with slow growing oligotrophic and chemolithoautotrophic metabolism within Bacteria and Archaea were greater in the unamended than in the amended soil. The soil viral structure and richness were also affected. Caudovirales was the dominant viral family, with members of Siphoviridae enriched in the amended soil and members of Myoviridae in the unamended soil. More specialized metabolic traits related to both the degradation of complex C compounds and denitrification related genes were enriched in the young maize plant amended soil than in the unamended soil, whereas nitrification related genes were enriched in the latter. Copiotrophic life-style bacterial groups were enriched in the amended soil, whereas oligotrophic life-style bacterial groups in the unamended soil. Many bacterial and viral phylotypes were affected by the application of young maize plants, but the number of soil fungi, archaea and protists affected was smaller. Metabolic functionality was affected by the application of organic material as the relative abundance of genes involved in the denitrification process was higher in the maize plant amended soil than in the unamended soil and those involved in the nitrification process was higher in the unamended soil.
Collapse
Affiliation(s)
| | | | - Selene Gómez-Acata
- Laboratory of Soil Ecology, ABACUS, CINVESTAV, 07360, Mexico City, Mexico
| | | | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco, Mexico
| | | | | | - Marco L Luna-Guido
- Laboratory of Soil Ecology, ABACUS, CINVESTAV, 07360, Mexico City, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, CINVESTAV, 07360, Mexico City, Mexico.
| |
Collapse
|
10
|
Wang J, Sun Z. Successful application of municipal domestic wastewater as a co-substrate in 2,4,6-trichlorophenol degradation. CHEMOSPHERE 2021; 280:130707. [PMID: 33971410 DOI: 10.1016/j.chemosphere.2021.130707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP) is highly toxic and causes harmful effects on aquatic ecosystems and human health. In this study, wastewater containing high levels of 2,4,6-TCP was successfully co-metabolized by introducing municipal domestic wastewater (MDW) as the co-catabolic carbon source. The concentration of degraded 2,4,6-TCP increased from 0 to 208.71 mg/L by adjusting the influent MDW volume during a 150-day-long operation. An MDW dose of 500 mL was found optimal, with an average concentration of 250 mgCOD/L. Unlike the long-term experiment, changing the MDW adding mode in a typical cycle further increased the concentration of 2,4,6-TCP removed to 317 mg/L. The main MDW components, such as the sugars, VFAs, and slowly biodegradable organic substances, improved 2,4,6-TCP degradation, achieving a TOC removal efficiency of 90.98% and a dechlorination efficiency of 100%. The MDW level did not change the 2,4,6-TCP degradation rate (μTCP) in a typical cycle compared to the single carbon source, and the μTCP remained at a high level of 50 mg 2,4,6-TCP/h. Macrogenetic analysis demonstrated that MDW addition promoted the growth of 43 bacterial genera (41.49%) responsible for 2,4,6-TCP degradation and intermediates' metabolism. The key genes for 2,4,6-TCP metabolism (pcpA, chqB, mal-r, pcaI, pcaF, and fadA) were detected in the activated sludge, which were distributed among the 43 genera. To conclude, this study proposes a new carbon source for co-metabolism to treat 2,4,6-TCP-polluted wastewater.
Collapse
Affiliation(s)
- Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
11
|
Jiang Y, Shi X, Ng HY. Aerobic granular sludge systems for treating hypersaline pharmaceutical wastewater: Start-up, long-term performances and metabolic function. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125229. [PMID: 33951865 DOI: 10.1016/j.jhazmat.2021.125229] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The complex organics, residue pharmaceuticals and high salinity in pharmaceutical wastewater pose great challenges to biological wastewater treatment. In this study, granular sludge process was used for treating pharmaceutical wastewater because of its high pollutant removal efficiency. The results suggested that granules could not form within 90-d cultivation when directly fed with target hypersaline pharmaceutical wastewater (RP) due to suppression of EPS secretion by high concentration of inhibitory organics, while granules were successfully developed with hypersaline synthetic wastewater (RS) and diluted pharmaceutical wastewater (RD), respectively. Further comparison of pollutant removal performance from target pharmaceutical wastewater showed that simultaneous removal of organics (effluent bCOD<1 mg L-1) and nitrogen (average TN removal efficiency of 70.3%) could be achieved in RD. Nevertheless, long acclimation period (i.e., 20 d) was needed for granules when carbon source was shifted from simple sodium acetate to complex organic pollutants in pharmaceutical wastewater, with nitrite significantly accumulated in RS. Analysis of microbial community and nitrogen metabolism pathway indicated the higher abundance of nitrite oxidoreductase than that in the RS to alleviate nitrite accumulation in the RD, and functional strains such as Paracoccus and Mycobacterium played critical roles for high efficiency of organic degradation, nitrification and denitrification.
