1
|
Yuan S, Yang G, Zhang X, Luo S, Yan J, Yu Z, Dong H, Zhou Y. Assessment of distribution, contamination, ecological risks, and sources of heavy metals in soil from metal recycling sites. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:630. [PMID: 40329129 DOI: 10.1007/s10661-025-14063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Developing the metal recycling industry to meet the demand for green resource recycling and utilization has raised environmental concerns. However, long-term processing and stacking of waste heavy metals (HMs) may lead to negative impacts on the soil environment. This study investigated the distribution of HMs such as, Cd, Cu, Pb, Hg, Ni, Co, and V, in soil from metal-recycling sites. A total of 63 soil samples were collected to assess the degree of soil contamination by HMs and trace the sources of HMs. The single pollution index was calculated based on the background values of reference elements to determine the level of HMs pollution. Except for As, the average concentrations of seven HMs in the surface soil exceeded their background values. It is worth noting that according to the geo-accumulation index (Igeo) and pollution load index (PLI) revealed that Hg, Cu, and Pb exhibited relatively high pollution levels, while the potential ecological risk index (RI) and Nemerow risk index (NRI) indicated that Hg and Cd posed higher ecological risks. The source apportionment results indicate that As, Cd, Cu, Pb, and Hg have significant homology, mainly derived from the composite source of human activities and natural sources; V mainly comes from industrial process sources; Ni and Hg mainly come from atmospheric deposition sources; Co is mainly influenced by natural factors. This study provides reference for implementing pollution control measures and promoting precise remediation work in areas affected by metal recycling activities.
Collapse
Affiliation(s)
- Shijie Yuan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Guodong Yang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Provincial Key Laboratory of Efficient Utilization and Blocking of Metallurgical Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Xilong Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Siya Luo
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jie Yan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhaoqin Yu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hanchuan Dong
- Technology Innovation Center for Geological Environment Monitoring, MNR, Baoding, 071051, China
| | - Yi Zhou
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
2
|
Surendran D, Sakai H, Takagi S, Dimapilis DA. Tire-based microplastics: Composition, detection, and impacts of advanced oxidation processes in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179114. [PMID: 40088789 DOI: 10.1016/j.scitotenv.2025.179114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Microplastic pollution, particularly that from tire, presents critical environmental and public health concerns. They contribute 60 % of the total microplastic pollution. Tire-based microplastics, which contain synthetic polymers and toxic chemical additives, are significant contributors to microplastic pollution in aquatic systems. They release various hazardous substances, including heavy metals, polycyclic aromatic hydrocarbons, and other persistent pollutants, which adversely affect ecosystems and pose risks to drinking water quality. Advanced oxidation processes (AOP) such as ultraviolet based treatment, ozonation and sulfate radical based processes show potential for mitigating these microplastics by fragmenting them and degrading the leached chemicals. Radicals generated during AOP (such as sulfate radicals (SO₄•-), peroxide radicals (HO₂•) and hydroxyl radicals (•OH), have also been successful in removing the transformation products associated with tire microplastics. This combined action of AOP has potential in mitigating the primary tire microplastics and the leached chemicals from it. AOP studies reported from the other microplastic researches (PP, PE, PVC etc.) shows promising results in mitigating them from drinking water sources. TMP appears to behave similarly to other microplastic polymers in terms of fragmentation. However, research is still lacking in quantifying this process due to the presence of complex chemicals additives in it. Additionally, studies focusing on their removal in DWTPs, particularly those that consider both TMP and their associated chemical leachates, remain limited. This review discusses the chemical composition, detection techniques, fragmentation of tire-related microplastics by AOP, and leaching of chemicals from them. This review also suggests modification of treatment techniques, challenges for implementing them to real world treatment and scopes in optimization of treatment conditions to mitigate tire wear particles and the associated chemicals.
Collapse
Affiliation(s)
- Dilraj Surendran
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan.
| | - Shogo Takagi
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| | - Daryll Anne Dimapilis
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Japan
| |
Collapse
|
3
|
Jadoon WA, Khan YA, Varol M, Onjia A, Mohany M. Comprehensive analysis and risk assessment of fine road dust in Abbottabad city (Pakistan) with heavy traffic for potentially toxic elements. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136788. [PMID: 39740543 DOI: 10.1016/j.jhazmat.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic. The current study also evaluated PTE associated pollution, ecological and health risks, and potential sources of these elements. The average concentrations (in mg kg-1) of PTEs in road dust were highest for Fe (15540), followed by Mn (304), Zn (139), Cu (50.0), Pb (21.5), Cr (13.0), Ni (10.3), Co (6.66), and Cd (0.236). The levels of Co, Cr, Mn, Ni, and Fe were below the upper continental crust (UCC) averages, while Cd, Cu, Pb, and Zn exceeded them. Spatially, Cd, Cu, Pb, and Zn were found at higher levels near traffic hotspots, bus stands and automobile workshops. Road dust in Abbottabad exhibited unpolluted to moderate pollution levels (geo-accumulation index), with Cd, Cu, Zn, and Pb at 23 % of the sites. The enrichment factor results indicated a significant anthropogenic influence, with Cd being significantly enriched and Zn, Cu, and Pb moderately enriched. The contamination factor results revealed moderate contamination by (Cd: 2.62, Zn: 2.08, Cu: 1.79, Pb: 1.27). Single metal risk index showed that 61 % of the sites posed considerable to very high ecological risks due to Cd, which was highlighted as a significant concern. The absolute principal component scores-multiple linear regression model identified three factors contributing to PTE pollution: lithogenic (Co, Fe, Mn, Ni), traffic-related (Cd, Cu, Pb, Zn), and mixed sources (Cr), with contributions of 52.8 %, 35.8 %, and 11.4 %, respectively. The PTE hazard quotient and total hazard index values for children and adults were below the safe risk level of 1, indicating no non-carcinogenic health risks. The cumulative carcinogenic risk values to the residents were also within acceptable limits. However, children's susceptibility to non-carcinogenic risks is higher due to their behavior and lower body weight. This study highlights the accumulation of PTEs in Abbottabad's environment, which poses challenges to long-term sustainability, particularly amid unplanned tourism. Therefore, urgent measures are necessary to mitigate PTE pollution and preserve tourist spots and public health.
Collapse
Affiliation(s)
- Waqar Azeem Jadoon
- Department of Earth and Environmental Sciences, Hazara University Mansehra, 21130, Pakistan
| | - Yousaf Ali Khan
- Department of Mathematics and Statistics, Hazara University Mansehra, 21130, Pakistan
| | - Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Turkey.
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11120, Serbia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Wang Z, Hong N, Chen Y, Cheng G, Liu A, Huang X, Tan Q. Systematic evaluations of receptor models in source apportionment of particulate solids in road deposited sediments: A practical application for tracking heavy metal sources on urban road surfaces. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136912. [PMID: 39708609 DOI: 10.1016/j.jhazmat.2024.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Receptor models have been widely used to identify pollution sources in the urban environment. However, evaluating the accuracy of source apportionment results for road deposited sediments (RDS) using these models has not been the focus of previous studies. This study compared canonical receptor models, i.e., positive matrix factorization (PMF), Unmix, chemical mass balance (CMB) and chemical mass-balance based stochastic approach (SCMD) using six synthetic datasets generated from real-world source profiles, and three error evaluation indicators (ie., relative error (RE), relative prediction error (RPE), and symmetric mean absolute percentage error (SMAPE)) were employed. The SCMD model showed more stable and accurate results, with ranges from 8.48 % - 30.76 %, 16.32-32.34 %, and 7.81-24.55 % of RE, RPE, and SMAPE, respectively. SCMD was then applied for tracking Pb, Zn, Cr, Cu, Ni, and Mn on urban road surfaces in Guangzhou, China. The results showed that vehicle exhaust, tire wear, roadside soil, and brake wear contributed 50.15 %, 41.15 %, 6.84 %, and 1.86 % of the mass of particulate solids, respectively; vehicle exhaust contributed more than half of these six heavy metals, particularly Cr and Ni. These findings provide scientific support for the effective selection of appropriate receptor models for source apportionment in RDS.
