1
|
Zhang T, Tang L, Chang B, Gao J, Li J, Lyu J. Enhancement of light-driven adsorption efficacy through the integration of NiCo 2O 4 onto CeO 2 for photo-ozone catalytic degradation of toluene. CHEMOSPHERE 2024; 363:142756. [PMID: 38964721 DOI: 10.1016/j.chemosphere.2024.142756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
In this study, a co-catalytic route was explored to enhance the photo-ozone catalytic degradation of volatile organic compounds (VOCs). NiCo2O4 was loaded onto the surface of CeO2 nanoparticles to create a composite catalyst (10%NiCo2O4/CeO2). The integration of NiCo2O4 onto CeO2 enhanced the interaction between the catalyst and toluene, a representative VOC, resulting in significantly increased toluene adsorption without a corresponding increase in specific surface area. This integration also improved the utilization of charge carriers and conversion of ozone to O2-. Under visible light irradiation, H2O accumulated charge carriers at 10%NiCo2O4/CeO2's surface, facilitating both ozone utilization and toluene adsorption. Another benefit of NiCo2O4 loading was its ability to enhance the conversion efficiency of solar energy. Consequently, the toluene removal and mineralization efficiencies of 10%NiCo2O4/CeO2 were enhanced by 182% and 309% compared to CeO2, and by 201% and 357% compared to NiCo2O4, respectively. Overall, this study demonstrated a novel co-catalyst design strategy for enhancing the photo-ozone catalytic degradation of VOCs.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Tang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Baolin Chang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junxian Gao
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ji Li
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, Jiangsu, 215009, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jinze Lyu
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Fang S, Sun Y, Xu J, Zhang T, Wu Z, Li J, Gao E, Wang W, Zhu J, Dai L, Liu W, Zhang B, Zhang J, Yao S. Revealing the intrinsic nature of Ni-, Mn-, and Y-doped CeO 2 catalysts with positive, additive, and negative effects on CO oxidation using operando DRIFTS-MS. Dalton Trans 2023; 52:16911-16919. [PMID: 37927054 DOI: 10.1039/d3dt03001f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The catalytic activity of a transition metal (host) oxide can be influenced by doping with a second cation (dopant), but the key factors dominating the activity of the doped catalyst are still controversial. Herein, CeO2 doped with Ni, Mn, and Y catalysts prepared using aerosol pyrolysis were used to demonstrate the positive, negative, and additive effects on CO oxidation as a model reaction. Various characterization results indicated that Ni, Mn, and Y had been successfully doped into the CeO2 lattice. The catalytic activities of each catalyst for CO conversion were in the order of Ni-CeO2 > Mn-CeO2 > CeO2 > Y-CeO2. Operando DRIFTS-MS and various characterization methods were applied to reveal the intrinsic nature of the doping effects. The accumulation rate of the surface bidentate carbonates determined the CO oxidation. A definition to evaluate the doping effect was proposed, which is anticipated to be useful for developing a rational catalyst with a high CO oxidation activity. The CO oxidation reactivities displayed strong correlations with the surface factors obtained from operando DRIFTS-MS analysis and the structure factors from XPS and Raman analyses.
Collapse
Affiliation(s)
- Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Lianxin Dai
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Weihua Liu
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Buhe Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Junwei Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
3
|
Investigation of photocatalytic-proxone process performance in the degradation of toluene and ethyl benzene from polluted air. Sci Rep 2023; 13:4000. [PMID: 36899090 PMCID: PMC10006189 DOI: 10.1038/s41598-023-31183-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
In this study, toluene and ethylbenzene were degraded in the photocatalytic-proxone process using BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite. The simultaneous presence of ozone and hydrogen peroxide is known as the proxone process. Nanocomposite Synthesis was carried out using the solvothermal method. Inlet airflow, ozone concentrations, H2O2 concentrations, relative humidity, and initial pollutants concentrations were studied. The nanocomposite was successfully synthesized based on FT-IR, BET, XRD, FESEM, EDS element mapping, UV-Vis spectra and TEM analysis. A flow rate of 0.1 L min-1, 0.3 mg min-1 of ozone, 150 ppm of hydrogen peroxide, 45% relative humidity, and 50 ppmv of pollutants were found to be optimal operating conditions. Both pollutants were degraded in excess of 95% under these conditions. For toluene and ethylbenzene, the synergistic of mechanisms effect coefficients were 1.56 and 1.76, respectively. It remained above 95% efficiency 7 times in the hybrid process and had good stability. Photocatalytic-proxone processes were evaluated for stability over 180 min. The remaining ozone levels in the process was insignificant (0.01 mg min-1). The CO2 and CO production in the photocatalytic-proxone process were 58.4, 5.7 ppm for toluene and 53.7, and 5.5 ppm for ethylbenzene respectively. Oxygen gas promoted and nitrogen gas had an inhibitory effect on the effective removal of pollutants. During the pollutants oxidation, various organic intermediates were identified.
