1
|
Lv J, Tan Z, An Z, Xu R, Zhang H, Guo M, Xiao F, Zhao M, Guo Y, Liu Y, Liu X, Ma J, Guo H. Co-exposure to polystyrene nanoplastics and F-53B induces vascular endothelial cell pyroptosis through the NF-κB/NLRP3 pathway. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137114. [PMID: 39764954 DOI: 10.1016/j.jhazmat.2025.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; trade name F-53B) is an alternative to perfluorooctane sulfonate (PFOS) and is widely detected in various environmental media and biological samples. Polystyrene nanoplastics (PS-NPs) have become a significant pollutant in the global environment. However, the comprehensive effects of both on the vascular system of mammals are still unclear. This study aims to explore the impacts of F-53B and PS-NPs exposure on the vascular system. Experimental findings indicate that both individual and co-exposure to F-53B and PS-NPs could lead to arterial wall thickening, increase collagen deposition, and reduce elasticity in mice. Moreover, co-exposure results in loss of endothelial integrity, impairs the repair capabilities of endothelial cells by inhibiting their proliferation and migration, and increases the levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Mechanistic studies reveal that F-53B and PS-NPs exposure activate the NF-κB/NLRP3 signaling pathway, promoting endothelial cell pyroptosis and ultimately inducing vascular damage. In summary, this study provides novel insights into the synergistic impact of F-53B and PS-NPs on vascular injury, shedding light on the mechanism underlying the combined toxicity of PS-NPs and other pollutants.
Collapse
Affiliation(s)
- Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Postdoctoral Station of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Xu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengwei Zhao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China
| | - Jingtao Ma
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Zhang Z, Cui M, Wang H, Yuan W, Liu Z, Gao H, Guan X, Chen X, Xie L, Chen S, He Y, Wang Q. Co-exposure to F-53B and nanoplastics induced hepatic glucolipid metabolism disorders by the PI3K-AKT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125771. [PMID: 39894156 DOI: 10.1016/j.envpol.2025.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Recent investigations suggest that the chemical compound F-53B (6:2 chlorinated polyfluorinated ether sulfonate) may pose risks of liver toxicity. Within environmental settings, F-53B attaches to microplastics and nanoplastics, which are capable of being consumed by diverse species. To investigate the synergistic effects on hepatotoxicity, adult male mice were subjected to F-53B at daily doses of 1, 10, and 100 μg/kg, NPs at 100 mg/kg per day, or a combination of both treatments for a duration of 2 months. The results indicated that NPs moderately increased the buildup of F-53B within both the liver and plasma. Co-exposure to F-53B (100 μg/kg/day) and NPs induced hepatocellular edema and elevated plasma ALT levels, which were rarely observed in groups exposed to F-53B or NPs alone. Additionally, we found that co-exposure decreased the concentrations of total cholesterol (TC) and triglycerides (TG) in both plasma and liver tissues, while increasing fasting plasma glucose and insulin levels. Transcriptomic analysis revealed that the PI3K-AKT signaling pathway is potentially involved in mediating hepatic metabolic disorders. Further experiments demonstrated that the combined treatment significantly suppressed the expression of FGF21, an upstream regulator of the PI3K-AKT pathway. This alteration resulted in the suppression of PI3K-regulated gene expression associated with glucose and lipid metabolism. The findings suggest that F-53B impairs hepatic glucolipid metabolism in mice by suppressing of the PI3K-AKT signaling cascade, with NPs amplifying its toxicity.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenke Yuan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchao Guan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lijie Xie
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shilin Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujie He
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Wu H, Feng Y, Zhang R, Xu H, Fu F. 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B) induced nephrotoxicity associated with oxidative stress, inflammation and fibrosis in mice. Chem Biol Interact 2025; 405:111290. [PMID: 39447956 DOI: 10.1016/j.cbi.2024.111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
6:2 Chlorinated polyfluoroalkyl ether sulfonate (trade name F-53B) is a substitute for perfluorooctane sulfonate (PFOS) used in the plating industry, and has been found in a range of environmental matrices and livings. There are numerous ways by which it is biotoxic to mammals. The kidneys are critical for maintaining homeostasis. However, little research has been conducted on how F-53B affects the kidneys. In this work, we investigated the renal toxicity of long-term oral F-53B treatment in C57BL/6J mice. Mice were allowed to drink F-53B freely at concentrations of 0, 0.057, 0.57, and 5.7 mg/L for 8 weeks. Renal oxidative stress, inflammation, and fibrosis were detected in mice exposed to F-53B, and the expression of related biochemical markers was significantly altered. Further investigations revealed that the TGF-β1/Smad3 and NF-κB signaling pathways may be associated with F-53B-induced renal fibrotic damage and inflammation. Overall, this study suggested that F-53B causes renal injury possibly via oxidative stress, activating the TGF-β1/Smad3 and NF-κB signaling pathways. This provides a foundation for further research into the harmful mechanism of F-53B in mammals.
Collapse
Affiliation(s)
- Hua Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yueying Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ruiying Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
| |
Collapse
|
4
|
Xu N, Pan Z, Guo W, Li S, Li D, Dong Y, Sun W. Impacts of rapidly urbanizing watershed comprehensive management on per- and polyfluoroalkyl substances pollution: Based on PFAS "diversity" assessment. WATER RESEARCH 2024; 261:122010. [PMID: 38986285 DOI: 10.1016/j.watres.2024.122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The impact of watershed comprehensive management (WCM) on per- and polyfluoroalkyl substances (PFAS) pollution in rapidly urbanizing areas remains unclear. In a typical rapidly urbanizing watershed of Shenzhen, China, we investigated temporal variations in contamination level, primary source and ecological risk of 50 emerging and legacy PFAS, as well as the replacement trends of emerging PFAS before and after WCM during a six-year sampling campaign. We found that large-scale dredging was a non-negligible factor in abnormally increased PFAS concentrations (6.43 %-456.16 %) during WCM through their release from river sediments. To better characterize the diverse and complex PFAS contamination, a novel pollution assessment method, PFAS "diversity", was adopted based on a modified Shannon-Weiner diversity index and Pielou evenness index, reflecting numbers of PFAS detected and how evenly each PFAS contributed to the total PFAS concentrations at specific sampling sites. Importantly, we found that the Pielou evenness index can indicate and quantify abnormal pollution sources (especially point sources) along the river. The results revealed that WCM did not effectively reduce total PFAS concentrations and diversity in the rapidly urbanizing watershed but obviously improved point source pollution. Furthermore, 6:2 polyfluorinated phosphate diesters and hexafluoropropylene oxide dimer acid (GenX) that posed high ecological risks emerged and the number of sampling sites with high risk increased from 16 to 20 after WCM. Finally, we summarize several important issues related to PFAS contamination during WCM and propose specific countermeasures, such as adopting environmental dredging and reducing the proportion of ecological water replenished by wastewater treatment plant effluent for better control of PFAS pollution. Our study highlighted the limited effectiveness of WCM in mitigating PFAS pollution and the importance of emerging contaminant regulation in rapidly urbanizing watersheds during WCM.
Collapse
Affiliation(s)
- Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China.
| | - Zhile Pan
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Wenjing Guo
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Dianbao Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Yanran Dong
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
5
|
Feng L, Lang Y, Feng Y, Tang X, Zhang Q, Xu H, Liu Y. Maternal F-53B exposure during pregnancy and lactation affects bone growth and development in male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116501. [PMID: 38805831 DOI: 10.1016/j.ecoenv.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
6:2 Chlorinated polyfluoroalkyl ether sulfonate (F-53B) is a new type of perfluorinated and polyfluoroalkyl substance (PFAS) that is used extensively in industry and manufacturing. F-53B causes damage to multiple mammalian organs. However, the impacts of F-53B on bone are unknown. Maternal exposure to F-53B is of particular concern because of the vulnerability of the developing fetus and newborn to contaminants from the mother. The goal of this study was to examine the impacts of maternal F-53B exposure on bone growth and development in offspring and to explore its underlying mechanisms. Herein, C57BL/6 J mice were given free access to deionized water containing 0, 0.57, or 5.7 mg/L F-53B during pregnancy and lactation. F-53B exposure resulted in impaired liver function, decreased IGF-1 secretion, dysregulation of bone metabolism and disruption of the dynamic balance between osteoblasts and osteoclasts in male offspring. F-53B inhibits longitudinal bone growth and development and causes osteoporosis in male offspring. F-53B may affect the growth and development of offspring bone via the IGF-1/OPG/RANKL/CTSK signaling pathway. This study provides new insights for the study of short stature and bone injury caused by F-53B.