Collapse
Affiliation(s)
- Zicheng Wang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Nian Hong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yushan Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Cheng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaowu Huang
- Department of Environmental Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Qian Tan
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Chen Y, Shi W, Aihemaitijiang G, Zhang F, Zhang J, Zhang Y, Pan D, Li J. Hyperspectral inversion of heavy metal content in farmland soil under conservation tillage of black soils. Sci Rep 2025; 15:354. [PMID: 39747359 PMCID: PMC11696877 DOI: 10.1038/s41598-024-83479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal. Once introduced into the soil, they can bind to soil particles, making them difficult to remove, while potentially entering the food chain through plant uptake or water contamination. Rapid access to reliable data on HM viscosity in soils is necessary to efficiently monitor remediated soils. Visible and near-infrared reflectance spectroscopy (350-2500 nm) is an economical and zero-pollution method that can evaluate multiple HM concentrations in soil simultaneously. Black soil is a valuable agricultural resource that helps guarantee food security worldwide and can serve as a soil carbon reservoir, but its protection faces several challenges. Due to long-term high-intensity development and utilization and the severe over-exploitation of groundwater, the arable land in China's black soil area has been degraded. Using hyperspectral inversion of heavy metal content in soil can reduce the destructive sample collection and chemical pollution of soil, better protect black land resources, and steadily restore and improve the basic fertility of black land. Focusing on the black area region of Jilin Province, this study explored the correlation between three HMs, namely copper, zinc, and cadmium, and organic substances, clay minerals, and ferromanganese oxides through an in-depth analysis of soil samples using soil reflectance spectrometry. The spectra were transformed using first-and second-order derivatives, multiple scattering corrections, autoscales, and Savitzky-Golay smoothing. The successive projection algorithm was used to screen characteristic bands (Table S1) to establish the link between HM content in soil and soil spectra. By employing the support vector machine (SVM), random forest (RF), and partial least squares (PLS) models, feature band-based soil HM inversion modeling was established. Moreover, the optimal combinations of spectral transforms and inversion models were also examined. The findings indicate that the RF model (R2 > 0.8, RPIQ > 0) outperformed the SVM and PLS models in anticipating the three soil HMs, thus demonstrating superior accuracy. Understanding the behavior of heavy metals in soils and developing effective management strategies are essential for ensuring sustainable land use and protecting public health. This study contributes to the development of large-scale monitoring systems for the HM content of soil and assessments of HM contamination.
Collapse
Affiliation(s)
- Yanan Chen
- College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China.
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Wanying Shi
- College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China
| | | | - Feng Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun, 130024, China.
| | - Yichen Zhang
- College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China
| | - Dianqi Pan
- College of Graduate Studies, Changchun Institute of Technology, Changchun, 130012, China
| | - Jinying Li
- College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China
| |
Collapse
|
6
|
Yu S, Ma T, Zhang L, Li Q, Zhou M. Coupling sedimentary records of anthropogenic metal(loid)s in urban waterscape parks with the "Coal to Gas" transition. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134713. [PMID: 38788570 DOI: 10.1016/j.jhazmat.2024.134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Energy consumption structure has been adjusted worldwide as a measure to reduce CO2 emission and mitigate air pollution. The "Coal to Gas" transition in mainland China has successfully controlled air pollution in recent decades, but its impacts on the environment beyond air quality improvement remain unknown. With 210Pb dating, this study chronicled profiles of eight anthropogenic metal(loid)s in sediment core from 14 waterscape parks across the Ring Road Network of Beijing, China. Six sediment cores were dated showing a timing coupling of metal(loid) loadings with annual coal consumption during the increasing period before 2000. Two downwind sediment cores in downtown Beijing presented such couplings in both increasing and descending periods for coal consumption before and after 2000, respectively, close to the tipping point observed in 2002 for primary energy consumption efficiency. Evidence from stable Pb isotope composition and exceedances of Cu loadings against sediment quality guidelines of China and the USA suggest that vehicular sources have been dominating metal(loid) loadings in sedimentation in these waterscape parks after the "Coal to Gas" transition. These findings would be helpful in identifying environmental impact patterns resulting from shifts in energy consumption structure and dominance of emission sources thereafter.
Collapse
Affiliation(s)
- Shen Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; The Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China; Zhejiang A & F University, Hangzhou 311300, China.
| | - Tao Ma
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; The Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China
| | - Min Zhou
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; The Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China; Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Su K, Liang Z, Zhang S, Liao W, Gu J, Guo Y, Li G, An T. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134459. [PMID: 38691999 DOI: 10.1016/j.jhazmat.2024.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bioaerosols are widely distributed in urban air and can be transmitted across the atmosphere, biosphere, and anthroposphere, resulting in infectious diseases. Automobile air conditioning (AAC) filters can trap airborne microbes. In this study, AAC filters were used to investigate the abundance and pathogenicity of airborne microorganisms in typical Chinese and European cities. Culturable bacteria and fungi concentrations were determined using microbial culturing. High-throughput sequencing was employed to analyze microbial community structures. The levels of culturable bioaerosols in Chinese and European cities exhibited disparities (Analysis of Variance, P < 0.01). The most dominant pathogenic bacteria and fungi were similar in Chinese (Mycobacterium: 18.2-18.9 %; Cladosporium: 23.0-30.2 %) and European cities (Mycobacterium: 15.4-37.7 %; Cladosporium: 18.1-29.3 %). Bartonella, Bordetella, Alternaria, and Aspergillus were also widely identified. BugBase analysis showed that microbiomes in China exhibited higher abundances of mobile genetic elements (MGEs) and biofilm formation capacity than those in Europe, indicating higher health risks. Through co-occurrence network analysis, heavy metals such as zinc were found to correlate with microorganism abundance; most bacteria were inversely associated, while fungi exhibited greater tolerance, indicating that heavy metals affect the growth and reproduction of bioaerosol microorganisms. This study elucidates the influence of social and environmental factors on shaping microbial community structures, offering practical insights for preventing and controlling regional bioaerosol pollution.
Collapse
Affiliation(s)
- Kaifei Su
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Simeng Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Liao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Gu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunlong Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Li J, Zhang L, Yu S, Hong B, Lin R, Li Q, Jia H, Yang D, Gu C, Jia Q. Source-sink relationships of anthropogenic metal(loid)s from urban catchment to waterway in relation to spatial pattern of urban green infrastructures. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134381. [PMID: 38663296 DOI: 10.1016/j.jhazmat.2024.134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Surface sediment in urban waterways originates from fine topsoil particles within catchments via surface erosion, often bonded with non-degradable metal(loid)s. This study posited that urban green infrastructures (UGIs) can influence anthropogenic metal(loid) transport from catchment topsoil to waterway sediment by retaining moveable particles. In multiply channeled downtown Suzhou, China, UGIs' spatial patterns were examined in relations to metal(loid)s source (catchment topsoil) - sink (waterway surface sediment) dynamics. Anthropogenic metal(loid)s - As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn - were spatially quantified in sediment at 144 waterway points and in topsoil at 154 UGIs' points across 7 subwatersheds. Integrated metal(loid) loads revealed significantly higher sediment loads (except for As) than topsoil, varying with element specificity and spatial unmatching across the subwatersheds. Loads of metal(loid)s in topsoil showed no significant differences among UGI types, but sediment loads of As, Cr, and Ni correlated positively with topsoil loads in roadside and public facility UGIs within 100 m- and 200 m-wide riparian buffer zones. However, waterfront UGIs negatively impacted on these correlations for Cr, Hg, and Ni loads within the riparian buffer zones. These findings highlight metal(loid) specificity and UGIs' spatial pattern effects on anthropogenic metal(loid) loads between catchment topsoil (source) and waterway surface sediment (sink), offering valuable guidelines for UGIs' design and implementation.
Collapse
Affiliation(s)
- Juan Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China.
| | - Bing Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China
| | - Ruihan Lin
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qi Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Dawen Yang
- Tsinghua University, Beijing 100084, China
| | | | - Qimeng Jia
- Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Mayer PM, Moran KD, Miller EL, Brander SM, Harper S, Garcia-Jaramillo M, Carrasco-Navarro V, Ho KT, Burgess RM, Thornton Hampton LM, Granek EF, McCauley M, McIntyre JK, Kolodziej EP, Hu X, Williams AJ, Beckingham BA, Jackson ME, Sanders-Smith RD, Fender CL, King GA, Bollman M, Kaushal SS, Cunningham BE, Hutton SJ, Lang J, Goss HV, Siddiqui S, Sutton R, Lin D, Mendez M. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171153. [PMID: 38460683 PMCID: PMC11214769 DOI: 10.1016/j.scitotenv.2024.171153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.