Collapse
|
4
|
Dong M, Li T, Xu J, Zhang T, Sun Y, Li N, Wu Z, Li J, Gao E, Zhu J, Yao S, Huang Y. Pd on anionic conductive ZrO2 for low-concentration methane oxidation: Synergetic effect of plasma and catalysis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Guo Z, Wei J, Wu Z, Guo Y, Song Y. Stabilized N coordinated Cu site in catalytic ozonation: The efficient generation of OH induced by surface hydroxyl groups based on the Lewis acid site. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Mehralipour J, Jonidi Jafari A, Gholami M, Esrafili A, Kermani M. Photocatalytic-Proxone Process Application in the Degradation of Toluene-Diisocyante, and Methylene Diphenyl Diisocyanate from polluted air. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Mehralipour J, Jafari AJ, Gholami M, Esrafili A, Kermani M. Synthesis of BiOI@NH 2-MIL125(Ti)/Zeolite as a novel MOF and advanced hybrid oxidation process application in benzene removal from polluted air stream. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:937-952. [PMID: 36406604 PMCID: PMC9672198 DOI: 10.1007/s40201-022-00837-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
One of the popular process in volatile organic compounds removal in gas phase is advanced oxidation process. We in this research, synthesized BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite as a novel nanocomposite to degradation of benzene in hybrid advanced oxidation process. The nanocomposite synthesized via solvothermal method. The effect of airflow, ozone gas concentration, hydrogen peroxide concentration, relative humidity and initial benzene concentration are the main parameters in the UV/O3/H2O2/ nanocomposite hybrid process that were studied. The characterization by XRD, FT-IR, FESEM, EDS element mapping, TEM, BET, and UV-vis spectra indicated that nanocomposite were well synthesized. Optimal operating conditions of the process were determined at air flow of 0.1 l/min, ozone concentration of 0.3 mg/min, hydrogen peroxide concentration of 150 ppm, relative humidity of 45 ± 3% and benzene concentration of 50 ppmv. Under these conditions, more than 99% of benzene was degraded. The synergistic effect coefficient of the mechanisms is 1.53. The nanocomposite had good stability in the hybrid process and remained above 99% efficiency up to 5 times. The ozone concentration residual the system was reported to be negligible (0.013 mg/min). The CO and CO2 emissions in the hybrid process was higher than other processes, which indicates better mineralization in the hybrid process. Formaldehyde, octane, noonan, phenol, decanoic acid were reported as the main by-products. The results indicated that UV/O3/H2O2/ nanocomposite hybrid process has fantastic efficiency in the degradation of benzene as one of the indicators of VOCs.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhai LF, Chen YY, Hu Y, Pan YX, Sun M, Yu J, Wang Y, Kong W. MOF-derived MnO@C with high activity for electric field-assisted catalytic oxidation of aqueous pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129670. [PMID: 35908403 DOI: 10.1016/j.jhazmat.2022.129670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The activation of oxygen (O2) under room condition is important for the utilization of air to perform oxidation. Here, we report a porous carbon-encapsulated MnO (MnO@C) derived from Mn metal-organic framework (MOF)grown in-situ on a graphite felt (GF) support. The MnO@C exhibits superior catalytic activity in an electric field-assisted catalytic oxidation system for the degradation of organic pollutants under room condition. The catalytic oxidation reaction applies a surface reaction pathway in which the surface-bound chemisorbed oxygen species are electro-oxidized and then involved in the oxidation of co-adsorbed organic pollutants. The abundant oxygen vacancies and oxygenated functional groups in MnO@C provide active sites for the chemisorption of O2, and its conductive mesoporous structure allows facile electrons and mass transfer. As a result, the MnO@C/GF catalyst displays quite high turnover frequency (TOF) value as 0.038 mg-TOC mg-MnO-1 min-1, which is 6.66 times higher than that of the MnO/GF catalyst prepared by impregnation method as a comparison. With the aid of + 1.0 V of positive electric field, the catalytic oxidation system exhibits extensive effectiveness in mineralizing a variety of dyes, pharmaceuticals, personal care products, and phenolic compounds under room condition with significantly enhanced biodegradability.
Collapse
Affiliation(s)
- Lin-Feng Zhai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China.
| | - Yue-Yue Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Xiao Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jun Yu
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| | - Wei Kong
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| |
Collapse
|
9
|
Xu J, Zhang T, Fang S, Wu Z, Gao E, Zhu J, Yao S, Li J, Dai L, Liu W, Zhang B, Zhang J. Revealing the significant differences of CO plasma oxidation on β-MnO2 catalyst in in- and post-plasma catalysis configurations using operando DRIFTS-MS. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Xu J, Zhang T, Fang S, Li J, Wu Z, Wang W, Zhu J, Gao E, Yao S. Exploring the roles of oxygen species in H 2 oxidation at β-MnO 2 surfaces using operando DRIFTS-MS. Commun Chem 2022; 5:97. [PMID: 36697951 PMCID: PMC9814464 DOI: 10.1038/s42004-022-00717-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding of the roles of oxygen species at reducible metal oxide surfaces under real oxidation conditions is important to improve the performance of these catalysts. The present study addresses this issue by applying a combination of operando diffuse reflectance infrared Fourier transform spectroscopy with a temperature-programmed reaction cell and mass spectrometry to explore the behaviors of oxygen species during H2 oxidation in a temperature range of 25-400 °C at β-MnO2 surfaces. It is revealed that O2 is dissociated simultaneously into terminal-type oxygen (M2+-O2-) and bridge-type oxygen (M+-O2--M+) via adsorption at the Mn cation with an oxygen vacancy. O2 adsorption is inhibited if the Mn cation is covered with terminal-adsorbed species (O, OH, or H2O). In a temperature range of 110-150 °C, OH at Mn cation becomes reactive and its reaction product (H2O) can desorb from the Mn cation, resulting in the formation of bare Mn cation for O2 adsorption and dissociation. At a temperature above 150 °C, OH is reactive enough to leave bare Mn cation for O2 adsorption and dissociation. These results suggest that bare metal cations with oxygen vacancies are important to improve the performance of reducible metal oxide catalysts.
Collapse
Affiliation(s)
- Jiacheng Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- School of Material Science and Engineering, Changzhou University, Changzhou, China
| | - Tiantian Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Shiyu Fang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Wei Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Jiali Zhu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Erhao Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China.
- School of Material Science and Engineering, Changzhou University, Changzhou, China.
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China.
| |
Collapse
|
11
|
Liu Z, Wang Y, Zhang G, Yang J, Liu S. Preparation of graphene-based catalysts and combined DBD reactor for VOC degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51717-51731. [PMID: 35246795 DOI: 10.1007/s11356-022-19483-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to compare the transformation of by-products between single dielectric barrier discharge (SDBD) and double dielectric barrier discharge (DDBD), to optimize the preparation of graphene-based catalysts and apply them in combination with DBD for volatile organic compound degradation. We compared the degradation performance of SDBD and DDBD, prepared, and characterized graphene-based catalysts. SEM, BET, XRD, and FTIR analyses showed that the morphologies and internal structures of the three catalysts were the best when 0.25 mL of [BMIM]PF6 was added. When MnOx/rGO, FeOx/rGO, and TiOx/rGO were used in combination with DDBD, the degradation rates of benzene were found to be 83.5%, 77.2%, and 63.8%, respectively, whereas the O3 transformation rates were 60%, 79%, and 40%, respectively. Moreover, the NO2 transformation rates were 70%, 55%, and 42.5%, respectively, whereas the NO transformation rates were 69%, 39%, and 33.5%, respectively. The CO2 selectivity was 62%, 51%, and 49%, respectively. MnOx/rGO exhibited superior performance in the degradation of benzene series, NO transformation, NO2 transformation, CO2 selectivity, and energy efficiency. On the other hand, FeOx/rGO exhibited superior performance for O3 transformation. Based upon the XPS analysis, it was found that Mn3O4 and Fe3O4 played a leading role in promoting the degradation of benzene series and the transformation of by-products.
Collapse
Affiliation(s)
- Zongyang Liu
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yifan Wang
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Road, Southwest Airport Economic Development Zone, Chengdu, 610225, Sichuan Province, China
| | - Gengmeng Zhang
- Sinopec Southwest Oil and Gas Field Branch, Chengdu, 610096, China
| | - Jie Yang
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Road, Southwest Airport Economic Development Zone, Chengdu, 610225, Sichuan Province, China
| | - Shengyu Liu
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Xuefu Road, Southwest Airport Economic Development Zone, Chengdu, 610225, Sichuan Province, China.
| |
Collapse
|
12
|
Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, Veerapandian SKP, De Geyter N, Wang C, Chen Q, Morent R. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154290. [PMID: 35248631 DOI: 10.1016/j.scitotenv.2022.154290] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.