Collapse
Affiliation(s)
- Lihua Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yuanyuan Lang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yueying Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaomin Tang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yang Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
6
|
Shi W, Zhang Z, Li M, Dong H, Li J. Reproductive toxicity of PFOA, PFOS and their substitutes: A review based on epidemiological and toxicological evidence. ENVIRONMENTAL RESEARCH 2024; 250:118485. [PMID: 38373549 DOI: 10.1016/j.envres.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have already drawn a lot of attention for their accumulation and reproductive toxicity in organisms. Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), two representative PFAS, are toxic to humans and animals. Due to their widespread use in environmental media with multiple toxicities, PFOA and PFOS have been banned in numerous countries, and many substitutes have been produced to meet market requirements. Unfortunately, most alternatives to PFOA and PFOS have proven to be cumulative and highly toxic. Of the reported multiple organ toxicities, reproductive toxicity deserves special attention. It has been confirmed through epidemiological studies that PFOS and PFOA are not only associated with reduced testosterone levels in humans, but also with an association with damage to the integrity of the blood testicular barrier. In addition, for women, PFOA and PFOS are correlated with abnormal sex hormone levels, and increase the risk of infertility and abnormal menstrual cycle. Nevertheless, there is controversial evidence on the epidemiological relationship that exists between PFOA and PFOS as well as sperm quality and reproductive hormones, while the evidence from animal studies is relatively consistent. Based on the published papers, the potential toxicity mechanisms for PFOA, PFOS and their substitutes were reviewed. For males, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Apoptosis and autophagy in spermatogenic cells; (2) Apoptosis and differentiation disorders of Leydig cells; (3) Oxidative stress in sperm and disturbance of Ca2+ channels in sperm membrane; (4) Degradation of delicate intercellular junctions between Sertoli cells; (5) Activation of brain nuclei and shift of hypothalamic metabolome. For females, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Damage to oocytes through oxidative stress; (2) Inhibition of corpus luteum function; (3) Inhibition of steroid hormone synthesis; (4) Damage to follicles by affecting gap junction intercellular communication (GJIC); (5) Inhibition of placental function. Besides, PFAS substitutes show similar reproductive toxicity with PFOA and PFOS, and are even more toxic to the placenta. Finally, based on the existing knowledge, future developments and direction of efforts in this field are suggested.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Tan Z, Lv J, Li H, An Z, Li L, Ke Y, Liu Y, Liu X, Wang L, Li A, Guo H. Angiotoxic effects of chlorinated polyfluorinated ether sulfonate, a novel perfluorooctane sulfonate substitute, in vivo and in vitro. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133919. [PMID: 38432093 DOI: 10.1016/j.jhazmat.2024.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA), a substitute for perfluorooctane sulfonate (PFOS), has been widely used in the Chinese electroplating industry under the trade name F-53B. The production and use of F-53B is keep increasing in recent years, consequently causing more emissions into the environment. Thus, there is a growing concern about the adverse effects of F-53B on human health. However, related research is very limited, particularly in terms of its toxicity to the vascular system. In this study, C57BL/6 J mice were exposed to 0.04, 0.2, and 1 mg/kg F-53B for 12 weeks to assess its impact on the vascular system. We found that F-53B exposure caused aortic wall thickening, collagen deposition, and reduced elasticity in mice. In addition, F-53B exposure led to a loss of vascular endothelial integrity and a vascular inflammatory response. Intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were found to be indispensable for this process. Furthermore, RNA sequencing analysis revealed that F-53B can decrease the repair capacity of endothelial cells by inhibiting their proliferation and migration. Collectively, our findings demonstrate that F-53B exposure induces vascular inflammation and loss of endothelial integrity as well as suppresses the repair capacity of endothelial cells, which ultimately results in vascular injury, highlighting the need for a more thorough risk assessment of F-53B to human health.
Collapse
Affiliation(s)
- Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, Hebei Province, PR China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, Hebei Province, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050000, PR China.
| |
Collapse
|
8
|
Li X, Zhang Q, Wang A, Shan S, Wang X, Wang Y, Wan J, Ning P, Hong C, Tian H, Zhao Y. Hepatotoxicity induced in rats by chronic exposure to F-53B, an emerging replacement of perfluorooctane sulfonate (PFOS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123544. [PMID: 38367689 DOI: 10.1016/j.envpol.2024.123544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
A plethora of studies have shown the prominent hepatotoxicity caused by perfluorooctane sulfonate (PFOS), yet the research on the causality of F-53 B (an alternative for PFOS) exposure and liver toxicity, especially in mammals, is largely limited. To investigate the effects that chronic exposure to F-53 B exert on livers, in the present study, male SD rats were administrated with F-53 B in a certain dose range (0, 1, 10, 100, 1000 μg/L, eight rats per group) for 6 months via drinking water and the hepatotoxicity resulted in was explored. We reported that chronic exposure to 100 and 1000 μg/L F-53 B induced remarkable histopathological changes in liver tissues such as distinct swollen cells and portal vein congestion. In addition, the increase of cytokines IL-6, IL-2, and IL-8 upon long-term administration of F-53 B demonstrated the high level of inflammation. Moreover, F-53 B exposure was revealed to disrupt the lipid metabolism in the rat livers, mainly manifesting as the upregulation of some proteins involved in lipid synthesis and degradation, including ACC, FASN, SREBP-1c as well as ACOX1. These findings provided new evidence for the adverse effects caused by chronic exposure to F-53 B in rodents. It is crucial for industries, regulatory agencies as well as the public to remain vigilant about the adverse health effects associated with the emerging PFOS substitutes such as F-53 B. Implementation of regular monitoring and risk assessments is of great importance to alleviate environmental concerns towards PFOS alternatives exposure, and furthermore, to minimize the latent health risks to the public health.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Aiqing Wang
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shan Shan
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueying Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yarong Wang
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianmei Wan
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ping Ning
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengjiao Hong
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hailin Tian
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yun Zhao
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Feng Y, Wu H, Feng L, Zhang R, Feng X, Wang W, Xu H, Fu F. Maternal F-53B exposure during pregnancy and lactation induced glucolipid metabolism disorders and adverse pregnancy outcomes by disturbing gut microbiota in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170130. [PMID: 38242462 DOI: 10.1016/j.scitotenv.2024.170130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
In the metal plating industry, F-53B has been widely used for almost half a century as a replacement for perfluorooctane sulfonate. However, F-53B can reach the food chain and affect human health. Pregnant women have distinct physiological characteristics and may thus be more sensitive to the toxicity of F-53B. In the present study, F-53B was added to the drinking water of pregnant mice during gestation and lactation at doses of 0 mg/L (Ctrl), 0.57 mg/L (L-F), and 5.7 mg/L (H-F). The aim was to explore the potential effects of F-53B on glucolipid metabolism and pregnancy outcomes in dams. Results showed that F-53B induced disordered glucolipid metabolism, adverse pregnancy outcomes, hepatic inflammation, oxidative stress and substantially altered related biochemical parameters in maternal mice. Moreover, F-53B induced remarkable gut barrier damage and gut microbiota perturbation. Correlation analysis revealed that gut microbiota is associated with glucolipid metabolism disorders and hepatic inflammation. The fecal microbiota transplant experiment demonstrated that altered gut microbiota induced by F-53B caused metabolic disorders, adverse pregnancy outcomes, and gut barrier damage. These results suggested that maternal mice exposed to F-53B during gestation and lactation had an increased risk of developing metabolic disorders and adverse pregnancy outcomes and highlighted the crucial role of the gut microbiota in this process, offering novel insights into the risk of F-53B to health.
Collapse
Affiliation(s)
- Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Hua Wu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Lihua Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Ruiying Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China.
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
10
|
Qiu Y, Gao M, Cao T, Wang J, Luo M, Liu S, Zeng X, Huang J. PFOS and F-53B disrupted inner cell mass development in mouse preimplantation embryo. CHEMOSPHERE 2024; 349:140948. [PMID: 38103655 DOI: 10.1016/j.chemosphere.2023.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a perfluoroalkyl and polyfluoroalkyl substance (PFAS) widely used in daily life. As its toxicity was confirmed, it has been gradually substituted by F-53B (chlorinated polyfluoroalkyl sulfonates, Cl-PFESAs) in China. PFOS exposure during prenatal development may hinder the development of preimplantation embryos, as indicated by recent epidemiological research and in vivo assays. However, the embryotoxicity data for F-53B are scarce. Furthermore, knowledge about the toxicity of F-53B and PFOS exposure to internal follicular fluid concentrations on early preimplantation embryo development remains limited. In this study, internal exposure concentrations of PFOS (10 nM) and F-53B (2 nM) in human follicular fluid were chosen to study the effects of PFAS on early mouse preimplantation embryo development. We found that both PFOS and F-53B treated zygotes exhibited higher ROS activity in 8-cell embryos but not in 2-cell stage embryos. PFOS and F-53B significantly affected the proportion and aggregation of the inner cell mass (ICM) in the blastocyst, but not the total cell number. Mouse embryonic stem cells (mESCs, isolated from the ICM) and embryoid body (EB) assays were employed to assess the toxicity of PFOS and F-53B on the development and differentiation of embryonic pluripotent cells. These results suggested that mESCs exhibited more DNA damage and abnormal germ layer differentiation after brief exposure to PFOS or F-53B. Finally, RNA-sequencing revealed that PFOS and F-53B exposure affected mESCs biosynthetic processes and chromatin-nucleosome assembly. Our results indicate that F-53B has potential risks as an alternative to PFOS, which disrupts ICM development and differentiation.