Collapse
Affiliation(s)
- Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Kelly D Moran
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Ezra L Miller
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211 Kuopio, Finland.
| | - Kay T Ho
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Robert M Burgess
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Leah M Thornton Hampton
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America.
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR 97201, United States of America.
| | - Margaret McCauley
- US Environmental Protection Agency, Region 10, Seattle, WA 98101, United States of America.
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup Research & Extension Center, Washington Stormwater Center, 2606 W Pioneer Ave, Puyallup, WA 98371, United States of America.
| | - Edward P Kolodziej
- Interdisciplinary Arts and Sciences (UW Tacoma), Civil and Environmental Engineering (UW Seattle), Center for Urban Waters, University of Washington, Tacoma, WA 98402, United States of America.
| | - Ximin Hu
- Civil and Environmental Engineering (UW Seattle), University of Washington, Seattle, WA 98195, United States of America.
| | - Antony J Williams
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Computational Chemistry & Cheminformatics Branch, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States of America.
| | - Barbara A Beckingham
- Department of Geology & Environmental Geosciences, College of Charleston, Charleston, SC, 66 George Street Charleston, SC 29424, United States of America.
| | - Miranda E Jackson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rhea D Sanders-Smith
- Washington State Department of Ecology, 300 Desmond Drive SE, Lacey, WA 98503, United States of America.
| | - Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - George A King
- CSS, Inc., 200 SW 35th St, Corvallis, OR 97333, United States of America.
| | - Michael Bollman
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Sujay S Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States of America.
| | - Brittany E Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Sara J Hutton
- GSI Environmental, Inc., Olympia, Washington 98502, USA.
| | - Jackelyn Lang
- Department of Anatomy, Physiology, and Cell Biology, Department of Medicine and Epidemiology and the Karen C. Drayer Wildlife Health Center, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, United States of America.
| | - Heather V Goss
- US Environmental Protection Agency, Office of Water, Office of Wastewater Management, Washington, DC 20004, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Diana Lin
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Miguel Mendez
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| |
Collapse
|
10
|
Anjum S, Sarwar M, Ali Q, Alam MW, Manzoor MT, Mukhtar A. Assessment of bioremediation potential of Calotropis procera and Nerium oleander for sustainable management of vehicular released metals in roadside soils. Sci Rep 2024; 14:8920. [PMID: 38637588 PMCID: PMC11026540 DOI: 10.1038/s41598-024-58897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.
Collapse
Affiliation(s)
- Sumreen Anjum
- Institute of Botany, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Mubeen Sarwar
- Department of Horticulture, University of the Punjab, Lahore, 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | | | | | - Adnan Mukhtar
- Department of Food Science, University of Agriculture, Faisalabad, Suib-Campus Depalpur Okara, Okara, Pakistan
| |
Collapse
|
11
|
Sayago UFC, Ballesteros Ballesteros V. Recent Advances in the Treatment of Industrial Wastewater from Different Celluloses in Continuous Systems. Polymers (Basel) 2023; 15:3996. [PMID: 37836045 PMCID: PMC10575443 DOI: 10.3390/polym15193996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
There are numerous studies on water care methods featured in various academic and research journals around the world. One research area is cellulose residue coupled with continuous systems to identify which are more efficient and easier to install. Investigations have included mathematical design models that provide methods for developing and commissioning industrial wastewater treatment plants, but nothing is provided on how to size and start these treatment systems. Therefore, the objective is to determine recent advances in the treatment of industrial wastewater from different celluloses in continuous systems. The dynamic behavior of the research results with cellulose biomasses was analyzed with the mass balance model and extra-particle and intraparticle dispersion, evaluating adsorption capacities, design variables, and removal constants, and making a size contribution for each cellulose analyzed using adsorption capacities. A mathematical model was also developed that feeds on cellulose reuse, determining new adsorption capacities and concluding that the implementation of cellulose waste treatment systems has a high feasibility due to low costs and high adsorption capacities. Furthermore, with the design equations, the companies themselves could design their systems for the treatment of water contaminated with heavy metals with cellulose.
Collapse
|
12
|
Wang X, Liu E, Yan M, Zheng S, Fan Y, Sun Y, Li Z, Xu J. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran's index, Pb isotopes and source-oriented health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163211. [PMID: 37003334 DOI: 10.1016/j.scitotenv.2023.163211] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Contamination and source identifications of metals in urban road dust are critical for remediation and health protection. Receptor models are commonly used for metal source identification, whereas the results are usually subjective and not verified by other indicators. Here we present and discuss a comprehensive approach to study metal contamination and sources in urban road dust (Jinan) in spring and winter by integrating the enrichment factor (EF), receptor models (positive matrix factorization (PMF) and factor analysis with nonnegative constraints (FA-NNC)), local Moran's index, traffic factors and Pb isotopes. Cadmium, Cr, Cu, Pb, Sb, Sn and Zn were the main contaminants, with mean EFs of 2.0-7.1. The EFs were 1.0-1.6 times higher in winter than in spring but exhibited similar spatial trends. Chromium contamination hotspots occurred in the northern area, with other metal contamination hotspots in the central, southeastern and eastern areas. The FA-NNC results indicated Cr contamination primarily resulting from industrial sources and other metal contamination primarily originating from traffic emissions during the two seasons. Coal burning emissions also contributed to Cd, Pb and Zn contamination in winter. FA-NNC model-identified metal sources were verified via traffic factors, atmospheric monitoring and Pb isotopes. The PMF model failed to differentiate Cr contamination from other detrital metals and the above anthropogenic sources, largely due to the model grouping metals by emphasizing hotspots. Considering the FA-NNC results, industrial and traffic sources accounted for 28.5 % (23.3 %) and 44.7 % (28.4 %), respectively, of the metal concentrations in spring (winter), and coal burning emissions contributed 34.3 % in winter. Industrial emissions primarily contributed to the health risks of metals due to the high Cr loading factor, but traffic emissions dominated metal contamination. Through Monte Carlo simulations, Cr had 4.8 % and 0.4 % possibilities posing noncarcinogenic and 18.8 % and 8.2 % possibilities posing carcinogenic risks for children in spring and winter, respectively.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| | - Mengxia Yan
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Shuwei Zheng
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Ying Fan
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Yingxue Sun
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Zijun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| |
Collapse
|
13
|
Ge JC, Wu G, Xu G, Song JH, Choi NJ. Synthesis of Polyvinyl Alcohol/Coal Fly Ash Hybrid Nano-Fiber Membranes for Adsorption of Heavy Metals in Diesel Fuel. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101674. [PMID: 37242090 DOI: 10.3390/nano13101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Some studies have shown that the heavy metal emissions (HMEs) emitted from diesel engines can seriously threaten human health. HMEs are mainly related to the content of heavy metal ions in diesel fuel. Therefore, in order to reduce HMEs from diesel engines, a nano-fiber membrane filtration technology for diesel fuel was investigated. Herein, coal fly ash (CFA) from coal-fired power plants combined with polyvinyl alcohol (PVA) was successfully fabricated into nano-fibrous membranes using green electrospinning technology. In order to evaluate the adsorption properties, various hybrid membranes with different mixing ratios (PVA/CFA = 10/0, 10/1, 10/3, 10/5, and 10/7 by weight) were fabricated. The results show that eight metal ions with different concentrations are found in the diesel fuel, including Pb, Cu, Zn, Al, Fe, Cr, Ba, and Ni. All PVA/FA membranes have different adsorption capacities for metal ions, following the order: Cu > Fe > Pb > Al > Zn > Cr > Ba > Ni. In addition, the adsorption capacity of CFA3 (PVA/CFA = 10/3) is the largest. The super lipophilicity of the PVA/FA membranes also provide more adsorption sites for the contact of HMs with the membranes. The above research results provide guidance for development of ultra-fine filters in the future.