Collapse
Affiliation(s)
- Yu Jiang
- Centre for Water Research, Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore; National University of Singapore Environmental Research Institute, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Liang Y, Jiao C, Pan L, Zhao T, Liang J, Xiong J, Wang S, Zhu H, Chen G, Lu L, Song H, Yang Q, Zhou Q. Degradation of chlorine dioxide bleaching wastewater and response of bacterial community in the intimately coupled system of visible-light photocatalysis and biodegradation. ENVIRONMENTAL RESEARCH 2021; 195:110840. [PMID: 33587946 DOI: 10.1016/j.envres.2021.110840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Intimate coupling of visible-light photocatalysis and biodegradation (ICPB) offers potential for degrading chlorine dioxide bleaching wastewater. In this study, we reported a TiO2-coated sponge biofilm carrier with significant adhesion of TiO2 and the ability to accumulate biomass in its interior. Four mechanisms possibly acting in ICPB were tested separately: adsorption of chlorine dioxide bleaching wastewater to the carrier, photolysis, photocatalysis, and biodegradation by the biofilm inside the carrier. The carrier had an adsorption capacity of 17% and 16% for CODcr and AOX, respectively, in the wastewater. The photodegradation rate of wastewater was very low and could be ignored. Both biodegradation (AOX 30.1%, CODcr 33.8%, DOC 26.2%) and photocatalysis (AOX 65.1%, CODcr 71.2%, DOC 62.3%) possessed a certain degradation efficiency of wastewater. However, the removal rate of AOX, CODcr, and DOC in wastewater treatment by protocol ICPB reached 80.3%, 90.5%, and 86.7%. FT-IR and GC-MS analysis showed that the ICPB system had photocatalytic activity on the surface of the porous carrier in vitro, which could transform organic into small molecules for microbial utilization or complete mineralization. Moreover, the biofilm in the interior of the TiO2-coated sponge carrier could mineralize the photocatalytic products, which enhanced the removal of AOX, CODcr, and DOC by more than 15.2%, 20.0%, and 24.0%, respectively. The biofilm in the carrier of the ICPB system evolved, enriched in Proteobacteria, Chloroflexi, Bacteroidetes, and Actinobacteria, microorganisms known to play active roles in the biodegradation of papermaking wastewater.
Collapse
Affiliation(s)
- Yinna Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Chunlin Jiao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Liushu Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Tianyu Zhao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiaxiang Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China
| | - Lihai Lu
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China
| | - Qifeng Yang
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China
| | - Qianyi Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
14
|
Zhao J, Li Y, Li Y, Zhang K, Zhang H, Li Y. Effects of humic acid on sludge performance, antibiotics resistance genes propagation and functional genes expression during Cu(II)-containing wastewater treatment via metagenomics analysis. BIORESOURCE TECHNOLOGY 2021; 323:124575. [PMID: 33360357 DOI: 10.1016/j.biortech.2020.124575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The humic acid (HA) function on the sludge performance, antibiotics resistance genes (ARGs) propagation and functional genes expression during Cu(II)-containing wastewater treatment was comprehensively investigated via metagenomics analysis. Results showed that the pollutants removal was significantly inhibited after long-term exposure of 5 mg/L Cu(II), while the inhibitory effects were moderately alleviated after addition of 10 mg/L HA. The extracellular polymeric substances (EPS) production with Cu(II) acclimation was higher than the sludge with Cu(II) and HA acclimation. The microbial community was significantly affected by the HA addition, while the relative abundance of dominant ARGs had no distinct differences with or without HA addition under Cu(II) stress. The functional genes were largely implemented for microbial metabolism, while no significant differences were found with HA addition under Cu(II) stress. Thus, the HA function for ARGs propagation and functional genes expression needed to be further research under Cu(II) stress in wastewater treatment.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
15
|
Ailijiang N, Chang J, Liang P, Zhang X, Huang X. Impact of electrical stimulation modes on the degradation of refractory phenolics and the analysis of microbial communities in an anaerobic-aerobic-coupled upflow bioelectrochemical reactor. BIORESOURCE TECHNOLOGY 2021; 320:124371. [PMID: 33186803 DOI: 10.1016/j.biortech.2020.124371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