Collapse
Affiliation(s)
- Yanling Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaowen Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
11
|
Rock KD, Polera ME, Guillette TC, Starnes HM, Dean K, Watters M, Stevens-Stewart D, Belcher SM. Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray's Creek North Carolina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9567-9579. [PMID: 37340551 PMCID: PMC10802174 DOI: 10.1021/acs.est.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Central North Carolina (NC) is highly contaminated with per- and polyfluoroalkyl substances (PFAS), in part due to local fluorochemical production. Little is known about the exposure profiles and long-term health impacts for humans and animals that live in nearby communities. In this study, serum PFAS concentrations were determined using liquid chromatography high-resolution mass spectrometry and diagnostic clinical chemistry endpoints were assessed for 31 dogs and 32 horses that reside in Gray's Creek NC at households with documented PFAS contamination in their drinking water. PFAS were detected in every sample, with 12 of the 20 PFAS detected in ≥50% of samples from each species. The average total PFAS concentrations in horses were lower compared to dogs who had higher concentrations of PFOS (dogs 2.9 ng/mL; horses 1.8 ng/mL), PFHxS (dogs 1.43 ng/mL, horses < LOD), and PFOA (dogs 0.37 ng/mL; horses 0.10 ng/mL). Regression analysis highlighted alkaline phosphatase, glucose, and globulin proteins in dogs and gamma glutamyl transferase in horses as potential biomarkers associated with PFAS exposure. Overall, the results of this study support the utility of companion animal and livestock species as sentinels of PFAS exposure differences inside and outside of the home. As in humans, renal and hepatic health in domestic animals may be sensitive to long-term PFAS exposures.
Collapse
Affiliation(s)
- Kylie D Rock
- Center for Environmental and Health Effects of PFAS, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Madison E Polera
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Theresa C Guillette
- Oak Ridge Institute for Science and Education Research Participation Program, Oak Ridge, Tennessee 37831, United States
| | - Hannah M Starnes
- Center for Environmental and Health Effects of PFAS, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kentley Dean
- Southern Oaks Animal Hospital, Hope Mills, North Carolina 28348, United States
| | - Mike Watters
- Gray's Creek Residents United against PFAS in Our Wells & Rivers, Gray's Creek, North Carolina 28348, United States
| | - Debra Stevens-Stewart
- Gray's Creek Residents United against PFAS in Our Wells & Rivers, Gray's Creek, North Carolina 28348, United States
| | - Scott M Belcher
- Center for Environmental and Health Effects of PFAS, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Chen L, Xie Y, Li M, Mortimer M, Li F, Guo LH. Toxicological Mechanisms of Emerging Per-/poly-fluoroalkyl Substances: Focusing on Transcriptional Activity and Gene Expression Disruption. Toxicology 2023:153566. [PMID: 37263573 DOI: 10.1016/j.tox.2023.153566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| |
Collapse
|
13
|
Li C, Jiang L, Qi Y, Zhang D, Liu X, Han W, Ma W, Xu L, Jin Y, Luo J, Zhao K, Yu D. Integration of metabolomics and proteomics reveals the underlying hepatotoxic mechanism of perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) in primary human hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114361. [PMID: 36508832 DOI: 10.1016/j.ecoenv.2022.114361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) are ubiquitous in various environmental and human samples. They have been reported to have hepatotoxicity effects, but the potential mechanisms remain unclear. Herein, we integrated metabolomics and proteomics analysis to investigate the altered profiles in metabolite and protein levels in primary human hepatocytes (PHH) exposed to 6:2 Cl-PFESA and PFOS at human exposure relevant concentrations. Our results showed that 6:2 Cl-PFESA exhibited higher perturbation effects on cell viability, metabolome and proteome than PFOS. Integration of metabolomics and proteomics revealed that the alteration of glycerophospholipid metabolism was the critical pathway of 6:2 Cl-PFESA and PFOS-induced lipid metabolism disorder in primary human hepatocytes. Interestingly, 6:2 Cl-PFESA-induced cellular metabolic process disorder was associated with the cellular membrane-bounded signaling pathway, while PFOS was associated with the intracellular transport process. Moreover, the disruption effects of 6:2 Cl-PFESA were also involved in inositol phosphate metabolism and phosphatidylinositol signaling system. Overall, this study provided comprehensive insights into the hepatic lipid toxicity mechanisms of 6:2 Cl-PFESA and PFOS in human primary hepatocytes.
Collapse
Affiliation(s)
- Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lidan Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Donghui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wenchao Han
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wanli Ma
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Jin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiao Luo
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
14
|
Yang J, Chen Y, Luan H, Li J, Liu W. Persistent impairment of gonadal development in rare minnow (Gobiocypris rarus) after chronic exposure to chlorinated polyfluorinated ether sulfonate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106256. [PMID: 35917675 DOI: 10.1016/j.aquatox.2022.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The delayed and persistent adverse effects caused by developmental exposure to per- and poly-fluorinated substances are of significant concern. Juvenile rare minnows (Gobiocypris rarus), were exposed to chlorinated polyfluoroalkyl ether sulfonate (Cl-PFESA) at measured medium concentrations of 86.5 μg/L, 162 μg/L and 329 μg/L, for 4 weeks followed by 12 weeks of depuration. After 4 weeks of exposure, the body weight and length of the juvenile fish were increased compared to controls. Gene expression of gnrh3, lhβ, and cyp19a was decreased, and ar and erα were upregulated. Transcriptomic analysis revealed enrichment of multiple pathways related to gonadal development. After 12 weeks of depuration, the gonadosomatic indices were decreased in female fish in a concentration-dependent manner, with a significant decrease to 59% of control in 329 μg/L group. Histological analysis found increasing numbers of degenerating oocytes and perinucleolar oocytes, and decreasing numbers of mature vitellogenic oocytes in female fish treated by Cl-PFESA. Enlarged interstitial space of the testis was observed in the exposed male fish. Gene expression levels of gnrh3, lhβ, ar, erα, and vtg were upregulated in the adult fish. Chronic developmental exposure to Cl-PFESA caused persistent effects on gonadal development of fish, highlighting the necessity of a comprehensive ecological risk assessment.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yumeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
15
|
Developing a QSPR Model of Organic Carbon Normalized Sorption Coefficients of Perfluorinated and Polyfluoroalkyl Substances. Molecules 2022; 27:molecules27175610. [PMID: 36080379 PMCID: PMC9457706 DOI: 10.3390/molecules27175610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Perfluorinated and polyfluoroalkyl substances (PFASs) are known for their long-distance migration, bioaccumulation, and toxicity. The transport of PFASs in the environment has been a source of increasing concerned. The organic carbon normalized sorption coefficient (Koc) is an important parameter from which to understand the distribution behavior of organic matter between solid and liquid phases. Currently, the theoretical prediction research on log Koc of PFASs is extremely limited. The existing models have limitations such as restricted application fields and unsatisfactory prediction results for some substances. In this study, a quantitative structure–property relationship (QSPR) model was established to predict the log Koc of PFASs, and the potential mechanism affecting the distribution of PFASs between two phases from the perspective of molecular structure was analyzed. The developed model had sufficient goodness of fit and robustness, satisfying the model application requirements. The molecular weight (MW) related to the hydrophobicity of the compound; lowest unoccupied molecular orbital energy (ELUMO) and maximum average local ionization energy on the molecular surface (ALIEmax), both related to electrostatic properties; and the dipole moment (μ), related to the polarity of the compound; are the key structural variables that affect the distribution behavior of PFASs. This study carried out a standardized modeling process, and the model dataset covered a comprehensive variety of PFASs. The model can be used to predict the log Koc of conventional and emerging PFASs effectively, filling the data gap of the log Koc of uncommon PFASs. The explanation of the mechanism of the model has proven to be of great value for understanding the distribution behavior and migration trends of PFASs between sediment/soil and water, and for estimating the potential environmental risks generated by PFASs.