Collapse
Affiliation(s)
- Jun Cong Ge
- Division of Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Guirong Wu
- Division of Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Guangxian Xu
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Jun Hee Song
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Nag Jung Choi
- Division of Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| |
Collapse
|
14
|
Khalid N, Noman A, Nazir A, Tufail A, Hadayat N, Alzuaibr FM, Ikram S, Akhter N, Hussain M, Aqeel M. Nerium oleander could be used for sustainable management of traffic-borne elemental-enriched roadside soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40551-40562. [PMID: 36622593 DOI: 10.1007/s11356-023-25160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023]
Abstract
Metal pollutants released from motor vehicles are deposited in roadside environments. Metals are non-biodegradable and biomagnify in the food chain causing significant health hazards at all levels of the ecosystem. Hence, management of contaminated roadside verges is critically important and should be kept in mind while planning specific management strategies of such areas. Native vegetation could help to decontaminate heavy metal polluted soils in the best sustainable way. Therefore, this study was designed to assess the potential of Nerium oleander to accumulate heavy metals commonly released by automobiles such as Pb, Cd, Ni, and Zn along with various C and N compounds from five different locations along a busy road in Punjab, Pakistan, during summer and winter seasons. N. oleander showed the ability to absorb C, N, and heavy metals Pb and Cd; the maximum concentration of Pb and Cd was 8.991 mg kg-1 and 0.599 mg kg-1, respectively. These pollutants negatively affected photosynthetic pigments, gas exchange attributes, soluble proteins, and free amino acids. But antioxidant activity of N. oleander was found to be increased in both seasons. The metal accumulation in the plant was higher in the summer though. We highly recommend that by growing N. oleander at roadside verges for decontamination of vehicular pollutants could lead to sustainable management of these corridors.
Collapse
Affiliation(s)
- Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Atia Nazir
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Aasma Tufail
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Naila Hadayat
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | | | - Sobia Ikram
- Department of Botany, Government College Women University, Sialkot, Pakistan
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Noreen Akhter
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
| | - Mumtaz Hussain
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Aqeel
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan.
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
15
|
Thanigaivel S, Vickram S, Dey N, Jeyanthi P, Subbaiya R, Kim W, Govarthanan M, Karmegam N. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. CHEMOSPHERE 2023; 313:137475. [PMID: 36528154 DOI: 10.1016/j.chemosphere.2022.137475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it. Despite the fact that few researches have been undertaken on invertebrate exposure, accumulation, and biological implications, it is apparent that a wide range of pollutants can accumulate in the tissues of aquatic insects, earthworms, amphipod crustaceans, and mollusks. Due to long-term stability during long-distance transit, a number of chemical and microbiological agents that were not previously deemed pollutants have been found in various environmental compartments. The uptake of such pollutants by the aquatic organism is done through the process of bioaccumulation when dangerous compounds accumulate in living beings while biomagnification is the process of a pollutant becoming more hazardous as it moves up the trophic chain. Organic and metal pollution harms animals of every species studied so far, from bacteria to phyla in between. The environmental protection agency says these poisons harm humans as well as a variety of aquatic organisms when the water quality is sacrificed in typical wastewater treatment systems. Contrary to popular belief, treated effluents discharged into aquatic bodies contain considerable levels of Anthropogenic contaminants. This evolution necessitates a more robust and recent advancement in the field of remediation and their techniques to completely discharge the various organic and inorganic contaminants.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 062, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
16
|
Liu G, Chen T, Cui J, Zhao Y, Li Z, Liang W, Sun J, Liu Z, Xiao T. Trace Metal(loid) Migration from Road Dust to Local Vegetables and Tree Tissues and the Bioaccessibility-Based Health Risk: Impacts of Vehicle Operation-Associated Emissions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2520. [PMID: 36767884 PMCID: PMC9914983 DOI: 10.3390/ijerph20032520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Traffic activities release large amounts of trace metal(loid)s in urban environments. However, the impact of vehicle operation-associated emissions on trace metal(loid) enrichment in road dust and the potential migration of these trace metal(loid)s to the surrounding environment remain unclear. We evaluated the contamination, sequential fraction, and bioaccessibility of trace metal(loid)s in urban environments by assessing their presence in road dust, garden vegetables, and tree tissues, including bark and aerial roots, at a traffic-training venue impacted by vehicle operation emissions and, finally, calculated the bioaccessibility-based health risk. The results indicated a significant accumulation of trace metal(loid)s in road dust, with the highest lead (Pb), cadmium (Cd), and antimony (Sb) concentrations in the garage entrance area due to higher vehicle volumes, frequent vehicle starts and stops, and lower speeds. Aerial roots exposed to hill start conditions exhibited the highest Pb, Zn, and Sb levels, potentially caused by high road dust resuspension, confirming that this tree tissue is an appropriate bioindicator. Sequential extraction revealed high percentages of carbonate-, Fe/Mn oxide-, and organic/sulphide-associated fractions of Pb, copper (Cu), and zinc (Zn) in road dust, while most Cd, Cr, Ni, and Sb occurred as residual fractions. According to the potential mobilizable fractions in sequential extraction, the in vitro gastrointestinal method could be more suitable than the physiologically based extraction test to evaluate the bioaccessibility-related risk of traffic-impacted road dust. The bioaccessibility-based health risk assessment of the road dust or soil confirmed no concern about noncarcinogenic risk, while the major risk originated from Pb although leaded gasoline was prohibited before the venue establishment. Furthermore, the cancer risks (CRs) analysis showed the probable occurrence of carcinogenic health effects from Cd and Ni to adults and from Cd, Cr, and Ni to children. Furthermore, the Cd and Pb concentrations in the edible leaves of cabbage and radish growing in gardens were higher than the recommended maximum value. This study focused on the health risks of road dust directly impacted by vehicle emissions and provides accurate predictions of trace metal(loid) contamination sources in the urban environment.
Collapse
Affiliation(s)
- Guangbo Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tian Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixin Liang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
17
|
Chen Y, Hu Z, Bai H, Shen W. Variation in Road Dust Heavy Metal Concentration, Pollution, and Health Risk with Distance from the Factories in a City-Industry Integration Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114562. [PMID: 36361440 PMCID: PMC9656356 DOI: 10.3390/ijerph192114562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/23/2023]
Abstract
Road dust samples around three typical factories, F1, F2, and F3, in the National Zhengzhou Economic and Technology Development Zone (ZETZ), China, were collected to study the variation in heavy metal concentration (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn), pollution, and health risk with distance from the factories. The results indicated that the concentrations of all the elements near F1 were higher than near both F2 and F3. Apart from Co, Mn, and Cu in some dust samples, all the element concentrations were higher than the corresponding background values (BCs), to varying degrees. The spatial distributions of the heavy metals surrounding the factories followed the normal distribution. The peak values of element concentrations occurred at 300~400 m away from the factories, except for Hg, which continued increasing more than 500 m away from the factories. The fluctuation curves of the pollution load index value calculated according to the BCs for F1, F2, and F3 all had two peaks, a "small peak" and a "large peak", appearing at about 30 m and 300 m, respectively. For the hazard index and the total carcinogenic risk, the peak values all appeared at 400 m, with the curves following the normal distribution. Exposure to road dust containing non-carcinogenic and carcinogenic elements around F1 was greater than around F2 or F3. In conclusion, our results provide a reference for pursuing effective prevention of dust heavy metal pollution around modern manufacturing factories.