An electrically stimulated anaerobic-aerobic coupled system was developed to improve the biodegradation of refractory phenolics. Expected 4-nitrophenol, 2, 4-dinitrophenol, and COD removals in the system with aerobic cathodic and anaerobic anodic chambers were approximately 53.7%, 45.4%, 22.3% (intermittent mode) and 37.9%, 19.8%, 17.3% (continuous mode) higher than that in the control system (26.0 ± 6.4%, 30.7 ± 7.1%, 49.8 ± 3.0%). 2, 4-dichlorophenol removal in the system with aerobic anodic and anaerobic cathodic chambers was approximately 28.5% higher than that in the control system (71.4 ± 5.7%). The contribution of the aerobic cathodic/anodic chambers to the removal of phenolic compounds was higher than that of the anaerobic cathodic/anodic chambers. The species related to phenolic biodegradation (Rhodococcus, Achromobacter, PSB-M-3, and Sphingobium) were enriched in the cathodic and anodic chambers of the system. These results showed that intermittent electrical stimulation could be a potential alternative for the efficient degradation of refractory phenolics.
Collapse
Affiliation(s)
- Nuerla Ailijiang
- Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 830046, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiali Chang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan 614000, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
16
|
Yu Z, Zhang Y, Zhang Z, Dong J, Fu J, Xu X, Zhu L. Enhancement of PPCPs removal by shaped microbial community of aerobic granular sludge under condition of low C/N ratio influent. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122583. [PMID: 32289623 DOI: 10.1016/j.jhazmat.2020.122583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The frequent occurrence of pharmaceuticals and personal care products (PPCPs) in domestic wastewater has caused great concern. In this study, the removal of two typical pharmaceuticals (Roxithromycin, ROX; Sulfamethoxazole, SMZ) in aerobic granular sludge (AGS) reactors was investigated under condition of different C/N (carbon to nitrogen) ratios. Results showed that higher removal efficiencies of ROX and SMZ (95.2 % and 92.9 %) were achieved in the AGS reactor fed with low C/N influent. Batch experiments further revealed that the removal of ROX was influenced by the adsorption ability of the AGS while SMZ removal was mainly enhanced by biodegradation process. Analysis of extracellular polymeric substances (EPS) showed that the humic acid-like substances were enriched under low C/N condition, which was in accordance with dynamic change of microbial community. The microbes, like Thauera spp. and Xanthomonadaceae, were highly enriched in the reactor with high nitrogen loading rate and functioned as refractory organics degrader. Overall, the AGS process could achieve enhanced pharmaceuticals removal performance by the regulation of microbial community under low C/N influent, which provides insights into a feasible solution for simultaneous removal of nitrogen and trace organic pollutants in AGS reactor.
Collapse
Affiliation(s)
- Zhuodong Yu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Dong
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jiashen Fu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
17
|
Wang J, Sun Z. Effects of different carbon sources on 2,4,6-trichlorophenol degradation in the activated sludge process. Bioprocess Biosyst Eng 2020; 43:2143-2152. [DOI: 10.1007/s00449-020-02400-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
|
18
|
Li J, Ma Z, Gao M, Wang Y, Yang Z, Xu H, Wang XH. Enhanced aerobic granulation at low temperature by stepwise increasing of salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137660. [PMID: 32179296 DOI: 10.1016/j.scitotenv.2020.137660] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
High salinity and low temperature are generally considered to have negative effects on the formation, stability and performance of aerobic granular sludge (AGS). This study investigated whether and how salinity acclimation strategies can enhance aerobic granulation at low temperature (12 °C) in three sequencing batch reactors (SBRs). Stepwise increased concentrations of NaCl (2-10 and 4-20 g/L) were added to the influent of R1 and R2 with steps of 1 and 2 g/L per week respectively, while R0 was set as a control (salt-free). The granulation processes in R1 and R2 were rapidly started up within 9 days, and were completed within 21 and 18 days, respectively. By contrast, R0 took 25 days and 49 days to start and complete granulation. The salinity acclimation strategies improved sludge hydrophobicity, reduced repulsion barrier between cells, and stimulated EPS production during granulation processes, which simultaneously promoted the formation of AGS. When the influent salinity reached 14 g/L on day 35, granule hydrophobicity, density and size in R2 sharply decreased and granules began to disintegrate afterwards. When operated under salt-free condition, sludge bulking occurred in R0 since day 60. The treatment performance was thus impaired in these two reactors, especially in R2 with significant biomass loss. Conversely, the AGS developed in R1 maintained stable structure with high biomass concentration (8.0 gSS/L) and excellent treatment performance for COD (90%), ammonium (95%) and total nitrogen (70%). Genera Thauera, Azoarcus, and Nitrosomonas were more enriched, while Flavobacterium and Meganema were more suppressed in R1, which would have contributed to granule stability and treatment performance. In conclusion, great care has to be taken for cultivating and operating AGS at low temperature for treating saline wastewater. Increasing salinity with a lower salt gradient provides a possibility for rapid granulation of AGS with excellent treatment performance under such conditions.