Collapse
|
16
|
Dickman RA, Aga DS. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129120. [PMID: 35643010 DOI: 10.1016/j.jhazmat.2022.129120] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
The fate, effects, and treatment of per- and polyfluoroalkyl substances (PFAS), an anthropogenic class of chemicals used in industrial and commercial production, are topics of great interest in recent research and news cycles. This interest stems from the ubiquity of PFAS in the global environment as well as their significant toxicological effects in humans and wildlife. Research on toxicity, sequestration, removal, and degradation of PFAS has grown rapidly, leading to a flood of valuable knowledge that can get swamped out in the perpetual rise in the number of publications. Selected papers from the Journal of Hazardous Materials between January 2018 and May 2022 on the toxicity, sequestration, and degradation of PFAS are reviewed in this article and made available as open-access publications for one year, in order to facilitate the distribution of critical knowledge surrounding PFAS. This review discusses routes of toxicity as observed in mammalian and cellular models, and the observed human health effects in exposed communities. Studies that evaluate of toxicity through in-silico approaches are highlighted in this paper. Removal of PFAS through modified carbon sorbents, nanoparticles, and anion exchange materials are discussed while comparing treatment efficiencies for different classes of PFAS. Finally, various biotic and abiotic degradation techniques, and the pathways and mechanisms involved are reviewed to provide a better understanding on the removal efficiencies and cost effectiveness of existing treatment strategies.
Collapse
Affiliation(s)
- Rebecca A Dickman
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
17
|
Luo K, Huang W, Zhang Q, Liu X, Nian M, Wei M, Wang Y, Chen D, Chen X, Zhang J. Environmental exposure to legacy poly/perfluoroalkyl substances, emerging alternatives and isomers and semen quality in men: A mixture analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155158. [PMID: 35421474 DOI: 10.1016/j.scitotenv.2022.155158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/OBJECTIVES Multiple studies have examined the relationship between PFAS and semen quality, but none has explored the associations of PFAS mixture that includes emerging alternatives and branched isomers. METHODS 22 PFAS, including 10 linear legacy PFAS, 7 branched isomers, 3 short chain alternatives and 2 components of F53B [e.g., 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFESA)] were quantified in blood plasma among 740 healthy men. Five semen quality parameters (i.e., volume, count, concentration, total motility and progressive rate) were assessed. Multiple linear regression and three multiple pollutant models (i.e., adaptive elastic net regression, quantile based g-computation, and XGBoost method) were used to assess the associations of individual PFAS and PFAS mixture with semen quality and the potential interactive effects among congeners. RESULTS After adjusting for selected confounders, perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) presented significant and negative associations with sperm count [βAENET = -0.09 (95%CI: -0.14, -0.03) for PFBS, and -0.16 (95%CI: -0.25, -0.07) for PFHxS] and sperm concentration [-0.04 (95%CI: -0.08, -0.001) for PFBS and -0.11 (95%CI: -0.17, -0.04) for PFHxS]. 6:2 Cl-PFESA showed negative associations with total motility (-2.33, 95%CI: -3.80, -0.86) and progressive rate (-1.46, 95%CI: -2.79, -0.12). But perfluoroheptanesulfonic acid (PFHpS) was positively associated with sperm count and concentration. These associations were supported by the importance assessment of these four congeners in XGBoost analyses. However, no associations were found between PFAS mixture or branched isomers and semen quality; nor were there significant interactions among PFAS congeners. CONCLUSIONS In the current cross-sectional study, we found that two emerging PFAS replacements (i.e., 6:2 Cl-PFESA and PFBS) and PFHxS exposure were associated with reduced semen concentration, total sperm count and motility in men. Meanwhile, significant positive associations between PFHpS and sperm count and concentration were also observed. But there were no consistent associations between PFAS mixture, branched isomers and semen quality.
Collapse
Affiliation(s)
- Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Wei Huang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Xiaotu Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mengdan Wei
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Chen
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China; Hainan Women and Children's Medical Center, Haikou, Hainan 570100, China.
| |
Collapse
|
18
|
Wang Q, Huang J, Liu S, Wang C, Jin Y, Lai H, Tu W. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 166:107351. [PMID: 35738203 DOI: 10.1016/j.envint.2022.107351] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been reported to induce hepatotoxicity in wildlife and humans. Novel PFOS alternatives have been widely used following restrictions on PFOS, but little is known about their potential toxicity. Here, the first comprehensive investigation on the chronic hepatotoxicity and underlying molecular mechanisms of PFOS, 6:2Cl-PFESA (F-53B), and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) was carried out on adult zebrafish through a histopathological examination, biochemical measurement, and multi-omics analysis. PFOS and its alternatives caused changes in liver histopathology and liver function indices in the order of F-53B > PFOS > OBS, which was consistent with their concentration in the liver. In silico modeling and transcriptional profiles suggested that the aberrant hepatic lipid metabolism induced by F-53B and PFOS was initiated by the action on peroxisome proliferator-activated receptor γ (PPARγ), which triggered changes in downstream genes transcription and led to an imbalance between lipid synthesis and expenditure. Gut microbiome analysis provided another novel mechanistic perspective that changes in the abundance of Legionella, Ralstonia, Brevundimonas, Alphaproteobacteria, Plesiomonas, and Hyphomicrobium might link to alterations in the PPAR pathway based on their significant correlation. This study provides insight into the molecular mechanisms of hepatotoxicity induced by PFOS and its novel alternatives and highlights the need for concern about their environmental exposure risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
19
|
Nian M, Huo X, Zhang J, Mao Y, Jin F, Shi Y, Zhang J. Association of emerging and legacy per- and polyfluoroalkyl substances with unexplained recurrent spontaneous abortion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113691. [PMID: 35643033 DOI: 10.1016/j.ecoenv.2022.113691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Emerging per- and polyfluoroalkyl substances (PFAS) alternatives are increasingly used in daily life. Although legacy PFAS have been associated with miscarriage in previous studies, it remains unknown whether exposure to emerging and legacy PFAS has any impact on the risk of unexplained recurrent spontaneous abortion (URSA). We conducted a case-control study with 464 URSA cases who had at least 2 unexplained miscarriages and 440 normal controls who had at least one normal livebirth. Concentrations of 21 PFAS in plasma, including three emerging PFAS alternatives, eight linear and branched PFAS isomers, four short-chain PFAS, and six legacy PFAS, were measured by ultra-performance liquid chromatography coupled with a tandem mass spectrometry (UPLC-MS/MS). Multiple logistic regression was applied to evaluate the relationship between PFAS and URSA risk. Perfluorooctanoic acid (PFOA, median: 6.18 ng/mL), perfluorooctane sulfonate (PFOS, median: 4.10 ng/mL), and 6:2 chlorinated perfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA, median: 2.27 ng/mL) were the predominant PFAS in the controls. Exposure to 6:2 Cl-PFESA [adjusted odds ratio (aOR) = 1.18 (95% CI: 1.00, 1.39)] and hexafluoropropylene oxide dimer acid (HFPO-DA) [aOR = 1.35 (95% CI: 1.15, 1.59)] were significantly associated with increased risks of URSA. Women with older age (>30 years old) had a stronger association between PFAS and URSA. Our results suggest that emerging PFAS alternatives may be an important risk factor for URSA.
Collapse
Affiliation(s)
- Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaona Huo
- Obstetrics Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250001, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Yuhua Shi
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250001, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
20
|
You D, Chang X, Guo L, Xie W, Huang S, Li X, Chai H, Wang Y. Per- and polyfluoroalkyl substances (PFASs) in the blood of police and Beagle dogs from Harbin, China: Concentrations and associations with hematological parameters. CHEMOSPHERE 2022; 299:134367. [PMID: 35358559 DOI: 10.1016/j.chemosphere.2022.134367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) have been omnipresent in the environment and marine organisms. However, little is known about these compounds and their associations with hematological parameters in dogs. In this research, we investigated the concentrations and distributions of PFASs in the blood of dogs and explored the associations between PFASs concentrations in blood and hematological parameters. Perfluorooctanoate (PFOA) was found to be the dominant PFAS in the blood (54.23%), followed by perfluorobutyric acid (PFBA) (16.05%) and perfluorooctanesulfonate (PFOS) (12.05%). On average, PFASs concentration in dogs was 3.553 ng/mL (SD: 2.146). Moreover, age is a key factor influencing the levels of PFBA, PFOA, and PFBS in males, as well as seven PFASs (6:2 Cl-PFESA, PFBA, PFOA, PFOS, PFHxS, PFDA, and PFNA) in female dogs' blood. The results revealed that PFHxS in dietary food accounted for most of the total daily PFASs consumption. We also discovered that greater PFASs exposure (including PFOA and PFOS) could significantly increase amylase (AMY) and decrease cholesterol (CHOL) levels. Furthermore, there are linear relationships between PFDA, PFNA and many biochemical parameters (AMY, CHOL, albumin/globulin (A/G), blood urea nitrogen (BUN), alkaline phosphatase (ALP), creatinine (CREA)). Thus, PFAS accumulation has a certain influence on dogs' health, and we must pay attention to the potential threat posed by these elements to dogs.