Collapse
Affiliation(s)
- Yinan Chen
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450018, China
| | - Zhiqiang Hu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475001, China
| | - He Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Shen
- The College of Environment and Planning, Henan University, Kaifeng 475001, China
| |
Collapse
|
18
|
Jiang R, Liu Y, Hu D, Zhu L. Exhaust and non-exhaust airborne particles from diesel and electric buses in Xi'an: A comparative analysis. CHEMOSPHERE 2022; 306:135523. [PMID: 35780985 DOI: 10.1016/j.chemosphere.2022.135523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/29/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Switching diesel buses (DBs) to electric buses (EBs) has been a global trend to reduce the use of fossil fuels and improve air quality. However, buses electrification may lead to additional vehicle weight, which may emit more non-exhaust particulate matter (PM) emissions. It remains debatable whether buses' electrification will successfully improve air quality as excepted. To assess the effect of the buses' electrification on the levels of PM emissions, PM emission factors (EFs) were evaluated from EBs and equivalent DBs. In addition, the total mass of PM emissions from EBs and equivalent DBs in 2021 was calculated in Xi'an using the real-world number and mileage of EBs. The non-exhaust PM EFs from EBs were larger than total exhaust and non-exhaust PM EFs from DBs, indicating that the electrification of buses would cause an increase in the level of PM emissions. The total annual mass of PM emissions from EBs was apparently higher than that from DBs. Moreover, a sensitivity analysis showed that tire wear, brake wear, and road wear PM emissions were more reliant on vehicle mileage, whereas resuspension of road dust was more dependent on vehicle weight. This finding can serve as a guideline for policymakers to design mitigation strategies for reducing extra PM emissions due to the electrification of buses by reasonably reducing vehicle weight and annual mileage.
Collapse
Affiliation(s)
- Ruisen Jiang
- School of Transportation Engineering, Chang'an University, Xi'an, 710064, China; Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK
| | - Ye Liu
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK.
| | - Dawei Hu
- School of Transportation Engineering, Chang'an University, Xi'an, 710064, China.
| | - Lan Zhu
- School of Morden Post, Xi'an University of Posts & Telecommunications, Xi'an, 710054, China
| |
Collapse
|
19
|
From dust to the sources: The first quantitative assessment of the relative contributions of emissions sources to elements (toxic and non-toxic) in the urban roads of Tehran, Iran. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Oxidative Stress, Cytotoxic and Inflammatory Effects of Urban Ultrafine Road-Deposited Dust from the UK and Mexico in Human Epithelial Lung (Calu-3) Cells. Antioxidants (Basel) 2022; 11:antiox11091814. [PMID: 36139888 PMCID: PMC9495992 DOI: 10.3390/antiox11091814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022] Open
Abstract
Road-deposited dust (RD) is a pervasive form of particulate pollution identified (typically via epidemiological or mathematical modelling) as hazardous to human health. Finer RD particle sizes, the most abundant (by number, not mass), may pose greater risk as they can access all major organs. Here, the first in vitro exposure of human lung epithelial (Calu-3) cells to 0−300 µg/mL of the ultrafine (<220 nm) fraction of road dust (UF-RDPs) from three contrasting cities (Lancaster and Birmingham, UK, and Mexico City, Mexico) resulted in differential oxidative, cytotoxic, and inflammatory responses. Except for Cd, Na, and Pb, analysed metals were most abundant in Mexico City UF-RDPs, which were most cytotoxic. Birmingham UF-RDPs provoked greatest ROS release (only at 300 µg/mL) and greatest increase in pro-inflammatory cytokine release. Lancaster UF-RDPs increased cell viability. All three UF-RDP samples stimulated ROS production and pro-inflammatory cytokine release. Mass-based PM limits seem inappropriate given the location-specific PM compositions and health impacts evidenced here. A combination of new, biologically relevant metrics and localised regulations appears critical to mitigating the global pandemic of health impacts of particulate air pollution and road-deposited dust.
Collapse
|
21
|
Chen H, Zhan C, Liu S, Zhang J, Liu H, Liu Z, Liu T, Liu X, Xiao W. Pollution Characteristics and Human Health Risk Assessment of Heavy Metals in Street Dust from a Typical Industrial Zone in Wuhan City, Central China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710970. [PMID: 36078702 PMCID: PMC9518381 DOI: 10.3390/ijerph191710970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to assess the pollution levels, sources, and human health risks of heavy metals in street dust from a typical industrial district in Wuhan City, Central China. In total, 47 street dust samples were collected from the major traffic arteries and streets around Wuhan Iron and Steel (Group) Company (WISC) in Qingshan District, Wuhan. The concentrations of heavy metals (Cr, Mn, Ni, Zn, Fe, Cu, and Cd) in street dust were determined by atomic absorption spectroscopy. Results indicated that the mean concentrations of Zn (249.71 mg/kg), Cu (51.15 mg/kg), and Cd (0.86 mg/kg) in street dust were higher than their corresponding soil background values in Hubei Province. Heavy metal enrichment is closely related to urban transportation and industrial production. The pollution level of heavy metals in street dust was assessed using the geo-accumulation method (Igeo) and potential ecological risk assessment (PERI). Based on the Igeo value, Cr, Mn, Fe, and Ni showed no pollution, Zn and Cu showed light to moderate contamination, and Cd showed moderate contamination. The PERI values of heavy metals in street dust ranged between 76.70 and 7027.28, which represents a medium to high potential ecological risk. Principal component analysis showed that the sources of heavy metals in street dust were mainly influenced by anthropogenic activities. Among the studied metals, Cu, Cr, Zn, Fe, and Mn mainly come from industrial processes, while Ni and Cd come from traffic exhaust. The non-carcinogenic risk indexes of heavy metals for children and adults are ranked as Cr > Cu > Ni > Cd > Zn. The health risks to children through the different exposure pathways are higher than those for adults. Hand-to-mouth intake is the riskiest exposure pathway for non-carcinogenic risk. In addition, Cr, Ni, and Cd do not pose a carcinogenic risk for the residents.
Collapse
Affiliation(s)
- Hong Chen
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
- Correspondence:
| | - Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Ziguo Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Ting Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Xianli Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Wensheng Xiao
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| |
Collapse
|
22
|
Kondo MC, Zuidema C, Moran HA, Jovan S, Derrien M, Brinkley W, De Roos AJ, Tabb LP. Spatial predictors of heavy metal concentrations in epiphytic moss samples in Seattle, WA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153801. [PMID: 35151745 DOI: 10.1016/j.scitotenv.2022.153801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The use of bio-indicators is an emerging, cost-effective alternative approach to identifying air pollution and assessing the need for additional air monitoring. This community science project explores the use of moss samples as bio-indicators of the distribution of metal air particulates in two residential neighborhoods of the industrial Duwamish Valley located in Seattle, WA (USA). We applied geographically weighted regression to data from 61 youth-collected samples to assess the location-specific area-level spatial predictors of the concentrations of 25 elements with focus on five heavy metals of concern due to health and environmental considerations. Spatial predictors included traffic volume, industrial land uses, major roadways, the airport, dirt roads, the Duwamish River, impervious surfaces, tree canopy cover, and sociodemographics. Traffic volume surrounding sample locations was the most consistent positive predictor of increasing heavy metal concentration. Greater distance from the heavy-industry corridor surrounding the Duwamish River predicted lower concentrations of all metals, with statistically significant associations for chromium and lead in some areas. As the distance from dirt roads increased, the concentration of arsenic and chromium decreased significantly. Percent tree canopy within 200 m of sample locations was a significant protective factor for cadmium concentrations. In addition, percent people of color was significantly positively associated with increasing lead, chromium and nickel concentrations. Our findings underscore the potential influence of heavy industry and mobile sources on heavy metal concentrations, the buffering potential of trees in local environments, and persistent opportunity to improve environmental justice.