Collapse
Affiliation(s)
- Jiaxu Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhipeng Ma
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Mingming Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yunkun Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhongjun Yang
- Department of Stomatology, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Xin-Hua Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
19
|
Wang J, Sun Z. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122293. [PMID: 32097852 DOI: 10.1016/j.jhazmat.2020.122293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
External organic sources could make up for the lack of carbon in the treatment of chlorophenol; but the impact on external carbon concentration on the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) has rarely been studied. In this study, the effect of carbon addition on the degradation of 2,4,6-TCP was investigated using the lab-scale sequencing batch reactor (SBR). The results indicated that excessive carbon amounts inhibited 2,4,6-TCP degradation in the long-term operation and a typical cycle, while a suitable dosage could increase the removal of 2,4,6-TCP. The application of external carbon rapidly decreased the dissolved oxygen level of the system, resulting in inhibited chlorophenol removal. The concentration of removed 2,4,6-TCP could be increased from 35.49-152.89 mg L-1 by adjusting the carbon dosage. At the phylum level, Proteobacteria and Acidobacteria phylum bacteria, related to 2,4,6-TCP removal, were dominant when no carbon source was added, while excessive carbon levels resulted in the overgrowth of Saccharibacteria (50.19 %), responsible for carbon metabolism. In co-metabolism systems, chlorophenol-contaminated wastewater can effectively be treated by adjusting the external carbon source.
Collapse
Affiliation(s)
- Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
20
|
Moreno-Andrade I, Valdez-Vazquez I, López-Rodríguez A. Effect of transient pH variation on microbial activity and physical characteristics of aerobic granules treating 4-chlorophenol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:878-885. [PMID: 32275179 DOI: 10.1080/10934529.2020.1751505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Chlorophenols are inhibitory compounds that can be biodegraded by aerobic granules in discontinuous processes. Many industrial wastewaters are characterized by transient pH variation over time. These pH changes could affect the overall granule structure and microbial activity during the chlorophenol biodegradation. The objective of this research was to evaluate the effects of transient pH variation on the specific degradation rate (q), granule integrity coefficient (IC), and size in sequencing batch reactors treating 4-chlorophenol (4-CP). First, aerobic granules were acclimated for efficient 4-CP degradation (>99%). The acclimated granules consisted of 55.7% of the phyla Proteobacteria and 40.6% of Bacteroidetes. The main bacteria belong to the order Sphingobacteriales (24%), as well as Amaricoccus, Acidovorax, Shinella, Rhizobium, and Flavobacterium, some of which are new genera reported in acclimated granules degrading 4-CP. Then, pH changes were applied to the acclimated aerobic granules, observing that acid pHs decreased to a greater extent the specific degradation rate (67% to 99%) than basic pHs (34% to 80%). These pH changes caused the granule disaggregation but with lower effects on the IC. The effects of pH change were mainly on the microbial activity more than the physical characteristics of aerobic granules degrading 4-CP.