Collapse
Affiliation(s)
- Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China; State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaqi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zuotong Zhao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Savita K P Veerapandian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium.
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rino Morent
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Ren J, Yao Z, Wei Q, Wang R, Wang L, Liu Y, Ren Z, Guo H, Niu Z, Wang J, Zhen Y. Catalytic degradation of chloramphenicol by water falling film dielectric barrier discharge and FeO catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zhai LF, Chen ZX, Qi JX, Sun M. Manganese-doped molybdenum oxide boosts catalytic performance of electrocatalytic wet air oxidation at ambient temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128245. [PMID: 35051773 DOI: 10.1016/j.jhazmat.2022.128245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mn-doping strategy was adopted to modify the structure of MoO2 for enhancing its catalytic activity towards room-temperature electrocatalytic wet air oxidation (ECWAO) reaction. A series of Mn-doped MoO2 were prepared on carbon support, and their structures were investigated to elucidate the productive effect of Mn doping on the catalytic activity of MoO2. The incorporation of MnIII/MnII into the MoO2 lattice induced the transformation from MoIV to MoV and created more oxygen vacancies. Such structural modifications promoted the electron transfer of MoO2 through the redox couples between MoVI/MoV/MoIV and MnIII/MnII, and facilitated the transformation from O2 to adsorbed oxygen species on MoO2 surface. As a result, the ECWAO catalytic activities of Mn-doped MoO2/graphite felt (MoO2/GF) outperformed the activity of MoO2/GF. Among the synthesized series, Mn0.066:MoO2/GF exhibited the highest activity with the maximum turnover frequency (TOF) promoted by 59% than the undoped MoO2/GF. Under the catalysis of Mn0.066:MoO2/GF, the ECWAO process obtains mineralization efficiencies generally above 85% in degrading typical pharmaceutics and person care products (PPCPs). These findings are anticipated to open up a new venue in the design and fabrication of highly active catalysts for air oxidation reactions by using the strategy of selective dopant-induced structure modification.
Collapse
Affiliation(s)
- Lin-Feng Zhai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zi-Xu Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jia-Xiang Qi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Sun
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
15
|
Chen S, Wang H, Dong F. Activation and characterization of environmental catalysts in plasma-catalysis: Status and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128150. [PMID: 34979387 DOI: 10.1016/j.jhazmat.2021.128150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plasma-catalysis has attracted great attentions in environmental/energy-related fields, but the synergetic mechanism still suffers intractable defects. Key issues are that what kind of catalysts are applicable for plasma system, how are they activated in plasma, and how to characterize them in plasma. This review systematically gives a comprehensive summarization of the selection of catalysts and its activation mechanism in plasma, based on the character of plasma, including physical effects containing the enhancement of discharge intensity and adsorption of reactants, and the utilization of plasma-generated active species such as·O, heat, O3, ultraviolet light and e* . Focus is given to the illumination of the activation mechanisms of catalysts when placed in plasma zone. Subsequently, the novel characterization techniques for catalysts, which may associate properties to performance, are critically overviewed. The challenges and opportunities for the activation and characterizations of catalysts are proposed, and future perspectives are suggested about where the efforts should be made. It is expected that a bridge between catalysts design and character of plasma can be built to shed light on the synergetic mechanism for plasma-catalysis and design of new plasma-catalysis systems.
Collapse
Affiliation(s)
- Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Haiqiang Wang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
16
|
Xia T, Yao S, Wu Z, Li G, Li J. High ratio of Ce 3+/(Ce 3++Ce 4+) enhanced the plasma catalytic degradation of n-undecane on CeO 2/γ-Al 2O 3. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127700. [PMID: 34799160 DOI: 10.1016/j.jhazmat.2021.127700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
n-Undecane (C11) is the main component of volatile organic compounds (VOCs) emitted from the printing industry, and its emission to the atmosphere should be controlled. In this study, a dielectric barrier discharge reactor coupled with CeO2/γ-Al2O3 catalysts was used to degrade C11. The effect of the chemical state of CeO2 on C11 degradation was evaluated by varying the CeO2 loading on γ-Al2O3. The C11 conversion and COx selectivity were as high as 92% and 80%, respectively, under mild reaction conditions of energy density 34 J/L and 423 K to degrade 134 mg/m3 C11 in a simulated air using 10 wt%CeO2 impregnated on γ-Al2O3. After analyses using in-situ plasma diffuse reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry, it was found that most of C11 were degraded to CO2, and the main by-products on catalyst surfaces were alcohols and ketones. It was concluded from X-ray photoemission spectroscopy that the good performance of the 10 wt%CeO2/γ-Al2O3 catalyst was due to its high Ce3+/(Ce3++Ce4+) ratio as well as the oxygen vacancies. The Ce3+/(Ce3++Ce4+) ratio of CeO2 on γ-Al2O3 is crucial for the degradation of C11, providing a further roadmap for the plasma catalytic oxidation of alkanes.
Collapse
Affiliation(s)
- Tongtong Xia
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China.
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China
| | - Guojian Li
- Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province, Hangzhou 310018, China
| | - Jing Li
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China; Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
17
|
Sanito RC, You SJ, Wang YF. Degradation of contaminants in plasma technology: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127390. [PMID: 34879580 PMCID: PMC8500698 DOI: 10.1016/j.jhazmat.2021.127390] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
The information of plasma technologies applications for environmental clean-up on treating and degrading metals, metalloids, dyes, biomass, antibiotics, pesticides, volatile organic compounds (VOCs), bacteria, virus and fungi is compiled and organized in the review article. Different reactor configurations of plasma technology have been applied for reactive species generation, responsible for the pollutants removal, hydrogen and methane production and microorganism inactivation. Therefore, in this review article, the reactive species from discharge plasma are presented here to provide the insight into the environmental applications. The combinations of plasma technology with flux agent and photocatalytic are also given in this review paper associated with the setup of the plasma system on the removal process of metals, VOCs, and microorganisms. Furthermore, the potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation via plasma technology is also described in this review paper. Detailed information of plasma parameter configuration is given to support the influence of the critical process in the plasma system to deal with contaminants.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC; Center for Environmental Risk Management, Chung Yuan Christian University, No. 200 Chung Pei Road, Chung-Li 32023, Taiwan, ROC.
| |
Collapse
|
18
|
Degradation of Benzene Using Dielectric Barrier Discharge Plasma Combined with Transition Metal Oxide Catalyst in Air. Catalysts 2022. [DOI: 10.3390/catal12020203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this paper, a uniform and stable dielectric barrier discharge plasma is presented for degradation of benzene combined with a transition metal oxide catalyst. The discharge images, waveforms of discharge current, and the optical emission spectra are measured to investigate the plasma characteristics. The effects of catalyst types, applied voltage, driving frequency, and initial VOCs concentration on the degradation efficiency of benzene are studied. It is found that the addition of the packed dielectric materials can effectively improve the uniformity of discharge and enhance the intensity of discharge, thus promoting the benzene degradation efficiency. At 22 kV, the degradation efficiencies of dielectric barrier discharge plasma packed with CuO, ZnO and Fe3O4 are 93.6%, 93.2% and 76.2%, respectively. When packing with ZnO, the degradation efficiency of the dielectric barrier discharge plasma is improved from 86.8% to 94.9%, as the applied voltage increases from 16 kV to 24 kV. The catalysts were characterized by XPS, XRD and SEM. The synergistic mechanism and the property of the catalyst are responsible for benzene degradation in the plasma–catalysis system. In addition, the main physiochemical processes and possible degradation mechanism of benzene are discussed.