Collapse
Affiliation(s)
- Michelle C Kondo
- Northern Research Station, USDA Forest Service, 100 N. 20th St, Ste 205, Philadelphia, PA 19103, United States of America.
| | - Christopher Zuidema
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, United States of America
| | - Hector A Moran
- 2130 Aqueduct Avenue, Bronx, NY 10453, United States of America
| | - Sarah Jovan
- Pacific Northwest Research Station, USDA Forest Service, 620 SW Main St. suite 502, Portland, OR 97205, United States of America
| | - Monika Derrien
- Pacific Northwest Research Station, USDA Forest Service, 400 N 34th St., Suite 201, Seattle, WA 98103, United States of America
| | - Weston Brinkley
- Street Sounds Ecology, LLC, 312 NW 81st St, Seattle, WA 98117, United States of America
| | - Anneclaire J De Roos
- Drexel University Dornsife School of Public Health, Department of Environmental and Occupational Health, 3215 Market Street, Philadelphia, PA 19104, United States of America
| | - Loni Philip Tabb
- Drexel University Dornsife School of Public Health, Department of Epidemiology and Biostatistics, 3215 Market Street, Philadelphia, PA 19104, United States of America
| |
Collapse
|
23
|
Assessment of the Anthropogenic Impact and Distribution of Potentially Toxic and Rare Earth Elements in Lake Sediments from North-Eastern Romania. TOXICS 2022; 10:toxics10050242. [PMID: 35622655 PMCID: PMC9145426 DOI: 10.3390/toxics10050242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
Chemical analysis was performed on sediment samples collected in two sampling sessions (July and October) from Podu Iloaiei Dam Lake, one of the most important water resources used for aquaculture in north-eastern Romania. The concentration of 15 trace elements (TEs), 8 refractory elements (REs), and 15 rare earth elements (REEs)—determined using inductively coupled plasma mass spectrometry—showed variability largely dependent of the sampling points and collection time. Manganese was the most abundant TE, V and Cr were the most abundant REs, while Ce was one of the most abundant REEs. The cerium negative anomaly and Gd positive anomaly were observed in the Chondrite-normalized distributions. In October, the Ce anomaly showed significant negative correlation with Mn, emphasizing the water body oxidation potential. The identified positive Gd anomaly was most likely associated with the use of Gd-chelating agents in magnetic resonance imaging in Iasi, the largest medical hub in north-eastern Romania. Principal component analysis extracted three factors explaining 96.0% of the observed variance, i.e., rock weathering, leaching from soil surface, contributions from urban stormwater and atmospheric deposition (50.9%), pedological contributions (23.7%), and mixed anthropogenic sources (e.g., traffic, waste discharge, agricultural activities; 21.4%). The evaluation of pollution indices highlighted low and moderate degrees of contamination for most of the elements and a considerable degree of contamination for Cd. Assigned Cd sources included fertilizers and pesticides used in the near agricultural areas or the high traffic road located near the lake. Since contamination of aquatic ecosystems with harmful elements is a human health concern, further monitoring of specific vectors in the food chain of the investigated dam lake will be of the utmost importance.
Collapse
|
24
|
Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design. WATER 2022. [DOI: 10.3390/w14081296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioretention basins, constructed wetlands and roadside swales are among the most common Water-Sensitive Urban Design (WSUD) or stormwater quality treatment systems. Although these systems can reduce stormwater quantity and improve quality, their hydraulic and water quality treatment performances are different. The aim of this study was to investigate the hydraulic and water quality performance of a bioretention basin, a constructed wetland and a roadside swale by analyzing monitored water quantity and quality data from a range of rainfall events using a ranking approach. The study outcomes showed that a bioretention basin performed better in relation to peak flow and runoff volume reduction while the constructed wetland tended to produce better outflow water quality. The roadside swale had a relatively lower capacity for treating stormwater. These results suggest that a bioretention basin could be the preferred option when the primary requirement is water quantity improvement. However, if water quality improvement is the primary consideration, a constructed wetland could be more efficient. Additionally, when designing a treatment train, it appears to be preferable to place a bioretention basin prior to a constructed wetland. Further, a swale appears to be more appropriate for use as a pretreatment device. The research study outcomes will contribute to effective stormwater treatment design.
Collapse
|
25
|
Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The paper compares the emissions from vehicles including ICEVs (internal combustion engine vehicles) with equivalent emissions from BEVs (battery electric vehicles). Additionally, it analyzes the available source research and the specific energy mix for Poland based on carbon. Mathematical calculations estimate air pollutant emissions. To carry out the analysis and calculations, data were provided by the manufacturers of electricity consumption in the case of vehicles equipped with electric motors and the COPERT model for internal combustion engines. Air pollutants are considered: CO2, NOx, SOx, CO, and Total Suspended Particles (TSP). In addition to exhaust emissions, all solids emissions from road abrasion and tire and brake wear are also considered. The emission of pollutants is estimated based on the emission factors using the average mileage in Polish conditions. The paper compares emissions for three scenarios considering electric vehicles, combustion engine cars, and hybrid cars. Analyses show that introducing cars with electric engines into traffic at the expense of withdrawing vehicles with internal combustion engines is not favorable in Polish conditions. The analysis indicates that CO, CO2, and TSP emissions have decreased, while NOx and SOx emissions have increased.
Collapse
|
26
|
Chen H, Wang L, Hu B, Xu J, Liu X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. CHEMOSPHERE 2022; 289:133182. [PMID: 34883131 DOI: 10.1016/j.chemosphere.2021.133182] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
The integrated analysis of the distribution characteristics, health risks, and source identification of heavy metals is crucial for formulating prevention and control strategies for soil contamination. In this study, the area around an abandoned electronic waste dismantling center in China was selected as the research area. The probabilistic health risks caused by heavy metals were evaluated by the Monte Carlo simulation. Random forest, partial least squares regression, and generalized linear models were utilized to predict heavy metal distributions and identify the potential driving factors affecting heavy metal accumulation in soil. The relationships of spatial variation between the heavy metal contents and environmental variables were further visualized. The results revealed that cadmium (Cd) and copper (Cu) were the primary soil pollutants in the study area and caused high ecological risks. The probabilistic health risk assessment indicated that the non-carcinogenic and carcinogenic risks for all populations were acceptable. However, children are more susceptible to heavy metal soil contamination than adults. The sensitivity analyses indicated that the total contents of soil heavy metals and soil ingestion rate were the dominant factors affecting human health. The random forest model, with R2 values of 0.41, 0.65, 0.57, 0.71, and 0.58 for Cd, Cu, Ni, Zn, and Pb, respectively, predicted the heavy metal concentrations better than the other two models. The distance to the nearest industrial enterprise, industrial output, and agricultural chemical input were the main factors affecting Cd, Cu, Zn, and Pb accumulations in the soil, and soil pH and soil parent material were the primary factors influencing Ni accumulation in the soil. The visualization results of the geographically weighted regression model showed a significant relationship between soil heavy metal contents and industrial activity level. This study could be utilized as a reference for policymakers to formulate prevention and control strategies for heavy metal pollution in agricultural areas.
Collapse
Affiliation(s)
- Hanrui Chen
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Lu Wang
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Bifeng Hu
- Department of Land Resource Management, School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang, 330013, China
| | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Wang J, Huang JJ, Mulligan C. Seasonal source identification and source-specific health risk assessment of pollutants in road dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10063-10076. [PMID: 34510345 DOI: 10.1007/s11356-021-16326-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Humans who are exposed to metals in road dust may have potential health risks through touching, ingesting, and inhaling the suspended road dust. There were limited studies to link seasonal emission sources to health risks from metals in road dust. In this study, metals in road dust from different functional areas were seasonally monitored. The contributions of the pollutant sources in study areas varied with seasons. By combining the source apportionment model (PMF), road dust emission model, and health risk models (HI: hazard index and ILCR: incremental lifetime carcinogenic risk), industrial and construction activity was identified as the crucial source of both the pollutants in road dust (29-47%), and the HI for adults (27-45%) and children (41-50%) in different seasons. The traffic non-exhaust emission dominated in the carcinogenic risks for children in spring (45%) and summer (36%). Factors such as seasons, particle size, metal bioavailability, human exposure time, and exposure area were all taken into consideration to avoid overestimating or underestimating health risks. The carcinogenic risks for children (1.6 E-06) and adults (2.8 E-06) exposed to Cr both exceed the minimum threshold (10-6). It means that the potential risks were acceptable but could not be completely neglected. Measured metals mainly posed hazard to human health through ingestion route. Pb and Mn, Fe and Mn were the main harmful elements that induced non-carcinogenic risks for adults and children, respectively. Effectively identifying the source-specific health risks in different seasons will help in the formulation of adaptive strategies to diminish the potential risks.