Collapse
Affiliation(s)
- Iván Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Idania Valdez-Vazquez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Antonio López-Rodríguez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
21
|
Li Y, Zhao J, Li Y, Jin B, Zhang K, Zhang H. Long-term alkaline conditions inhibit the relative abundances of tetracycline resistance genes in saline 4-chlorophenol wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 301:122792. [PMID: 31978699 DOI: 10.1016/j.biortech.2020.122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Considering the occurrence and spread of antibiotic resistance genes (ARGs) pose significant risks to public health, the effects of long-term exposure to alkaline conditions on the relative abundances of tetracycline resistance genes (TRGs) were studied in saline 4-chlorophenol (4-CP) wastewater treatment. Alkaline conditions were maintained by supplying the co-metabolic carbon source of sodium acetate. Results showed that except for the 4-CP, the removal of pollutants was significantly inhibited, and the relative abundances of the most TRGs were repressed. In addition, the removal of pollutants and the relative abundances of TRGs were moderately affected by the NaCl addition. The proteins in the extracellular polymeric substances (EPS) played key roles in reducing the relative abundances of TRGs, which were altered by the microbial diversity. In conclusion, for the pollutants removal and ARGs reduction in refractory industrial wastewater treatment, alkaline conditions should be maintained by selecting suitable co-metabolic carbon sources.
Collapse
Affiliation(s)
- Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
22
|
Morinaga K, Yoshida K, Takahashi K, Nomura N, Toyofuku M. Peculiarities of biofilm formation by Paracoccus denitrificans. Appl Microbiol Biotechnol 2020; 104:2427-2433. [PMID: 32002601 PMCID: PMC7223048 DOI: 10.1007/s00253-020-10400-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/24/2023]
Abstract
Most bacteria form biofilms, which are thick multicellular communities covered in extracellular matrix. Biofilms can become thick enough to be even observed by the naked eye, and biofilm formation is a tightly regulated process. Paracoccus denitrificans is a non-motile, Gram-negative bacterium that forms a very thin, unique biofilm. A key factor in the biofilm formed by this bacterium is a large surface protein named biofilm-associated protein A (BapA), which was recently reported to be regulated by cyclic diguanosine monophosphate (cyclic-di-GMP or c-di-GMP). Cyclic-di-GMP is a major second messenger involved in biofilm formation in many bacteria. Though cyclic-di-GMP is generally reported as a positive regulatory factor in biofilm formation, it represses biofilm formation in P. denitrificans. Furthermore, quorum sensing (QS) represses biofilm formation in this bacterium, which is also reported as a positive regulator of biofilm formation in most bacteria. The QS signal used in P. denitrificans is hydrophobic and is delivered through membrane vesicles. Studies on QS show that P. denitrificans can potentially form a thick biofilm but maintains a thin biofilm under normal growth conditions. In this review, we discuss the peculiarities of biofilm formation by P. denitrificans with the aim of deepening the overall understanding of bacterial biofilm formation and functions.
Collapse
Affiliation(s)
- Kana Morinaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2-17-2-1, Tsukisamu-higashi, Toyohira-ku, Sapporo, Japan
| | - Kohei Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
23
|
Zhao J, Li Y, Li Y, Yang H, Hu D, Jin B, Li Y. Application of humic acid changes the microbial communities and inhibits the expression of tetracycline resistance genes in 4-chlorophenol wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109463. [PMID: 31473396 DOI: 10.1016/j.jenvman.2019.109463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The occurrence and spread of antibiotic resistance genes (ARGs) are concerns that have threatened public health for many years. However, the effects of humic acid (HA) application on the expression of ARGs in chlorophenols wastewater treatment are rarely reported. In this study, we investigated the sludge performance, including the removal of pollutants, changes in the microbial communities, and the expression of tetracycline resistance genes (TRGs), to explore the function of HA in 4-chlorophenol (4-CP) wastewater treatment at different HA concentrations. The results showed that HA application did not significantly stimulate the removal of pollutants, other than the removal of PO43--P. High-throughput sequencing analysis indicated that the application of HA influenced the microbial communities and changed the expression level of TRGs. Quantitative real-time PCR analysis showed that the expression of numerous TRGs (tetC, tetG, tetW, tetX, and intI1) was significantly inhibited by the application of HA (25 mg L-1) during 4-CP wastewater treatment. In summary, HA application played an important role in treating chlorophenols wastewater and reducing the expression of TRGs. This work aimed to provide an efficient method of reducing the expression level of ARGs in industrial wastewater treatment, which has inevitable environmental significance.