Collapse
|
19
|
Issaka E, Amu-Darko JNO, Yakubu S, Fapohunda FO, Ali N, Bilal M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review. CHEMOSPHERE 2022; 289:133208. [PMID: 34890622 DOI: 10.1016/j.chemosphere.2021.133208] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Various chemical treatment techniques are involved in removing refractory organic compounds from water and wastewater using the oxidation reaction of hydroxyl radicals (•OH). The use of catalysts in advanced catalytic ozonation is likely to improve the decomposition of molecular ozone to generate highly active free radicals that facilitate the rapid and efficient mineralization and degradation of numerous organics. For the degradation of toxic organic pollutants in wastewater, the advanced catalytic ozonation process has been widely applied in recent years. Low utilization efficiency of ozone and ineffective mineralization of organic contaminants by ozone can be remedied with advanced catalytic ozonation. Advanced catalytic ozonation has gained popularity because of these merits. However, homogeneous catalytic ozonation has the disadvantage of producing secondary contaminants from the addition of metallic ions. Heterogeneous catalytic ozonation can overcome this drawback by utilizing metals, metallic oxides, and carbon materials as a catalyst of efficacy and stability. This review discusses various aspects of catalytic ozonation in wastewater treatment of pharmaceutical pollutants, application of catalytic ozonation process in typical wastewater, and prospects in advancing the techniques in heterogeneous catalytic ozonation.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
20
|
A highly efficient multi-stage dielectric barrier discharge (DBD)-catalytic system for simultaneous toluene degradation and O3 elimination. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Refluxing-coprecipitation to synthesize Fex−Mny/γ-Al2O3 catalyst for toluene removal in a nonthermal plasma-catalysis reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Zhu D, Chen Z, Li J, Wu Z, Gao E, Wang W, Yao S. Evaluation of Au/γ-Al 2O 3 nanocatalyst for plasma-catalytic decomposition of toluene. CHEMOSPHERE 2021; 285:131474. [PMID: 34329130 DOI: 10.1016/j.chemosphere.2021.131474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 05/26/2023]
Abstract
The emission of toluene into the atmosphere can seriously affect the environmental quality and endanger human health. A dielectric barrier discharge reactor filled with a small amount of Au nanocatalysts was used to decompose toluene in He and O2 gases mixtures at room temperature and atmospheric pressure. Normally, the oxidation of toluene using Au nanocatalysts suffers from low reaction activity and facile catalyst deactivation. Herein, the effects of Au loading, calcination time and calcination temperature were systematically investigated. It was found that 0.1 wt%Au/γ-Al2O3 calcined at 300 °C for 5 h can keep an average size around 6 nm with good dispersion on γ-Al2O3 surface and display the best catalytic performance. Moreover, the influences of energy density, gas flow rate, toluene concentration and O2 concentration on toluene degradation using 0.1 wt%Au/γ-Al2O3 were evaluated. It showed the best catalytic performance of near 100% conversion for toluene degradation under the reaction conditions of the energy density was 20 J/L, the gas flow rate was 300 mL/min, the concentration of toluene was 376 mg/m3 and the oxygen content was 10%. Combining experimental results and theoretical calculations, the values of reaction constant k were 8.6 × 10-5, 3.53 × 10-5 and 3.09 × 10-5 m6/(mol*J), when O2 concentration, power or flow rate changed, respectively. Therefore, O2 concentration has the greatest effect on toluene decomposition compared to other factors in the presence of Au/γ-Al2O3.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China; Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu, 213164, China
| | - Zhizong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang, 310018, China; Focused Photonics (Hangzhou) Inc., Zhejiang, 310052, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China; Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu, 213164, China.
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China; Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu, 213164, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang, 310018, China
| | - Erhao Gao
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China; Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu, 213164, China
| | - Wei Wang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China; Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu, 213164, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China; Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu, 213164, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang, 310018, China.
| |
Collapse
|
23
|
Saleem F, Rehman A, Ahmad F, Khoja AH, Javed F, Zhang K, Harvey A. Removal of toluene as a toxic VOC from methane gas using a non-thermal plasma dielectric barrier discharge reactor. RSC Adv 2021; 11:27583-27588. [PMID: 35480659 PMCID: PMC9037792 DOI: 10.1039/d1ra04772h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Methane is the main component of biogas, which could be used as a renewable energy source for electricity, source of heat, and biofuel production after upgrading from biogas. It also contains toxic compounds which cause environmental and human health problems. Therefore, in this work, the removal of a toxic compound (toluene) from methane gas was studied using a dielectric barrier discharge (DBD) reactor. It was observed that the removal of the toxic compound could be achieved from methane carrier gas using a dielectric barrier discharge reactor, and it depends on plasma input power. The maximum removal of the toxic compound was 85.9% at 40 W and 2.86 s. The major gaseous products were H2 and lower hydrocarbons (LHC) and the yield of these products also increases with input power. In the current study, the yield of gaseous products depends on the decomposition of toxic compounds and methane, because the decomposition of methane also produces H2 and lower hydrocarbons. The percentage yield of H2 increases from 0.43-4.74%. Similarly, the yield of LHC increases from 0.56-7.54% under the same reaction conditions. Hence, input power promoted the decomposition of the toxic compound and enhanced the yield of gaseous products.