Collapse
Affiliation(s)
- Jingshu Wang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300071, China.
| | - Catherine Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
28
|
Hong Y, Chen Y, Shen R, Chen S, Xu G, Cheng H, Guo L, Wei Z, Yang J, Liu Y, Shi Z, Mouazen AM. Diagnosis of cadmium contamination in urban and suburban soils using visible-to-near-infrared spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118128. [PMID: 34530244 DOI: 10.1016/j.envpol.2021.118128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 05/25/2023]
Abstract
Previous studies have mostly focused on using visible-to-near-infrared spectral technique to quantitatively estimate soil cadmium (Cd) content, whereas little attention has been paid to identifying soil Cd contamination from a perspective of spectral classification. Here, we developed a framework to compare the potential of two spectral transformations (i.e., raw reflectance and continuum removal [CR]), three optimization strategies (i.e., full-spectrum, Boruta feature selection, and synthetic minority over-sampling technique [SMOTE]), and three classification algorithms (i.e., partial least squares discriminant analysis, random forest [RF], and support vector machine) for diagnosing soil Cd contamination. A total of 536 soil samples were collected from urban and suburban areas located in Wuhan City, China. Specifically, Boruta and SMOTE strategies were aimed at selecting the most informative predictors and obtaining balanced training datasets, respectively. Results indicated that soils contaminated by Cd induced decrease in spectral reflectance magnitude. Classification models developed after Boruta and SMOTE strategies out-performed to those from full-spectrum. A diagnose model combining CR preprocessing, SMOTE strategy, and RF algorithm achieved the highest validation accuracy for soil Cd (Kappa = 0.74). This study provides a theoretical reference for rapid identification of and monitoring of soil Cd contamination in urban and suburban areas.
Collapse
Affiliation(s)
- Yongsheng Hong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China; Department of Environment, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Yiyun Chen
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
| | - Ruili Shen
- Hubei Academy of Environmental Sciences, Wuhan, 430072, China
| | - Songchao Chen
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gang Xu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
| | - Hang Cheng
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Long Guo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zushuai Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Jian Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Yaolin Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhou Shi
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Abdul M Mouazen
- Department of Environment, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
29
|
Akther S, Suzuki J, Pokhrel P, Okada T, Imamura M, Enomoto T, Kuwahara Y, Fujita M. Assessment of heavy metal pollution in the coastal sediments of an urbanized atoll in the central Pacific: Majuro Atoll, the Marshall Islands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:843. [PMID: 34837143 DOI: 10.1007/s10661-021-09603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Pacific atolls are extremely vulnerable to the effects of climate change. Coral reef ecosystems, which are responsible for the island formation and maintenance, can potentially keep pace with rising sea levels. Such ecosystems are sensitive to pollution; however, the sources and levels of atoll pollutants caused by urbanization have rarely been investigated. In this study, we assessed the heavy metal pollution (Cr, Mn, Ni, Cu, Zn, Cd, and Pb) of coastal sediments to evaluate the effects of urbanization on Majuro Atoll, the Marshall Islands. The densely populated area had the most significant pollution with high levels of Pb, Mn, Zn, and Cu due to road traffic activity. Domestic wastewater, a major pollution source in Pacific atolls, was not identified. Remarkably, the Zn and Pb levels in the lagoonal coasts of the remote island area were 697 - 1539 and 22 - 337 times higher, respectively, than in the natural area of Funafuti Atoll, Tuvalu. Thus, the remote island and sparsely populated areas were significantly polluted because of the maritime traffic activity in the lagoon and debris accumulation in/around the lagoon. This pollution resulted from improper municipal solid waste management of the main island. The contamination factor, pollution load index, and geo-accumulation index indicated high levels of heavy metal pollution in these areas. Urbanization of the atoll clearly resulted in a distinct heavy metal composition and high pollution levels compared with Funafuti Atoll. These findings emphasize the importance of pollution management in the conservation and rehabilitation of urbanized atolls threatened by future sea-level rises.
Collapse
Affiliation(s)
- Shumona Akther
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
| | - Jumpei Suzuki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba, 270-1194, Japan
| | - Preeti Pokhrel
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
| | - Teruhisa Okada
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba, 270-1194, Japan
| | - Masahiro Imamura
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba, 270-1194, Japan
| | - Tadao Enomoto
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
| | - Yuji Kuwahara
- Global and Local Environment Co-Creation Institute, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
| | - Masafumi Fujita
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan.
| |
Collapse
|
30
|
Jordanova N, Jordanova D, Tcherkezova E, Georgieva B, Ishlyamski D. Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148402. [PMID: 34465059 DOI: 10.1016/j.scitotenv.2021.148402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 05/16/2023]
Abstract
This study aims to evaluate the urban pollution by combined magnetometric and geochemical analyses on road dusts from three towns in the vicinity of Cu-smelter and ore mining. A collection of 117 road dust samples was investigated for their magnetic characteristics (magnetic susceptibility (χ), frequency dependent susceptibility, anhysteretic and isothermal (IRM) remanences), IRM step-wise acquisition and thermal demagnetization. Coarse grained magnetite and hematite were identified as major iron oxides in the emissions from ore spills and smelter, while traffic-related magnetic minerals were finer magnetite grains. Degree of pollution is assessed by geo-accumulation index, enrichment factor and Pollution Load Index (PLI) for a set of potentially toxic elements (PTEs). Using the geochemical data, we evaluate the carcinogenic and non-carcinogenic health risks for the population. Our results show that dust emissions from the industrial facilities likely pose significant health hazard for adults and children caused largely by Arsenic pollution in "hot spots". Based on the strong correlation between χ and most of the PTEs, detailed variations in pollution degree inside the urban areas are inferred. Strong linear regression between χ and PLI allows designating limit susceptibility values, corresponding to the PLI categories. This approach can be successfully applied for monitoring and mapping purposes at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Neli Jordanova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria.
| | - Diana Jordanova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Emilia Tcherkezova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Bozhurka Georgieva
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Daniel Ishlyamski
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| |
Collapse
|
31
|
Chang X, Yu Y, Li YX. Response of antimony distribution in street dust to urban road traffic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113219. [PMID: 34246026 DOI: 10.1016/j.jenvman.2021.113219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Little is known about the relationship between traffic congestion and antimony (Sb) distribution in street dust, which is essential for Sb control and emission reduction in urban areas. Sb concentrations and mass load of the street dust collected in 19 cities of China were determined before investigating the mechanism of traffic influence on Sb distribution through diverse statistical means. The results showed that the Sb concentrations in each city were 1.10-4.76 times higher than the local background values. Sb concentrations in transportation areas were significantly higher than those in residential and industrial areas, and were significantly affected by road network density. The effect of congestion on Sb load of street dust was influenced by vehicle flowrate. Only when the vehicle flowrate was high, the traffic congestion would promote the increase of Sb load obviously. The improved accounting method showed that the Sb dissipation from brake wear in major Chinese cities were higher than that in Stockholm, Sweden, in 2005. The latent path analysis illustrated that a 1% increase in congestion index was correlated with a 0.886% increase in the Sb load. Compared with Switzerland, which has a typical industrialized Sb consumption pattern, China needs to recycle brake pads in addition to taking various measures to alleviate traffic congestion and reduce brake pad wear, despite the fact that the maximum health risk of Sb was far below the safety threshold. This study will provide valuable insights for urban traffic management and brake pad recycling.
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Yang Yu
- The Institute of Advanced Study of Coastal Ecology, Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, Ludong University, Yantai, 264025, China
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| |
Collapse
|
32
|
Liu Y, Chen H, Gao J, Li Y, Dave K, Chen J, Federici M, Perricone G. Comparative analysis of non-exhaust airborne particles from electric and internal combustion engine vehicles. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126626. [PMID: 34273888 DOI: 10.1016/j.jhazmat.2021.126626] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
This paper evaluates the effect of the electrification of the small, medium, and large internal combustion engine (ICE) passenger cars on the levels of total particulate matter (PM). The total mean PM10 and PM2.5 emission factors (EFs) on urban, rural, and motorway roads are in the range of 26.13 - 39.57 mg km-1 veh-1 and 13.39 - 18.44 mg km-1 veh-1, respectively, from small to large ICE passenger cars. Correspondingly, the total mean PM10 and PM2.5 non-exhaust EFs on urban, rural, and motorway roads range from 27.76 to 43.43 mg km-1 veh-1 and 13.17 -19.24 mg km-1 veh-1 from equivalent small to large electric vehicles (EVs) without regenerative braking. These results show that the total non-exhaust PM from the equivalent EVs may exceed all PM from ICE passenger cars, including exhaust particle emissions, which are dependent mainly on the extent of regenerative braking, followed by passenger car type and road type. PM10 EFs for equivalent EVs without regenerative braking on urban, rural, and motorway roads are all higher than those from ICE cars. As for PM2.5, most of the equivalent EVs require different extents of regenerative braking to reduce brake emissions to be in line with all particle emissions from relative ICE cars.