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Haojie Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Dehuan Hu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Badan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
24
|
Mohedano RA, Tonon G, Costa RHR, Pelissari C, Belli Filho P. Does duckweed ponds used for wastewater treatment emit or sequester greenhouse gases? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1043-1050. [PMID: 31326796 DOI: 10.1016/j.scitotenv.2019.07.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The reduction of greenhouse gases (GHG) emissions is important challenge in the wastewater treatment plants. In this way, the present study aimed to evaluate the GHG emissions and carbon dioxide fixation by duckweed ponds (DWP) applied to treat municipal wastewater in a polishing stage. Two pilot DWP (3000 L) were operated in a series with real wastewater receiving a flow rate of 200 L d-1 and organic load rate of 39 g COD ha-1 d-1. Beyond the standard physicochemical parameters for wastewater monitoring, the gases emissions from pond surface were measures by using a static flux chamber with infrared probes installed inside to detect CO2 and CH4 concentration. Operating the DWP with a load of 18.1 kg TN ha-1 d-1 and 2 kg TP ha-1 d-1, across 425 days of monitoring, higher COD and nutrient removal efficiency was identified (79%, 93% and 84% for COD, TN and TP, respectively). The CO2 emission rate ranged from 3048 to 6017 mg CO2 m-2 d-1 and the fixation rate ranged from 19,592 to 42,052 mg CO2 m-2 d-1. Methane emission was not detected (less than 0.1%). Moreover, low abundance of archaeal community was identified in both DWP. The results showed that in presented conditions, under low COD loading rate DWP could fix at least three times more CO2 than it emits, highlighting the sustainability of this natural technology.
Collapse
Affiliation(s)
- Rodrigo A Mohedano
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Brazil.
| | - Gustavo Tonon
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Brazil
| | - Rejane H R Costa
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Brazil
| | - Catiane Pelissari
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Brazil
| | - Paulo Belli Filho
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Brazil
| |
Collapse
|
25
|
Khan MF, Yu L, Tay JH, Achari G. Coaggregation of bacterial communities in aerobic granulation and its application on the biodegradation of sulfolane. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:206-214. [PMID: 31163349 DOI: 10.1016/j.jhazmat.2019.05.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/09/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Aerobic granulation is regarded as the future technology for wastewater treatment that can replace conventional activated sludge. In this study, two approaches of forming sulfolane degrading aerobic granules (SDAG) were successfully developed and evaluated. These include adaptation of pre-grown granules to sulfolane environment and coaggregation of pre-grown granules with bacterial culture native to sulfolane contaminated site. The adaption method required a longer period to form robust SDAG compared to coaggregation method where degradation of sulfolane was observed within 24 h. Electronic images revealed dominant filamentous bacteria on the surface of granules while DNA analysis unveiled the complexity of the dynamic change of microbial community during aerobic granule formation. The rate of sulfolane degradation by coaggregated granules reduced as the concentration of carbon source increased, nevertheless, the rate increased with increased biomass. In addition, the presence of co-contaminants can slightly impact the ability of newly cultivated granules to degrade sulfolane. Finally, the stability and settleability of the new aerobic granules was investigated under different environmental conditions. About 30% of the aerobic granules were lost after 14 d of operation without any continuous supply of carbon sources. The surviving SDAGs continued to display an intact structure coupled with good settleability.