Collapse
Affiliation(s)
- Faisal Saleem
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK .,Department of Chemical and Polymer Engineering, University of Engineering and Technology Faisalabad Campus Lahore Pakistan
| | - Abdul Rehman
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK .,Department of Chemical and Polymer Engineering, University of Engineering and Technology Faisalabad Campus Lahore Pakistan
| | - Farhan Ahmad
- Department of Chemical Engineering, University of Engineering and Technology Lahore Pakistan
| | - Asif Hussain Khoja
- Fossil Fuels Laboratory, Department of Thermal Energy Engineering, U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| | - Farhan Javed
- Department of Chemical and Polymer Engineering, University of Engineering and Technology Faisalabad Campus Lahore Pakistan
| | - Kui Zhang
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Adam Harvey
- School of Engineering, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
24
|
Jiang N, Li X, Kong X, Zhao Y, Li J, Shang K, Lu N, Wu Y. The post plasma-catalytic decomposition of toluene over K-modified OMS-2 catalysts at ambient temperature: Effect of K + loading amount and reaction mechanism. J Colloid Interface Sci 2021; 598:519-529. [PMID: 33951548 DOI: 10.1016/j.jcis.2021.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The present work is devoted to study the post plasma-catalytic (PPC) degradation of toluene using packed-bed discharge (PBD) plasma over K-modified manganese oxide octahedral molecular sieve (OMS-2) catalysts at ambient temperature. Compared to plasma alone, PPC can significantly improve the toluene degradation and mineralization performance simultaneously, and the generation of discharge byproducts and organic intermediates is suppressed. The catalytic capacity of OMS-2 for toluene degradation is greatly promoted by tuning potassium ions (K+) content in OMS-2 tunnel, which might be owing to the formation of more surface active oxygen species derived from weak Mn-O bonds, plenty of oxygen vacancies, as well as more superior low-temperature reducibility. Highest toluene degradation efficiency (89.4%) and COx selectivity (88.9%) can be achieved in plasma-catalysis system over K-modified OMS-2 sample with K/Mn molar ratio of 2 at the SIE of 658 J/L. A long-term stability test has also been successfully carried out to evaluate the stability of K-modified OMS-2 with the assistance of plasma. Possible reaction mechanism for plasma-catalytic degradation of toluene on K-modified OMS-2 catalyst has been proposed based on the plasma diagnosis, catalysts characterization, and organic intermediates identification. This work aims to gaina deeperunderstandingof plasma-catalytic degradation mechanism and provides an environmentally friendly and energy-efficient method for practical volatile organic compounds (VOCs) abatement in PPC process.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xuechuan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqi Kong
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Yonghe Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Jie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kefeng Shang
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Na Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, China; Institute of Electrostatics and Special Power, School of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Zhao X, Xu D, Wang Y, Zheng Z, Li K, Zhang Y, Zhan R, Lin H. Electric field assisted benzene oxidation over Pt-Ce-Zr nano-catalysts at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124349. [PMID: 33144006 DOI: 10.1016/j.jhazmat.2020.124349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
A novel catalytic system for benzene oxidation at low temperature is constructed by combining electric field with Pt-Ce-Zr nano-catalyst. The 1 wt% Pt/Ce0.75Zr0.25O2 catalyst assisted by electric field shows the best catalytic performance with 90% benzene conversion at 96.5 °C and excellent water resistance. The effect of electric field on catalysts and catalytic process is comprehensively investigated. The results of XRD, TEM, XPS and H2-TPR reveal that the electric field show negligible influence on the crystal structure and surface morphology of the catalyst, but it can lead to more oxygen vacancies. Therefore, more adsorbed oxygen with higher activity will be produced on the catalyst surface. The redox performance is improved due to the fact that valence distribution of Pt is changed in forms of more active sites composed of high valence oxides (PtO) generated in electric field. In situ DRIFTS is used to investigate the oxidation process of benzene and the results prove that electric field could accelerate the production and consumption of intermediate products, and produce new intermediate products such as carboxylic acid species, indicating that the introduction of electric field may open up a new rapid reaction path and promote the activation of benzene at low temperature.
Collapse
Affiliation(s)
- Xuteng Zhao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dejun Xu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yinan Wang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zuwei Zheng
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Li
- Shanghai Marine Diesel Engine Research Institute, Shanghai 200090, China; National Engineering Laboratory for Marine and Ocean Engineering Power System, Shanghai 200090, China
| | - Yiran Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Reggie Zhan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - He Lin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Jiang B, Xu K, Li J, Lu H, Fei X, Yao X, Yao S, Wu Z. Effect of supports on plasma catalytic decomposition of toluene using in situ plasma DRIFTS. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124203. [PMID: 33268207 DOI: 10.1016/j.jhazmat.2020.124203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Plasma catalysis technology has been demonstrated to be effective for the decomposition of volatile organic compounds (VOCs). It is highly desired to explore the effect of supports on VOCs oxidation processes during plasma catalysis. In this work, four supports of SiO2, ZSM-5-300, ZSM-5-38 and γ-Al2O3 loading with transition metal oxides were used to decompose toluene at room temperature. It was found that toluene decomposition with 1 wt%Mn/γ-Al2O3 was highest, which was strongly proportional to the ozone decomposition ability of the catalyst. The plasma catalytic decomposition of toluene over 1 wt% MnO2 on different supports were characterized using in situ plasma diffuse reflectance infrared Fourier transform spectrometer. The results showed that 1 wt%Mn/γ-Al2O3 could further catalyze toluene to carbonate and bicarbonate via the breakage of C-C bonds from benzoic acid, while that was difficult for 1 wt% Mn/SiO2, 1 wt%Mn/ZSM-5-300 and 1 wt%Mn/ZSM-5-38. The reaction mechanism of toluene decomposition on different catalysts were proposed.
Collapse
Affiliation(s)
- Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Kai Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China.
| | - Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Xiaodan Fei
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Xinlei Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China.
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
27
|
Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, Chen X, Yang Y, Gu H, Rinklebe J, Peng W. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124138. [PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
Collapse
Affiliation(s)
- Xiaochen Yue
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Nyuk Ling Ma
- Universiti Malaysia Terengganu, Fac Sci & Marine Environm, Terengganu 21030, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ruirui Guan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Xiangmeng Chen
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Yafeng Yang
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
28
|
Qin C, Guo M, Zheng Y, Yu R, Huang J, Dang X, Yan D. Two-component zeolite-alumina system for toluene trapping with subsequent nonthermal plasma mineralization. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Wang Y, Liao Z, Mathieu S, Bin F, Tu X. Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:123965. [PMID: 33017710 DOI: 10.1016/j.jhazmat.2020.123965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 05/26/2023]
Abstract
We have developed a hybrid machine learning (ML) model for the prediction and optimization of a gliding arc plasma tar reforming process using naphthalene as a model tar compound from biomass gasification. A linear combination of three well-known algorithms, including artificial neural network (ANN), support vector regression (SVR) and decision tree (DT) has been established to deal with the multi-scale and complex plasma tar reforming process. The optimization of the hyper-parameters of each algorithm in the hybrid model has been achieved by using the genetic algorithm (GA), which shows a fairly good agreement between the experimental data and the predicted results from the ML model. The steam-to-carbon (S/C) ratio is found to be the most critical parameter for the conversion with a relative importance of 38%, while the discharge power is the most influential parameter in determining the energy efficiency with a relative importance of 58%. The coupling effects of different processing parameters on the key performance of the plasma reforming process have been evaluated. The optimal processing parameters are identified achieving the maximum tar conversion (67.2%), carbon balance (81.7%) and energy efficiency (7.8 g/kWh) simultaneously when the global desirability index I2 reaches the highest value of 0.65.