Collapse
Affiliation(s)
- Dan You
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| | - Xiaochen Chang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Lijun Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| | - Wei Xie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| | - Shuping Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| | - Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| | - Yajun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, PR China.
| |
Collapse
|
21
|
Huang J, Wang Q, Liu S, Lai H, Tu W. Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127950. [PMID: 34894504 DOI: 10.1016/j.jhazmat.2021.127950] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
6:2 Chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are widely used as perfluorooctane sulfonate (PFOS) alternatives in the Chinese market. Here, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B, and OBS for 21 days to investigate the comparative immunotoxicity of these three per- and polyfluoroalkyl substances (PFAS). PFOS induced more severe oxidative stress in the liver than F-53B and OBS, and these three PFAS induced similar anti-inflammatory effects by repressing the expression of pro-inflammatory cytokines. The intestinal microbiota analysis showed that the relative abundance of Plesiomonas, Aeromonas, Cetobacterium, Shewanella, and Vibrio changed with the same trend in the three PFAS treatment groups. Furthermore, the PFAS increased the expression of hepcidin, muc, the immune-related genes mpo and saa, and decreased the expression of the tight junction-related gene occ in the intestine; moreover, villus height of the intestine was reduced after PFAS exposure, which indicated the functional disruption of the intestine. In particular, the significant correlation between the changed intestinal microbiota and liver and intestinal indicators also suggested the interaction between the immune system and intestinal microbiota. Taken together, our results indicate that exposure to PFOS and its alternatives F-53B and OBS can induce hepatic immunotoxicity associated with intestinal microbiota dysbiosis in adult zebrafish.
Collapse
Affiliation(s)
- Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
22
|
He Y, Lv D, Li C, Liu X, Liu W, Han W. Human exposure to F-53B in China and the evaluation of its potential toxicity: An overview. ENVIRONMENT INTERNATIONAL 2022; 161:107108. [PMID: 35121495 DOI: 10.1016/j.envint.2022.107108] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESAs, trade name F-53B), an alternative to perfluorooctane sulfonate (PFOS), has been widely used as a mist suppressant in the Chinese electroplating industry since the 1970 s. Due to greater restrictions on PFOS globally in recent years, the production and use of F-53B correspondingly increased, consequently causing more emissions into the environment. In China, an increasing number of studies report frequent detection and broad exposure to F-53B in the natural environment, various wildlife and the human body. In human blood, the detection rate of F-53B is almost 80%, accounting for 8.69 to 28% of ∑per- and polyfluoroalkyl substances (PFASs). F-53B is the most biopersistent PFAS in humans to date, with a half-life of 15.3 years. In addition, F-53B displays protein binding affinity and high human placental permeability. Recently, some epidemiological studies have reported the health risks associated with F-53B in humans, including abnormal serum lipid metabolism, vascular dysfunction, endocrine disorders and even adverse birth outcomes. Various in vivo and in vitro studies have demonstrated the toxicity of F-53B, such as hepatotoxicity, interference effects on the endocrine system, as well as reproductive and developmental toxicity. Our aims are to review studies on human F-53B exposure levels, trends and associated health effects; evaluate the potential toxicity; and predict directions for future research.
Collapse
Affiliation(s)
- Yanxia He
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China; Graduate School of Dalian Medical University, Dalian 116000, China
| | - Di Lv
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiuqin Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wendong Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China
| | - Wenchao Han
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao 266071, China.
| |
Collapse
|
23
|
Wang C, Jin C, Tu W, Jin Y. Maternal exposure of mice to sodium p-perfluorous nonenoxybenzene sulfonate causes endocrine disruption in both dams and offspring. Endocr J 2021; 68:1165-1177. [PMID: 33980773 DOI: 10.1507/endocrj.ej20-0781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The toxicity of certain novel perfluoroalkyl substances (PFCs) has attracted increasing attention. However, the toxic effects of sodium p-perfluorous nonenoxybenzene sulfonate (OBS) on the endocrine system have not been elucidated. In this study, OBS was added to the drinking water during the pregnancy and lactation of the healthy female mice at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L), and 5.0 mg/L (OBS-H). OBS exposure during the pregnancy and lactation resulted in the presence of OBS residues in the placenta and fetus. We also analyzed physiological and biochemical parameters and gene expression levels in mice of the F0 and F1 generations after maternal OBS exposure. The total serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly increased in female mice of the F0 generation. The androgen levels in the serum and the ovarian mRNA levels of androgen receptor (AR) also tended to increase after maternal OBS exposure in the F0 generation mice. Moreover, maternal OBS exposure altered the mRNA expression of endocrine-related genes in male mice of F1 generation. Notably, the serum TC and LDL-C levels were significantly increased in 8-weeks-old male mice of the F1 generation, and the serum high-density lipoprotein cholesterol (HDL-C) levels were decreased in 24-week-old male mice of the F1 generation. These results indicated that maternal OBS exposure can interfere with endocrine homeostasis in the F0 and F1 generations. Therefore, exposure to OBS during pregnancy and lactation has the potential toxic effects on the dams and male offspring, which cannot be overlooked.
Collapse
Affiliation(s)
- Caiyun Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
24
|
Pan Z, Miao W, Wang C, Tu W, Jin C, Jin Y. 6:2 Cl-PFESA has the potential to cause liver damage and induce lipid metabolism disorders in female mice through the action of PPAR-γ. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117329. [PMID: 34022685 DOI: 10.1016/j.envpol.2021.117329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 05/14/2023]
Abstract
6:2 Cl-PFESA is a polyfluoroalkyl ether with high environmental persistence that has been confirmed to have significant adverse effects on animals. In this study, 6-week-old female C57BL/6 mice were exposed to 0, 1, 3 and 10 μg/L 6:2 Cl-PFESA for 10 weeks to estimate the hepatotoxicity of 6:2 Cl-PFESA and explore its underlying molecular mechanism. The results indicated that 6:2 Cl-PFESA preferentially bioaccumulated in the liver and induced hepatic cytoplasmic vacuolation and hepatomegaly in mice. In addition, serum metabolic profiling showed that 6:2 Cl-PFESA exposure caused an abnormal increase in amino acids and an abnormal decrease in acyl-carnitine, which interfered with fatty acid transport and increased the risk of metabolic diseases. Further experiments showed that 6:2 Cl-PFESA formed more hydrogen bonds with PPAR-γ than PFOS, Rosi and GW9662, and the binding affinity of 6:2 Cl-PFESA toward PPAR-γ was the highest among the ligands. 6:2 Cl-PFESA promoted the differentiation of 3T3-L1 cells by increasing PPAR-γ expression. Therefore, our results showed that 6:2 Cl-PFESA has the potential to induce liver damage and dysfunction in female mice, and this effect was achieved through PPAR-γ. This study is the first to reveal the hepatic toxicity of 6:2 Cl-PFESA in female mammals and provides new insights for subsequent in-depth research.
Collapse
Affiliation(s)
- Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330029, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
25
|
Liu S, Lai H, Wang Q, Martínez R, Zhang M, Liu Y, Huang J, Deng M, Tu W. Immunotoxicity of F53B, an alternative to PFOS, on zebrafish (Danio rerio) at different early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148165. [PMID: 34380241 DOI: 10.1016/j.scitotenv.2021.148165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
As an alternative to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (F53B) has emerged in the Chinese market in recent years and has been frequently detected in the aquatic environment, but its ecological risk assessment is limited. In this study, zebrafish embryos and larvae were separately exposed to F53B, and their 96-h LC50 values were estimated to be 15.1 mg/L and 2.4 mg/L, respectively, suggesting that embryos were more resistant to F53B than larvae. The bioconcentration factor in larvae was basically higher than that of embryos, and the body growth of larvae was significantly affected by F53B rather than embryos, indicating that F53B may cause more severe toxicity to larvae. In addition to the excessive production of ROS and NO, the expression of many immune-related genes was increased in both embryos and larvae, but the number of dysregulated genes in larvae was more than that in embryos. Finally, the results of Point of Departure (PoD) indicated that the immunotoxicity of F53B was more sensitive to larvae than embryos at the molecular level. Our findings revealed the ecological risk of F53B by exploring the adverse effects of immunoregulation at different early life stages of zebrafish and indicated that the zebrafish larvae were more sensitive than embryos.