Collapse
Affiliation(s)
- Muhammad Faizan Khan
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Linlong Yu
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
26
|
Gómez-Basurto F, Vital-Jácome M, Gómez-Acata ES, Thalasso F, Luna-Guido M, Dendooven L. Microbial community dynamics during aerobic granulation in a sequencing batch reactor (SBR). PeerJ 2019; 7:e7152. [PMID: 31528503 PMCID: PMC6717656 DOI: 10.7717/peerj.7152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
Microorganisms in aerobic granules formed in sequencing batch reactors (SBR) remove contaminants, such as xenobiotics or dyes, from wastewater. The granules, however, are not stable over time, decreasing the removal of the pollutant. A better understanding of the granule formation and the dynamics of the microorganisms involved will help to optimize the removal of contaminants from wastewater in a SBR. Sequencing the 16S rRNA gene and internal transcribed spacer PCR amplicons revealed that during the acclimation phase the relative abundance of Acinetobacter reached 70.8%. At the start of the granulation phase the relative abundance of Agrobacterium reached 35.9% and that of Dipodascus 89.7% during the mature granule phase. Fluffy granules were detected on day 43. The granules with filamentous overgrowth were not stable and they lysed on day 46 resulting in biomass wash-out. It was found that the reactor operation strategy resulted in stable aerobic granules for 46 days. As the reactor operations remained the same from the mature granule phase to the end of the experiment, the disintegration of the granules after day 46 was due to changes in the microbial community structure and not by the reactor operation.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
27
|
Świątczak P, Cydzik-Kwiatkowska A, Zielińska M. Treatment of the liquid phase of digestate from a biogas plant for water reuse. BIORESOURCE TECHNOLOGY 2019; 276:226-235. [PMID: 30640016 DOI: 10.1016/j.biortech.2018.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Biogas plants struggle with managing nitrogen-rich digestate from manure co-digestion. In this study, the biologically treated liquid phase of digestate from an aerobic granular sludge batch reactor (GSBR) containing oxidized nitrogen forms (NOx), phosphorus, COD and total suspended solids was post-denitrified (P-D), and then ultrafiltered. In P-D, various hydraulic retention times (from 10 to 60 h) and biomass concentrations (from 6 to 14 g MLSS/L) were tested. Then, waste glycerin (GL) was added to the P-D reactor at a CODGL/NOx ratio of 1.1, causing a large number of phosphate-accumulating and denitrifying Janibacter sp., and PHB-accumulating and denitrifying Paracoccus sp. and Thauera sp. to be present in granules, which improved nutrient removal. The effluent was ultrafiltered at 0.3 and 0.5 MPa. After biological treatment supported with GL and followed by ultrafiltration, the purified liquid phase of the digestate met FAO standards for water reuse for irrigation.
Collapse
Affiliation(s)
- Piotr Świątczak
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, 10-709 Olsztyn, Słoneczna 45 G, Poland.
| | - Agnieszka Cydzik-Kwiatkowska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, 10-709 Olsztyn, Słoneczna 45 G, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, 10-709 Olsztyn, Słoneczna 45 G, Poland
| |
Collapse
|
28
|
Rekik H, Zaraî Jaouadi N, Bouacem K, Zenati B, Kourdali S, Badis A, Annane R, Bouanane-Darenfed A, Bejar S, Jaouadi B. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol 2018; 125:514-525. [PMID: 30528991 DOI: 10.1016/j.ijbiomac.2018.12.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022]
Abstract
A new manganese peroxidase-producing white-rot basidiomycete fungus was isolated from symptomatic wood of the camphor trees Cinnamomum camphora (L.) at the Hamma Botanical Garden (Algeria) and identified as Trametes pubescens strain i8. The enzyme was purified (MnP TP55) to apparent electrophoretic homogeneity and biochemically characterized. The specific activity and Reinheitzahl value of the purified enzyme were 221 U/mg and 2.25, respectively. MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 55.2 kDa. The NH2-terminal sequence of the first 26 amino acid residues of MnP TP55 showed high similarity with those of white-rot fungal peroxidases. It revealed optimal activity at pH 5 and 40 °C. This peroxidase was completely inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in its tertiary structure. Interestingly, MnP TP55 showed higher catalytic efficiency, organic solvent-tolerance, dye-decolorization ability, and detergent-compatibility than that of horseradish peroxidase (HRP) from roots of Armoracia rustanica, manganese peroxidase from Bjerkandera adusta strain CX-9 (MnP BA30), and manganese peroxidase from Phanerochaete chrysosporium (MnP PC). Overall, the findings provide strong support for the potential candidacy of MnP TP55 for environmental applications, mainly the development of enzyme-based technologies for lignin biodegradation, textile-dyes biodecolorization, and detergent formulations.
Collapse
Affiliation(s)
- Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Bilal Zenati
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria
| | - Sidali Kourdali
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria
| | - Abdelmalek Badis
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria; Laboratory of Natural Products Chemistry and Biomolecules (LNPC-BioM), Faculty of Sciences, University of Blida 1, Road of Soumaâ, PO Box 270, 09000 Blida, Algeria
| | - Rachid Annane
- National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
29
|
Zhao J, Li Y, Li Y, Yu Z, Chen X. Effects of 4-chlorophenol wastewater treatment on sludge acute toxicity, microbial diversity and functional genes expression in an activated sludge process. BIORESOURCE TECHNOLOGY 2018; 265:39-44. [PMID: 29879649 DOI: 10.1016/j.biortech.2018.05.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effects of 4-chlorophenol (4-CP) wastewater treatment on sludge acute toxicity of luminescent bacteria, microbial diversity and functional genes expression of Pseudomonas were explored. Results showed that in the entire operational process, the sludge acute toxicity acclimated by 4-CP in a sequencing batch bioreactor (SBR) was significantly higher than the control SBR without 4-CP. The dominant phyla in acclimated SBR were Proteobacteria and Firmicutes, which also existed in control SBR. Some identified genera in acclimated SBR were responsible for 4-CP degradation. At the stable operational stages, the functional genes expression of Pseudomonas in acclimated SBR was down-regulated at the end of SBR cycle, and their expression mechanisms needed further research. This study provides a theoretical support to comprehensively understand the sludge performance in industrial wastewater treatment.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China.