Collapse
Affiliation(s)
- Yaolin Wang
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Zinan Liao
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Stéphanie Mathieu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Feng Bin
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.
| |
Collapse
|
30
|
Chang T, Chen Q, Fan H, Shen Z, Zhang B, Huang Y, Veerapandian SKP, De Geyter N, Morent R. Removal mechanism and quantitative control of trichloroethylene in a post-plasma-catalytic system over Mn–Ce/HZSM-5 catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00141h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimization of the TCE degradation process was achieved and the TCE degradation pathway in the PPC system was proposed.
Collapse
Affiliation(s)
- Tian Chang
- School of Environmental Science and Engineering
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
- Department of Environmental Science and Engineering
| | - Qingcai Chen
- School of Environmental Science and Engineering
- Shaanxi University of Science & Technology
- Xi'an 710021
- China
| | - Hao Fan
- Department of Environmental Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Bin Zhang
- Department of Environmental Science and Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics
- SKLLQG
- Institute of Earth Environment
- Chinese Academy of Sciences
- Xi'an 710049
| | - Savita K. P. Veerapandian
- Research Unit Plasma Technology
- Department of Applied Physics
- Faculty of Engineering and Architecture
- Ghent University
- 9000 Ghent
| | - Nathalie De Geyter
- Research Unit Plasma Technology
- Department of Applied Physics
- Faculty of Engineering and Architecture
- Ghent University
- 9000 Ghent
| | - Rino Morent
- Research Unit Plasma Technology
- Department of Applied Physics
- Faculty of Engineering and Architecture
- Ghent University
- 9000 Ghent
| |
Collapse
|
31
|
Luo X, Su T, Xie X, Qin Z, Ji H. The Adsorption of Ozone on the Solid Catalyst Surface and the Catalytic Reaction Mechanism for Organic Components. ChemistrySelect 2020. [DOI: 10.1002/slct.202003805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xuan Luo
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Rd. Nanning Guangxi P. R. China 530004
| | - Tongming Su
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Rd. Nanning Guangxi P. R. China 530004
| | - Xinling Xie
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Rd. Nanning Guangxi P. R. China 530004
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Rd. Nanning Guangxi P. R. China 530004
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering Guangxi University 100 Daxue Rd. Nanning Guangxi P. R. China 530004
- School of Chemistry Sun Yat-sen University 135 Xingang Xi Rd. Guangzhou P. R. China 510275
| |
Collapse
|
32
|
Li S, Dang X, Yu X, Yu R, Abbasd G, Zhang Q. High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123259. [PMID: 32593941 DOI: 10.1016/j.jhazmat.2020.123259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
A double dielectric barrier discharge (DDBD) reactor was established to decompose toluene with high energy efficiency. Differences in discharge characteristics including visual images, voltage-current waveforms, Lissajous figures, and temperature variation, were determined between the DDBD and SDBD reactors. Removal efficiency, mineralization rate, CO2 selectivity, and energy yield were used to evaluate the toluene abatement performance of the two reactors. Compared to the SDBD reactor, the DDBD reactor exhibited more uniform and stable discharges due to a change in discharge mode. In addition, the DDBD reactor's dissipated power and reactor temperature (including the gas, barrier and ground electrode) were significantly lower than those in the SDBD reactor. At 22-24 kV, the DDBD reactor showed a higher toluene removal efficiency and mineralization rate, while at 14-16 kV, the SDBD reactor exhibited higher respective value. The energy efficiency of the DDBD was 2.5-3 times that of the SDBD reactor, and the overall energy constant koverall of the DDBD reactor (1.47 mL/J) was significantly higher than that of the SDBD reactor (0.367 mL/J) as revealed by the kinetics study. Lastly, a plausible toluene degradation mechanism in the DDBD and SDBD reactors was proposed based on organic intermediates that formed during toluene decomposition.
Collapse
Affiliation(s)
- Shijie Li
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - Xiaoqing Dang
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China.
| | - Xin Yu
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - Rui Yu
- Research Center of Air Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ghulam Abbasd
- Department of Chemical Engineering and Technology, University of Gujrat, 50700 Pakistan
| | - Qian Zhang
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710055, China.
| |
Collapse
|
33
|
Zhang J, Liu Y, Yao X, Shao Q, Xu B, Long C. Enhanced moisture resistance of Cu/Ce catalysts for CO oxidation via Plasma-Catalyst interactions. CHEMOSPHERE 2020; 261:127739. [PMID: 32717516 DOI: 10.1016/j.chemosphere.2020.127739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Copper/cerium bimetallic catalyst is an efficient material for the removal of carbon monoxide, while the rapid deactivation under moisture-rich conditions in the conventional thermal-catalysis limited its wide application. Here, we investigated the plasma-assisted catalytic oxidation of CO over Cu/Ce oxides supported on γ-Alumina in comparison with the conventional thermal catalytic oxidation. The TOF values of the Cu/Ce catalysts showed that the plasma catalysis was the better catalytic system for CO oxidation (2.96 s-1 for thermal catalysis, 5.13 s-1 for plasma catalysis). Importantly, the energy barriers for plasma catalysis were much lower than that for thermal catalysis, especially under moisture-rich conditions (e.g. 130.3 kJ/mol versus 246.1 kJ/mol under 9.8 vol% water vapor). The loss of activity caused by water was reversible for the plasma process, but not for the thermal process. The Cu/Ce catalyst remained good stability within 60 h in the presence of 6.1% water for plasma oxidation, while the thermal catalytic activity declines gradually. Also, water could inhibit the formation of gas byproducts (O3 and NOx). The promoting role of plasma could be mainly ascribed to the enhanced strength of oxygen mobility and plasma-assisted decomposition of surface carbonate in the presence of water, as revealed by the in-situ NTP-TPR, XPS, and the ex-situ DRIFTS analyses.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yihan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiaohong Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Bowen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, China.
| |
Collapse
|
34
|
Ruan Y, Guo H, Li J, Liu Z, Jiang N, Wu Y. Enhanced removal of toluene by pulse discharge plasma coupled with MgO cathode and graphene Mn-Ce bimetallic oxide. CHEMOSPHERE 2020; 258:127334. [PMID: 32540536 DOI: 10.1016/j.chemosphere.2020.127334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Herein, MgO cathode and graphene Mn-Ce bimetallic oxide were utilized to jointly enhance the removal of toluene in pulsed discharge plasma (PDP). Compared to the common cathode, the MgO cathode enhanced the density of high energy electrons, and then induced to higher removal of toluene. However, the removal of toluene by PDP/MgO system was still insufficient, and there was a large amount of underutilized O3 in the products. Based on this, Mn-Ce/graphene catalysts were introduced into PDP/MgO system. The Mn-Ce (8:1)/graphene catalyst had the highest catalytic activity. Under the discharge power of 2.1 W, toluene degradation rate and CO2 selectivity increased by 27.5% and 22.0%, respectively. This was ascribed to the synergistic effect of the solid solution formed between MnOx and CeOx, increasing the proportion of Oads on the surface of the catalyst. The higher Oads/Olatt ratio lead to the better catalytic activity, which was conducive to the complete transformation of the intermediate products to CO2 and H2O. According to the detected products, the degradation pathway and the mechanism of toluene degradation were proposed finally. The PDP itself, field emission effect of MgO cathode and catalytic effect of Mn-Ce/graphene for jointly improve the toluene removal and CO2 selectivity.