Collapse
Affiliation(s)
- Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Hong Lai
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Rubén Martínez
- Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jing Huang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
26
|
Li J, Zheng T, Liu C. Soil acidification enhancing the growth and metabolism inhibition of PFOS and Cr(VI) to bacteria involving oxidative stress and cell permeability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116650. [PMID: 33581635 DOI: 10.1016/j.envpol.2021.116650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Soil acidification is causing more and more attention, not only because of the harm of acidification itself, but also the greater harm to bacteria brought by some pollutants under acidic condition. Therefore, the toxicities of two typical soil pollutants (perfluorooctane sulfonate (PFOS) and chromium (Cr(VI)) to growth and metabolisms of soil bacteria (Bacillus subtilis as modol) were investigated. Under acidic condition of pH = 5, Cr(VI), PFOS and PFOS + Cr(VI) show stronge inhibition to bacteria growth up to 24.3%, 42.3%, 41.6%, respectively, and this inhibition was about 2-3 times of that at pH = 7. Moreover, acid stress reduces the metabolism of bacteria, while PFOS and Cr(VI) pollution futher strengthens this metabolic inhibition involving oxidative stress and cell permeability. The activities of dehydrogenase (DHA) and electron transport system (ETS) at pH = 5 exposed to Cr(VI), PFOS and combined PFOS + Cr(VI) was 21.5%, 16.9%, 23.2% and 8.9%, 32.2%, 19.1% lower than the control, respectively. However, the relative activity of DHA and ETS at pH = 7 are 5-8 and 2-13 times of that at pH = 5, respectively. Isoelectric point, cell surface hydrophobicity and molecular simulation analysis show that the corresponding mechanism is that acidic conditions enhance the interaction between bacteria and PFOS/Cr(VI) through hydrogen bonding, hydrophobic and electrostatic interactions. The results can guide the remediation of acid soil pollution, and provide a reference for the combined toxicity evaluation of heavy metals and micro-pollutants in acid soil.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Tongtong Zheng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
27
|
Liu X, Chen D, Wang B, Xu F, Pang Y, Zhang L, Zhang Y, Jin L, Li Z, Ren A. Does Low Maternal Exposure to Per- and Polyfluoroalkyl Substances Elevate the Risk of Spontaneous Preterm Birth? A Nested Case-Control Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8259-8268. [PMID: 32510220 DOI: 10.1021/acs.est.0c01930] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous animal and human studies suggest potential links between maternal exposure to per- and polyfluoroalkyl substances (PFASs) and adverse birth outcomes. As spontaneous preterm birth (SPB) represents a major cause of infant mortality and precursor to future morbidity, we conducted a prospective nested case-control study in Shanxi Province, China to investigate the association between prenatal PFAS exposure and SPB risk, as well as the associations with biomarkers of oxidative stress and systemic inflammation. Among 4229 women enrolled during 2009-2013, 144 SPB cases and 375 controls were included in this study. Seventeen PFASs, as well as monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), and heme oxygenase-1 (HO-1), were measured in maternal plasma or serum collected during 4th-22nd gestational weeks. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and its alternative chlorinated polyfluoroether sulfonic acid (6:2 Cl-PFESA) were detected in more than 90% samples with a median concentration of 0.79, 1.79, and 0.34 ng/mL, respectively. The analyses revealed no significant associations between plasma PFASs and the SPB risk after adjusting for potential confounders. However, concentrations of PFOS and 6:2 Cl-PFESA were both significantly and positively associated with MCP-1 levels, while PFOA was inversely associated with IL-8. Our findings suggested that maternal exposure to the determined low levels of PFAS did not induce an elevated risk of SPB, but the exposure may disturb potential biochemical pathways of inflammation. The latter has important implications for possible birth outcome effects and developmental effects in fetuses and newborns, which warrants close attention.
Collapse
Affiliation(s)
- Xiaotu Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Fangping Xu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
28
|
Yang R, Liu S, Liang X, Yin N, Ruan T, Jiang L, Faiola F. F-53B and PFOS treatments skew human embryonic stem cell in vitro cardiac differentiation towards epicardial cells by partly disrupting the WNT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114153. [PMID: 32088431 DOI: 10.1016/j.envpol.2020.114153] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
F-53B and PFOS are two per- and polyfluoroalkyl substances (PFASs) widely utilized in the metal plating industry as mist suppressants. Recent epidemiological studies have linked PFASs to cardiovascular diseases and alterations in heart geometry. However, we still have limited understanding of the effects of F-53B and PFOS on the developing heart. In this study, we employed a human embryonic stem cell (hESC)-based cardiac differentiation system and whole transcriptomics analyses to evaluate the potential developmental cardiac toxicity of F-53B and PFOS. We utilized F-53B and PFOS concentrations of 0.1-60 μM, covering the levels detected in human blood samples. We demonstrated that both F-53B and PFOS inhibited cardiac differentiation and promoted epicardial specification via upregulation of the WNT signaling pathway. Most importantly, the effects of F-53B were more robust than those of PFOS. This was because F-53B treatment disrupted the expression of more genes and led to lower cardiac differentiation efficiency. These findings imply that F-53B may not be a safe replacement for PFOS.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Wang C, Zhao Y, Jin Y. The emerging PFOS alternative OBS exposure induced gut microbiota dysbiosis and hepatic metabolism disorder in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108703. [PMID: 31917275 DOI: 10.1016/j.cbpc.2020.108703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), as a novel the alternatives of PFASs, is widely used in many fields of life. Here, adult male zebrafish selected were exposed to OBS at concentrations of 3, 30 and 300 μg/L for 7 and 21 days, respectively. Based on the gut microbiota analysis, at genus level, the relative abundance of the Flavobacterium, Hyphomicrobium, Paracoccus, Lawsonia, Plesiomonas and Vibrio changed significantly in the gut of zebrafish after exposure to 300 μg/L OBS. In addition, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis suggested that a total of 1077 metabolites in pos-model and a total of 706 metabolites in neg-model changed significantly from the liver, and these changed metabolites were tightly related to several pathways including amino acid, pyrimidine and purine metabolism, etc. Furthermore, the changed gut bacteria including Flavobacterium, Hyphomicrobium, Paracoccus, Lawsonia, Plesiomonas and Vibrio at genus level were significantly correlated with various metabolites (succinic acid, leucine, xanthine, orotic acid, nicotinic acid, etc.). Taken together, all the results showed that low dose of OBS exposure could induce the dysbiosis of gut microbiota and disturbed the hepatic metabolism balance in adult male zebrafish.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
30
|
Xin Y, Wan B, Yu B, Fan Y, Chen D, Guo LH. Chlorinated Polyfluoroalkylether Sulfonic Acids Exhibit Stronger Estrogenic Effects than Perfluorooctane Sulfonate by Activating Nuclear Estrogen Receptor Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3455-3464. [PMID: 31927955 DOI: 10.1021/acs.est.9b07708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorinated polyfluoroalkylether sulfonic acids (Cl-PFESAs) have been shown to have potential thyroid hormone (TH) disruption effects. Here, we further investigated their estrogenic effects and underlying mechanisms. In vivo results revealed that exposure of zebrafish to Cl-PFESAs induced disorder of sex hormones during the early embryonic stages and caused histopathological lesions in the gonads of adult zebrafish relative to control groups. To find out whether the estrogen receptor is the molecular target of Cl-PFESAs, the binding interaction between Cl-PFESAs and ERs was investigated using a series of in vitro assays. We found that all tested chemicals could bind directly to ERs and exhibit relatively weak agonistic activity toward ERs, suggesting that the ER-mediated signaling pathway is directly involved in the estrogenic effects of Cl-PFESAs. The internal dose of 8:2 Cl-PFESA was significantly higher than the others, which explained why it obviously displayed an ER agonistic effect despite its weak ER binding affinity. Taken together, these results uncover that, in addition to the TH disruption effect, Cl-PFESAs might also cause estrogenic effects by activating ER pathways.