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zeya Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Liu W, Jia H, Wang J, Zhang H, Xin C, Zhang Y. Microbial fuel cell and membrane bioreactor coupling system: recent trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23631-23644. [PMID: 29971742 DOI: 10.1007/s11356-018-2656-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Membrane bioreactor (MBR) and microbial fuel cell (MFC) are new technologies based on microbial process. MBR takes separation process as the core to achieve the high efficient separation and enrichment the beneficiation of microbes during the biological treatment. MFC is a novel technology based on electrochemical process to realize the mutual conversion between biomass energy and electric energy, in order to solve the problems of serious membrane fouling and low efficiency of denitrification in membrane bioreactor, the low power generation efficiency, and unavailability of bioelectric energy of MFC. In recent years, MFC-MBR coupling system emerged. It can effectively mitigate the membrane fouling and reduce the excess sludge production. Simultaneously, the electricity can be used effectively. The new coupling system has good prospects for development. In this paper, we summarized the research progresses of the two kinds of coupling systems in recent years and analyzed the coupling structure and forms. Based on the above, the future development fields of the MFC-MBR coupling system were prospected.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Hui Jia
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Jie Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongwei Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Changchun Xin
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yingjie Zhang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
31
|
El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring bacteria and selective enrichment of aryl halides-dechlorinating consortium from sedimentary environment near an oil refinery. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1495869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wael S. El-Sayed
- Department of Biology, Faculty of Science, Taibah University, Medina, KSA
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Yasser Elbahloul
- Department of Biology, Faculty of Science, Taibah University, Medina, KSA
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Visible-Light-Driven Photocatalytic Fuel Cell with an Ag-TiO2 Carbon Foam Anode for Simultaneous 4-Chlorophenol Degradation and Energy Recovery. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Zhao J, Li Y, Chen X, Li Y. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2018; 255:22-28. [PMID: 29414169 DOI: 10.1016/j.biortech.2018.01.106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Considering carbon sources are often supplied to satisfy the removal of high nitrogen and refractory pollutants in industrial wastewater, two sequencing batch reactors (SBRs) were used in this study to treat 1.5 ± 0.5 mg/L 4-chlorophenol (4-CP) wastewater containing ammonium nitrogen and phosphate with different carbon sources. The favorable removal efficiencies of influent COD, NH4+-N, PO43--P, and 4-CP suggested that the both SBRs were not influenced by supplying dissolved starch and sodium acetate, respectively. The phyla Proteobacteria and Bacteroidetes were dominant in both SBRs, while the dominant phylum Candidatus Saccharibacteria was only existed in SBR with carbon source of dissolved starch. The relative abundance of bacterial communities had significant differences at class, family, and order level in both SBRs. And the mutually dominant genus in both SBRs was only Gemmobacter, which was first found in 4-CP wastewater treatment. The changed extracellular polymeric substances (EPS) were related with microbial communities.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China.
| | - Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
34
|
Xia J, Ye L, Ren H, Zhang XX. Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biotechnol 2018; 102:3967-3979. [PMID: 29550989 DOI: 10.1007/s00253-018-8905-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Aerobic granular sludge (AGS), a self-immobilized microbial consortium containing different functional microorganisms, is receiving growing attention, since it has shown great technological and economical potentials in the field of wastewater treatment. Microbial community is crucial for the formation, stability, and pollutant removal efficiency of aerobic granules. This mini-review systematically summarizes the recent findings of the microbial community structure and function of AGS and discusses the new research progress in the microbial community dynamics during the granulation process and spatial distribution patterns of the microbiota in AGS. The presented information may be helpful for the in-depth theoretical study and practical application of AGS technology in the future.
Collapse
Affiliation(s)
- Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|