Collapse
Affiliation(s)
- Yunxia Ruan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - He Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Zhengyan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nan Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
35
|
Yao S, Chen Z, Xie H, Yuan Y, Zhou R, Xu B, Chen J, Wu X, Wu Z, Jiang B, Tang X, Lu H, Nozaki T, Kim HH. Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor. CHEMOSPHERE 2020; 247:125863. [PMID: 31972485 DOI: 10.1016/j.chemosphere.2020.125863] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Plasma-catalysis technologies (PCTs) have the potential to control the emissions of volatile organic compounds, although their low-energy efficiency is a bottleneck for their practical applications. A plasma-catalyst reactor filled with a CeO2/γ-Al2O3 catalyst was developed to decompose toluene with a high-energy efficiency enhanced by the elevating reaction temperature. When the reaction temperature was raised from 50 °C to 250 °C, toluene conversion dramatically increased from 45.3% to 95.5% and the energy efficiency increased from 53.5 g/kWh to 113.0 g/kWh. Conversely, the toluene conversion using a thermal catalysis technology (TCT) exhibited a maximum of 16.7%. The activation energy of toluene decomposition using PCTs is 14.0 kJ/mol, which is far lower than those of toluene decomposition using TCTs, which implies that toluene decomposition using PCT differs from that using TCT. The experimental results revealed that the Ce3+/Ce4+ ratio decreased and Oads/Olatt ratio increased after the 40-h evaluation experiment, suggesting that CeO2 promoted the formation of the reactive oxygen species that is beneficial for toluene decomposition.
Collapse
Affiliation(s)
- Shuiliang Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Zhizong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Han Xie
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yuchen Yuan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ruowen Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Bingqing Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Junxia Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xinyue Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Tomohiro Nozaki
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hyun-Ha Kim
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8560, Japan
| |
Collapse
|
36
|
Wang J, Chen H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135249. [PMID: 31837842 DOI: 10.1016/j.scitotenv.2019.135249] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Ozonation process has been widely applied in water and wastewater treatment, such as for disinfection, for degradation of toxic organic pollutants. However, the utilization efficiency of ozone is low and the mineralization of organic pollutants by ozone oxidation is ineffective, and some toxic disinfection byproducts (DBPs) may be formed during ozonation process. Catalytic ozonation process can overcome these problems to some extent, which has received increasing attention in recent years. During catalytic ozonation, catalysts can promote O3 decomposition and generate active free radicals, which can enhance the degradation and mineralization of organic pollutants. In this paper, the history of ozonation application in water treatment was briefly reviewed. The properties of the ozone molecule, the ozonation types and several ozone-based water treatment processes were briefly introduced. Various catalysts for catalytic ozonation, including homogeneous and heterogeneous catalysts, such as metal ions, metal oxidizes, carbon-based materials and their possible catalytic mechanisms were analyzed and summarized in detail. Furthermore, some inconsistent results of previous research on catalytic ozonation were analyzed and discussed. The application of catalytic oxidation for the degradation of toxic organic pollutants, including phenols, pesticides, dyes, pharmaceuticals and others, was summarized. Finally, several key aspects of catalytic ozonation, such as pH effect, the catalyst performance, the catalytic mechanism were proposed, to which more attention should be paid in future study.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| | - Hai Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Qin C, Bai W, Liu P, Huang J, Guo H, Huang X, Dang X, Yan D. Enhanced plasma mineralization of adsorbed toluene by optimization the hybrid support of Ag–Mn catalysts. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Suarez H, Ramirez A, Bueno-Alejo CJ, Hueso JL. Silver-Copper Oxide Heteronanostructures for the Plasmonic-Enhanced Photocatalytic Oxidation of N-Hexane in the Visible-NIR Range. MATERIALS 2019; 12:ma12233858. [PMID: 31766651 PMCID: PMC6926640 DOI: 10.3390/ma12233858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Volatile organic compounds (VOCs) are recognized as hazardous contributors to air pollution, precursors of multiple secondary byproducts, troposphere aerosols, and recognized contributors to respiratory and cancer-related issues in highly populated areas. Moreover, VOCs present in indoor environments represent a challenging issue that need to be addressed due to its increasing presence in nowadays society. Catalytic oxidation by noble metals represents the most effective but costly solution. The use of photocatalytic oxidation has become one of the most explored alternatives given the green and sustainable advantages of using solar light or low-consumption light emitting devices. Herein, we have tried to address the shortcomings of the most studied photocatalytic systems based on titania (TiO2) with limited response in the UV-range or alternatively the high recombination rates detected in other transition metal-based oxide systems. We have developed a silver-copper oxide heteronanostructure able to combine the plasmonic-enhanced properties of Ag nanostructures with the visible-light driven photoresponse of CuO nanoarchitectures. The entangled Ag-CuO heteronanostructure exhibits a broad absorption towards the visible-near infrared (NIR) range and achieves total photo-oxidation of n-hexane under irradiation with different light-emitting diodes (LEDs) specific wavelengths at temperatures below 180 °C and outperforming its thermal catalytic response or its silver-free CuO illuminated counterpart.