Collapse
Affiliation(s)
- Yan Xin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bolan Yu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yong Fan
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - De Chen
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
31
|
Chu C, Zhou Y, Li QQ, Bloom MS, Lin S, Yu YJ, Chen D, Yu HY, Hu LW, Yang BY, Zeng XW, Dong GH. Are perfluorooctane sulfonate alternatives safer? New insights from a birth cohort study. ENVIRONMENT INTERNATIONAL 2020; 135:105365. [PMID: 31830731 DOI: 10.1016/j.envint.2019.105365] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Experimental studies show that chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA 6:2 and 8:2), one of perfluoroalkyl substances (PFAS) used as perfluorooctane sulfonate (PFOS) alternatives, are reproductive toxicants in vivo and in vitro. However, the associations between gestational exposure to Cl-PFESAs and birth outcomes are unknown. OBJECTIVES We investigated associations between 6:2 Cl-PFESA and 8:2 Cl-PFESA in maternal serum and birth outcomes. METHODS We measured four PFAS, including 6:2 Cl-PFESA, 8:2 Cl-PFESA, PFOS, and perfluorooctanoic acid (PFOA) in third-trimester maternal serum collected from 372 mother-child dyads participating in the Guangzhou Birth Cohort Study. Characteristics of mothers and infants were gathered from medical records and by interviewer-administered questionnaires. RESULTS PFOS was the most abundant PFAS in maternal serum (median: 7.15 ng/mL), followed by 6:2 Cl-PFESA (median: 2.41 ng/mL). Greater maternal serum levels of all PFAS alternatives were significantly associated with lower birth weight, adjusted for confounding variables. For example, each ln-ng/mL greater concentration of 6:2 Cl-PFESA and 8:2 Cl-PFESA was associated with a 54.44 g [95% confidence interval (CI): -95.66, -13.22] and 21.15 g (95% CI: -41.44, -0.86) lower birth weight, respectively. Greater continuous maternal serum 6:2 Cl-PFESA (OR: 2.67, 95% CI: 1.73, 4.15) and PFOS (OR: 2.03, 95% CI: 1.24, 3.32) were also associated with higher risks for preterm birth, adjusted for confounders, with a possible threshold effect at the highest quartile of 6:2 Cl-PFESA. CONCLUSIONS For the first time, we report associations between maternal serum 6:2 Cl-PFESA and 8:2 Cl-PFESA concentrations and adverse birth outcomes. Our findings suggest that PFOS alternatives may be reproductive toxicants in human populations and should be considered with caution before widespread use. Given the preliminary nature of our results, additional epidemiological and toxicological investigations are needed to more definitively assess the risks.
Collapse
Affiliation(s)
- Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shao Lin
- Departments of Environmental Health Sciences & Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
32
|
Xu C, Yin S, Liu Y, Chen F, Zhong Z, Li F, Liu K, Liu W. Prenatal exposure to chlorinated polyfluoroalkyl ether sulfonic acids and perfluoroalkyl acids: Potential role of maternal determinants and associations with birth outcomes. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120867. [PMID: 31330388 DOI: 10.1016/j.jhazmat.2019.120867] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Transplacental exposure to per/polyfluoroalkyl substances (PFASs) may impact fetal growth, but published evidence are still sparse and not in agreement. Moreover, little is known on the occurrence of emerging chlorinated polyfluorinated ether sulfonates (Cl-PFESAs, 6:2 and 8:2) in maternal-neonatal population. This study investigated eleven PFASs by analyzing 98 cord samples from Hangzhou, China. All target compounds can be transported across placenta, with highest median concentrations of 4.07, 1.05 and 0.731 ng/mL for PFOS, PFOA, and 6:2 Cl-PFESA. Older ages and higher pre-pregnancy BMI were associated with higher cord PFASs concentration; being primiparous was also significantly associated. Notably, after adjusting for potential confounders, PFOS was negatively associated with birth weight (β = -417.3 g, 95% CI: -742.1, -92.4, p = 0.011, per a log10 unit increase in exposure) and ponderal index (β = -0.005 g/cm3, 95% CI: -0.008, -0.002, p = 0.000). PFOS and PFHxS were also indicated to be associated with small for gestational age birth (SGA) (p < 0.05). Although no evidence of association was observed between Cl-PFESAs and birth outcomes in this study, the bioaccumulative properties and development toxicity of Cl-PFESAs deserve continuous concern.
Collapse
Affiliation(s)
- Chenye Xu
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Chen
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Zhehui Zhong
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kai Liu
- Division of Engineering and Applied Science, W. M. Keck Laboratories California Institute of Technology, Pasadena, California, 91125, USA
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Bao Y, Huang J, Cagnetta G, Yu G. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction. WATER RESEARCH 2019; 163:114907. [PMID: 31369921 DOI: 10.1016/j.watres.2019.114907] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chrome mist suppressants are key chemicals used in the chrome plating industry to reduce exposure of workers by inhalation to airborne chromic acid pollution. Perfluoroalkyl sulfonated compounds are excellent mist suppressants, thanks to their chemical stability and surface activity. Therefore, despite mounting evidence for their persistence, bioaccumulation and toxicity, it is likely that such chemicals will continue to be used for the foreseeable future because of their importance and lack of alternatives. The present study is aimed at assessing the feasibility of advanced reduction as an effective technology to treat chrome plating industry wastewater. In particular, wastewater containing a chlorinated polyfluorinated ether sulfonate (i.e. F-53B), an alternative to perfluorooctanesulfonate (PFOS) used to prepare chrome mist suppressant in China, was treated by UV-activated sulfite. Results demonstrates that in ultrapure water F-53B can be easily degraded within 1 min-much faster than PFOS. Stoichiometric fluoride recovery was also achieved, confirming significant defluorination of the pollutant. Such superior reducibility was due to the presence of chlorine atoms, as corroborated by quantum chemical calculations. F-53B degradation was also achieved in chrome plating industrial wastewater, which yielded results were slower than those achieved in the laboratory nonetheless obtained complete abatement within 60 min. These results suggest that the proposed advanced reduction process is one of the safest options to control PFAS discharge in the environment and reduce the related risks to ecosystems.
Collapse
Affiliation(s)
- Yixiang Bao
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China.
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Pan Z, Yuan X, Tu W, Fu Z, Jin Y. Subchronic exposure of environmentally relevant concentrations of F-53B in mice resulted in gut barrier dysfunction and colonic inflammation in a sex-independent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:268-277. [PMID: 31319243 DOI: 10.1016/j.envpol.2019.07.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
F-53B (6:2 chlorinated polyfluorinated ether sulfonate) is currently recognized as a safe alternative to long-chain PFASs in China. However, an increasing number of studies have recently authenticated its biotoxicological effects. In this study, for evaluating the gut toxicity of F-53B in mammals, both female and male mice were orally exposed to 0, 1, 3, or 10 μg/L F-53B for 10 weeks. Our results showed that F-53B significantly accumulated in the colon, ileum and serum when exposed to 10 μg/L F-53B for 10 weeks. F-53B exposure not only increased the transcriptional levels of ion transport-related genes but could also interact with the CFTR protein directly. Interestingly, subchronic F-53B exposure also increased the transcription of mucus secretion-related genes, but the protein level of Muc2 decreased after F-53B exposure, indicating that there was a compensatory phenomenon after mucus barrier injury. Furthermore, F-53B exposure also induced colonic inflammation associated with gut microbiota dysbiosis in the colon. Taken together, our results indicated that the potential gut toxicity of F-53B and almost all of the changed parameters were significantly affected in both female and male mice, suggesting that F-53B could disturb the gut barrier without sex dependence in mice.