Collapse
Affiliation(s)
- Hugo Suarez
- Institute of Nanoscience of Aragon (INA) and Department of Chemical and Environmental Engineering, C/Poeta Mariano Esquillor, s/n; Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Adrian Ramirez
- Institute of Nanoscience of Aragon (INA) and Department of Chemical and Environmental Engineering, C/Poeta Mariano Esquillor, s/n; Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia
| | - Carlos J. Bueno-Alejo
- Institute of Nanoscience of Aragon (INA) and Department of Chemical and Environmental Engineering, C/Poeta Mariano Esquillor, s/n; Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jose L. Hueso
- Institute of Nanoscience of Aragon (INA) and Department of Chemical and Environmental Engineering, C/Poeta Mariano Esquillor, s/n; Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto de Ciencia de Materiales de Aragon (ICMA), Consejo Superior de Investigaciones Cientificas (CSIC-University of Zaragoza), 50018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
39
|
Sun M, Fang LM, Liu JQ, Zhang F, Zhai LF. Electro-activation of O 2 on MnO 2/graphite felt for efficient oxidation of water contaminants under room condition. CHEMOSPHERE 2019; 234:269-276. [PMID: 31220660 DOI: 10.1016/j.chemosphere.2019.06.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/25/2019] [Accepted: 06/11/2019] [Indexed: 05/12/2023]
Abstract
The activation of oxygen (O2) under room condition is highly desirable for oxidative removal of organic pollutants in water. Herein, we report a graphite felt (GF)-supported α-MnO2 catalyst which is active for activating O2 with assistance of an anodic electric field. The electro-assisted catalytic wet air oxidation (ECWAO) process on MnO2/GF is able to rapidly degrade a variety of dyes, pharmaceutics and personal care products (PPCPs) under room condition. The congo red, basic fuchsin, neutral red and methylene blue are completely mineralized in 160 min, and the bisphenol A, triclosan and ciprofloxacin are mineralized by 89.9%, 81.5% and 65.4%, respectively, in 300 min. Mechanistic study indicates a surface-catalyzed non-free radical pathway for the oxidation of organic pollutants by O2 in the ECWAO process. The oxygen vacancies on MnO2 are identified as the catalytically active sites, at which oxygen atom is transferred from O2 to organic molecule through chemisorbed oxygen species. The anodic electric field assists such an oxygen transfer pathway by activating the complex of chemisorbed oxygen species and organic molecule through electro-oxidation reaction. The ECWAO process on MnO2/GF electrode exhibits a great potential for practical wastewater treatment under room condition.
Collapse
Affiliation(s)
- Min Sun
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li-Ming Fang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jia-Qin Liu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Feng Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lin-Feng Zhai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
40
|
Yao S, Chen Z, Weng S, Mao L, Zhang X, Han J, Wu Z, Lu H, Tang X, Jiang B, Nozaki T. Mechanism of CO 2-formation promotion by Au in plasma-catalytic oxidation of CH 4 over Au/γ-Al 2O 3 at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:698-704. [PMID: 30959283 DOI: 10.1016/j.jhazmat.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The plasma-catalytic oxidation of methane (CH4) is a potential reaction for controlling CH4 emissions at low temperatures. However, the mechanism of the CH4 plasma-catalytic oxidation is still unknown, which inhibits the further optimization of the oxidation process. Herein, a CH4 oxidation mechanism over an Au/γ-Al2O3 catalyst was proposed based on our experimental findings. CH4 is first decomposed to CH3 and H by the discharge, and a fraction of the CH3 is adsorbed on γ-Al2O3 surface for deep oxidation. The oxygen atoms produced by the discharge react with H2O to yield surface reactive OH groups that contribute to the CH3 oxidation. Oxygen atoms also promote the release of H2O from the surfaces of the γ-Al2O3 and Au/γ-Al2O3 and especially promote CO2 desorption from the surface of the Au/γ-Al2O3. When γ-Al2O3 was used as the catalyst, the CO2 selectivity was only 15 vol.%, and the CH4 conversion decreased after 7 h of plasma-catalytic oxidation. In contrast, when Au/γ-Al2O3 was used, the CO2 selectivity was 80 vol.%, long-term CH4 conversion was obtained. Experimental results revealed that Au was beneficial for the decomposition of surface carbonate species into gaseous CO2, whereas the carbonate species accumulated on γ-Al2O3 when Au was absent.
Collapse
Affiliation(s)
- Shuiliang Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhizong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Shan Weng
- Focused Photonics (Hangzhou) Inc., Zhejiang 310052, China
| | - Linai Mao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Xuming Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China
| | - Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Zhejiang 310018, China.
| | - Tomohiro Nozaki
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
41
|
Qin C, Guo H, Bai W, Huang J, Huang X, Dang X, Yan D. Kinetics study on non-thermal plasma mineralization of adsorbed toluene over γ-Al2O3 hybrid with zeolite. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:430-438. [PMID: 30784973 DOI: 10.1016/j.jhazmat.2019.01.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Non-thermal plasma mineralization of the adsorbed toluene over γ-Al2O3 hybrid with 13X, ZSM-5, and HY was investigated in a sequential adsorption and plasma oxidation system. The γ-Al2O3-13X was shown to have a better plasma oxidation performance with fewer by-products as compared to γ-Al2O3-ZSM-5 and γ-Al2O3-HY, which was due to its better discharge performance and O3 decomposition ability. For all of the tested materials, the plasma mineralization of the adsorbed toluene process had a good match with the pseudo-second-order kinetic model: kt = 1/n - 1/no, where n0 and n are the amount of adsorbed toluene (mmol) at discharge time = 0 and t, respectively. The overall reaction constant (k) was shown to be affected by the packing materials. The reason for the kinetic model following the pseudo-second-order in the sequential process was analyzed based on the chemical reaction and mineralization mechanism.
Collapse
Affiliation(s)
- Caihong Qin
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Hui Guo
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Wenwen Bai
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Jiayu Huang
- Research Center of Air Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xuemin Huang
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Xiaoqing Dang
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China.
| | - Dongjie Yan
- School of Environment & Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| |
Collapse
|
42
|
He F, Jiao Y, Wu L, Chen X, Liu S. Enhancement mechanism of Sn on the catalytic performance of Cu/KIT-6 during the catalytic combustion of chlorobenzene. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01169b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sn promoted the redox capacity of Cu2+ and Sn4+, thus greatly reducing the surface chloride-deposition during the chlorobenzene catalytic combustion process.
Collapse
Affiliation(s)
- Fei He
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Yumiao Jiao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Liyao Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Xi Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Shantang Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| |
Collapse
|
43
|
Abstract
In the context of coupling nonthermal plasmas with catalytic materials, CeO2 is used as adsorbent for toluene and combined with plasma for toluene oxidation. Two configurations are addressed for the regeneration of toluene saturated CeO2: (i) in plasma-catalysis (IPC); and (ii) post plasma-catalysis (PPC). As an advanced oxidation technique, the performances of toluene mineralization by the plasma-catalytic systems are evaluated and compared through the formation of CO2. First, the adsorption of 100 ppm of toluene onto CeO2 is characterized in detail. Total, reversible and irreversible adsorbed fractions are quantified. Specific attention is paid to the influence of relative humidity (RH): (i) on the adsorption of toluene on CeO2; and (ii) on the formation of ozone in IPC and PPC reactors. Then, the mineralization yield and the mineralization efficiency of adsorbed toluene are defined and investigated as a function of the specific input energy (SIE). Under these conditions, IPC and PPC reactors are compared. Interestingly, the highest mineralization yield and efficiency are achieved using the in-situ configuration operated with the lowest SIE, that is, lean conditions of ozone. Based on these results, the specific impact of RH on the IPC treatment of toluene adsorbed on CeO2 is addressed. Taking into account the impact of RH on toluene adsorption and ozone production, it is evidenced that the mineralization of toluene adsorbed on CeO2 is directly controlled by the amount of ozone produced by the discharge and decomposed on the surface of the coupling material. Results highlight the key role of ozone in the mineralization process and the possible detrimental effect of moisture.
Collapse
|