Collapse
Affiliation(s)
- Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xianling Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330029, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
35
|
Wang C, Zhang Y, Deng M, Wang X, Tu W, Fu Z, Jin Y. Bioaccumulation in the gut and liver causes gut barrier dysfunction and hepatic metabolism disorder in mice after exposure to low doses of OBS. ENVIRONMENT INTERNATIONAL 2019; 129:279-290. [PMID: 31146162 DOI: 10.1016/j.envint.2019.05.056] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 05/23/2023]
Abstract
The compound sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a new kind of perfluoroalkyl and polyfluoroalkyl compound, is a surfactant for increasing oil production, and it has been widely detected in various organisms. Because of its wide use, OBS is detectable in the environment. However, knowledge about the biological toxicity of OBS to animals is very limited. Here, male mice were exposed to 0, 0.1, 1 or 10 μg/L of OBS for 6 weeks via drinking water. It was demonstrated that OBS was highly bioaccumulated both in the liver and gut in the mice after low doses of OBS exposure. Curiously, a low dose of OBS exposure also caused gut barrier dysfunction by decreasing mucus secretion and altering Ionic transport in the gut via the CFTR pathway. In addition, liver function was influenced by OBS at both the histopathological and physiological levels. Hepatic transcriptomics and metabolomics analysis showed a total of 1157 genes, and multiple metabolites changed significantly in the livers of mice exposed to low-dose OBS for 6 weeks. The functions of these changed genes and metabolites are tightly related to glycolysis, fatty acid synthesis, fatty acid transport, and β-oxidation. All these results indicate that the liver and gut are important target tissues for OBS exposure. Importantly, it is possible that high levels of bioaccumulation of OBS in the gut and liver might directly cause gut barrier dysfunction and hepatic metabolism disorder in mice.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
36
|
Meng P, Fang X, Maimaiti A, Yu G, Deng S. Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon. CHEMOSPHERE 2019; 224:187-194. [PMID: 30825849 DOI: 10.1016/j.chemosphere.2019.02.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 05/08/2023]
Abstract
Adsorption by powder activated carbon (PAC) is recognized as an efficient method for the removal of perfluorinated compounds (PFCs) in water, while the poor separation of spent PAC makes it difficult for further regeneration, increasing the treatment cost significantly. In this study, an ultrafine magnetic activated carbon (MAC) consisting of Fe3O4 and PAC was prepared by ball milling to remove PFCs from water efficiently. Increasing the percentage of Fe3O4 and balling milling time decreased its adsorption capacity for perfluoroctane sulfonate (PFOS), whereas increased the magnetic separation property to some degree. The optimized MAC was prepared with a Fe3O4 to PAC mass ratio of 1:3 after ball milling for 2 h, and the adsorption equilibriums of all the four PFCs on the optimal MAC were reached within less than 2 h, with the adsorption capacities of 1.63, 0.90, 0.33 and 0.21 mmol/g for PFOS, perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS), respectively. Increasing the solution pH hindered the adsorption of PFOS significantly when the pH was less than the zero potential point (around 6) of the MAC, due to the decreased electrostatic attraction. The spent MAC could be easily separated with a magnet and regenerated by a small volume of methanol, and the regenerated MAC could be reused for more than 5 time and remain stable adsorption capacity for PFOS after 3 cycles. This study provides useful insights into the removal of PFCs by separable magnetic PAC in wastewater.
Collapse
Affiliation(s)
- Pingping Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ayiguli Maimaiti
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
37
|
Shi G, Cui Q, Wang J, Guo H, Pan Y, Sheng N, Guo Y, Dai J. Chronic exposure to 6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:550-559. [PMID: 30928526 DOI: 10.1016/j.envpol.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/02/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
As a Chinese-specific alternative to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (commercial name: F-53B) has been used in the metal plating industry for over 40 years. This prevalence of use has resulted in its subsequent detection within the environment, wildlife, and humans. Despite this, however, its hepatotoxic effects on aquatic organisms remain unclear. Here, we characterized the impacts of long-term F-53B exposure on adult zebrafish liver and their offspring. Results showed that the concentration of F-53B was greater in the F0 liver than that in the gonads and blood. Furthermore, males had significantly higher liver F-53B levels than females. Hepatomegaly and obvious cytoplasmic vacuolation indicated that F-53B exposure induced liver injury. Compared to control, liver triglyceride levels decreased by 30% and 33.5% in the 5 and 50 μg/L-exposed males and 22% in 50 μg/L-exposed females. Liver transcriptome analysis of F0 adult fish found 2175 and 1267 differentially expressed genes (DEGs) in the 5 μg/L-exposed males and females, respectively. Enrichment analyses further demonstrated that the effects of F-53B on hepatic transcripts were sex-dependent. Gene Ontology showed that most DEGs were involved in multicellular organism development in male fish, whereas in female fish, most DEGs were related to metabolic processes and gene expression. qRT-PCR analysis indicated that the PPAR signaling pathway likely contributed to F-53B-induced disruption of lipid metabolism in F0 adult fish. In F1 larvae (5 days post fertilization), the transcription of pparα increased, like that in F0 adult fish, but most target genes showed the opposite expression trends as their parents. Taken together, our research demonstrated chronic F-53B exposure adversely impacts zebrafish liver, with disruption of PPAR signaling pathway dependent on sex and developmental stage.
Collapse
Affiliation(s)
- Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinxing Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
38
|
Shi G, Wang J, Guo H, Sheng N, Cui Q, Pan Y, Guo Y, Sun Y, Dai J. Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:855-863. [PMID: 30790758 DOI: 10.1016/j.scitotenv.2019.02.198] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Although 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), an alternative to perfluorooctanesulfonate (PFOS), has been regularly detected in different environmental matrices, information regarding its toxicity remains limited. To explore the transgenerational thyroid-disrupting capacity of F-53B, adult zebrafish (F0) were exposed to different concentrations of F-53B (0, 5, 50, or 500μg/L) for 180d, with their offspring (F1 and F2) subsequently reared in uncontaminated water. Thyroid disturbances were then examined in the three (F0, F1, and F2) generations. For F0 adult fish, thyroxine (T4) increased in both sexes after exposure to 50μg/LF-53B, whereas 3,5,3'-triiodothyronine (T3) decreased in all groups, except for 50μg/LF-53B-treated males. For F1 embryos, parental exposure resulted in F-53B transfer as well as an increase in T4 content. At 5days post-fertilization, the significant increase in T4 and decrease in T3 were accompanied by a decrease in body length, increase in mortality, and increase in uninflated posterior swim bladder occurrence in F1 larvae. Although thyroid hormone levels were not changed significantly in F1 adult fish or F2 offspring compared with the control, the transcription levels of several genes along the hypothalamus-pituitary-thyroid axis were significantly modified. Our study demonstrated that F-53B possesses transgenerational thyroid-disrupting capability in zebrafish, indicating it might not be a safer alternative to PFOS.
Collapse
Affiliation(s)
- Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinxing Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Cyanidin-3-O-glucoside protects against cadmium-induced dysfunction of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food Chem Toxicol 2019; 129:13-21. [PMID: 31014900 DOI: 10.1016/j.fct.2019.04.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
Cadmium (Cd) has been generally recognized as an endocrine-disrupting chemical for its toxic effects on the hypothalamus-pituitary-gonadal (HPG) axis accompanied by dysfunction in sex hormone secretion. Particularly, exposure to Cd during puberty versus post-puberty exhibits differing age-dependent effects that require further examination. This study sought to determine if cyanidin-3-O-glucoside (C3G), a typical anthocyanin with neuroprotective bioactivity, could protect against Cd-induced sex hormone-disorder in Pubertal male mice. C3G treatment reversed the disruption of hormone levels and increased Gnrh1 gene expression in the hypothalamus. In addition, the levels of gonadotropins, including luteinizing hormone (LH) and follicle stimulating hormone (FSH), were reversed by C3G. Interestingly, C3G improved the expression of LH and FSH receptor in the testis in mice exposed to Cd. Furthermore, C3G activated the signaling pathway related to the synthesis of testosterone processing. In conclusion, C3G protected against Cd-induced dysfunction of sex hormone secretion through the regulation of the HPG axis in male mice during puberty. The results of this study suggest that consumption of anthocyanins can be protective against metal-induced male reproductive dysfunction.
Collapse
|
40
|
Zhang H, Zhou X, Sheng N, Cui R, Cui Q, Guo H, Guo Y, Sun Y, Dai J. Subchronic Hepatotoxicity Effects of 6:2 Chlorinated Polyfluorinated Ether Sulfonate (6:2 Cl-PFESA), a Novel Perfluorooctanesulfonate (PFOS) Alternative, on Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12809-12818. [PMID: 30256107 DOI: 10.1021/acs.est.8b04368] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The compound 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative to perfluorooctanesulfonate (PFOS) in the metal-plating industry, has been widely detected in various environmental matrices. However, its hepatotoxicity has yet to be clarified. Here, male mice were exposed to 0.04, 0.2, or 1 mg/kg/day of 6:2 Cl-PFESA for 56 days. Results demonstrated that relative liver weight increased significantly in the 0.2 and 1 mg/kg/day 6:2 Cl-PFESA groups, whereas liver lipid accumulation increased in all 6:2 Cl-PFESA groups. Serum enzyme activities of alanine transaminase and alkaline phosphatase were increased. Serum triglycerides and low-density lipoprotein cholesterol both increased, whereas serum total cholesterol and high-density lipoprotein cholesterol decreased following 6:2 Cl-PFESA exposure. A total of 264 differentially expressed proteins (127 up-regulated and 137 down-regulated), mainly involved in lipid metabolism, xenobiotic metabolism, and ribosome biogenesis, were identified by quantitative proteomics. Bioinformatics analysis highlighted the de-regulation of PPAR and PXR, which may contribute to the hepatotoxicity of 6:2 Cl-PFESA. Additionally, 6:2 Cl-PFESA induced both cell apoptosis and proliferation in the mouse liver. Compared to the overt toxicity of PFOS, 6:2 Cl-PFESA exhibited more-serious hepatotoxicity. Thus, caution should be exercised in the application of 6:2 Cl-PFESA as a replacement alternative to PFOS in industrial areas.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiujuan Zhou
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|