Collapse
Affiliation(s)
- Ye Liu
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
| | - Haibo Chen
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK.
| | - Jianbing Gao
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK.
| | - Ying Li
- Dynnoteq, 1 Bridge Street, Kington HR5 3DJ, UK
| | - Kaushali Dave
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
| | - Junyan Chen
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
33
|
Qian G, Zhang J, Li X, Yu H, Gong X, Chen J. Study on pollution characteristics of urban pavement runoff. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1745-1756. [PMID: 34662310 DOI: 10.2166/wst.2021.371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urban pavement runoff has become an important pollution source endangering the quality of urban water. This paper analyzed the characteristics of particle size distribution of road-deposited sediment (RDS). The variation of pollutants with RDS content is presented. Based on continuous sampling of runoff, the variation between pollutant concentration and rainfall characteristics is revealed. The results show that each particle group shares similar content except for the group smaller than 0.075 mm. However, the smaller particles have a stronger ability to adsorb heavy metals (Zn, Pb, Cu), and a weaker ability to adsorb chemical oxygen demand (COD). The concentrations of different pollutants have different relationships with rainfall and runoff time. The concentration of suspended solids (SS) decreases steadily with runoff time, while the concentration of heavy metals increases first and then decreases. The first 30 minutes of runoff is the best time to treat heavy metals and SS. The five-day biochemical oxygen demand (BOD5) and total petroleum hydrocarbons (TPHs) concentration are mainly affected by rainfall intensity. The result presented in this paper may provide a useful reference for the treatment of pavement runoff pollution.
Collapse
Affiliation(s)
- Guoping Qian
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail: ; National Engineering Laboratory for Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Jingyu Zhang
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Xi Li
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Huanan Yu
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Xiangbing Gong
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Juyong Chen
- Fujian Academy of Building Research Co., LTD, Fuzhou, Fujian 350108 China
| |
Collapse
|
34
|
Jin Z, Lv J. Evaluating source-oriented human health risk of potentially toxic elements: A new exploration of multiple age groups division. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147502. [PMID: 33991919 DOI: 10.1016/j.scitotenv.2021.147502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Effective source-oriented human health risk assessment (HHRA) for people in different life stages will guide pollution control and risk prevention. This work integrated three receptor models of positive matrix factorization, Unmix, and factor analysis with nonnegative constraints for accurate source-oriented HHRA of potentially toxic elements in 6 age groups of populations (0-<1 year, 1-<6 years, 6-<12 years, 12-<18 years, 18-<44 years, and 44+ years). Four sources were identified. Natural source controlled As, Cr, and Ni in dust and soil as well as Pb and Zn in soil. Industrial-traffic emissions contributed most of Cd in dust and soil as well as Pb and Zn in dust. Hg in both dust and soil originated from coal combustion. Construction works contributed more to PTEs in soil than in dust. Noncarcinogenic and carcinogenic risk for both dust and soil changed in similar trends by age. The noncancer risk reduced with increasing age for people below 44 years. Carcinogenic risk of females over 44 years were the highest, while children from 0 to 1 year faced the lowest carcinogenic risk. Among the four origins of PTEs, natural sources contributed most to health risk of PTEs, followed by industrial-traffic sources, construction works, and coal combustion. Based on sequential Gaussian simulation (SGS), the susceptible population and risk areas were identified. Children from 0 to 6 years were identified as susceptible population. The areas with noncancer risk in dust were 19.15 km2 for 0-<1 year and 3.14 km2 for children from 1 to <6 years, and noncancer risk areas in soil were 30.26 km2 for 0-<1 year and 0.85 km2 for 1-<6 years. Relevant control and management works were demanded on children from 0 to 6 years and noncancer risk areas.
Collapse
Affiliation(s)
- Zhao Jin
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China
| | - Jianshu Lv
- College of Geography and Environment, Shandong Normal University, Ji'nan 250014, China.
| |
Collapse
|
35
|
Li H, Zhao J, Zhao S, Cui G. Simultaneous determination of trace Pb(II), Cd(II), and Zn(II) using an integrated three-electrode modified with bismuth film. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Investigation of the Formation Mechanism and Environmental Risk of Tire—Pavement Wearing Waste (TPWW). SUSTAINABILITY 2021. [DOI: 10.3390/su13158172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tire—pavement interaction behaviours result in large amounts of wearing waste matter, which attaches to the surface of the pavement and is directly exposed to the surrounding environment. This kind of matter imposes a great challenge to the environment of the road area. The current study is devoted to carrying out a comprehensive investigation of the formation mechanism of tire—pavement wearing waste (TPWW), as well as the resulting environmental risks. A self-developed piece of accelerated polishing equipment, the Harbin advanced polishing machine (HAPM), was employed to simulate the wearing process between vehicle tires and pavement surfaces, and the TPWW was collected to conduct morphological, physical, and chemical characterisations. The results from this study show that the production rate of TPWW decreases with the increase in polishing duration, and the coarse particles (diameters greater than 0.425 mm) account for most of the TPWW obtained. The fine fraction (diameter smaller than 0.425 mm) of the TPWW comprises variously sized and irregularly shaped rubber particles from the tire, as well as uniformly sized and angular fine aggregates. The environmental analysis results show that volatile alkanes (C9–C16) are the major organic contaminants in TPWW. The Open-Graded Friction Course (OGFC) asphalt mixture containing crumb rubber as a modifier showed the highest risk of heavy metal pollution, and special concern must be given to tire materials for the purpose of improving the environmental conditions of road areas. The use of polyurethane as a binder material in the production of pavement mixtures has an environmental benefit in terms of pollution from both organic contaminants and heavy metals.
Collapse
|
37
|
Heidari M, Darijani T, Alipour V. Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. CHEMOSPHERE 2021; 273:129656. [PMID: 33503525 DOI: 10.1016/j.chemosphere.2021.129656] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
Sources of heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in the road dust of Bandar Abbas city, Iran, and its west suburb were apportioned and the related source-specific ecological and health risks were assessed. The level of heavy metal pollution and the related ecological risk for suburban road dust (suburban RD) were far higher than those of urban RD. Accordingly, probabilistic health risk assessment showed no significant health risk in urban region but significant health risk in the suburb, especially for As with cancer risk above 10-4. Source apportionment using positive matrix factorization (PMF) identified lithogenic source (45.9%) and traffic emission (47.6%) as the main sources of heavy metals in urban and suburban regions, respectively. However, the industrial/construction activities showed the main contribution in ecological risk in both regions. On the other hand, the health risks in urban and suburban regions were mainly attributed to lithogenic source (49.7% for non-cancer risk and 36.8% of cancer risk) and traffic emission (69.4% of non-cancer risk and 46.6% of cancer risk), respectively. The sensitivity analysis showed that the Pb and As originated from traffic emission had the most impact on the non-cancer and cancer risks, respectively, in the suburb. Therefore, this study highlighted the concern about traffic emission as a critical heavy metal source in the road dust of Bandar Abbas suburb.
Collapse
Affiliation(s)
- Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Tooba Darijani
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vali Alipour
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
38
|
Shahid M. Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124881. [PMID: 33360193 DOI: 10.1016/j.jhazmat.2020.124881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
During the last two decades, the use of soil amendments has gained high attention due to their role in governing trace element biogeochemistry in the soil. Majority of the studies dealing with soil amendments focused on the soil-plant transfer of trace elements, their compartmentation inside the plants and associated toxic effects. However, there is comparatively limited data regarding the effects of soil amendments on trace-element-induced oxidative stress (variations in stress and tolerance parameters) in plants. Therefore, this review, for the first time, critically elucidates the broad and specific trends in literature data of stress, tolerance and growth parameters under co-application of trace elements and soil amendments. For this purpose, a total of 3120 plant response items from literature data were collected/analyzed. The meta-analysis revealed an overall decrease in stress parameters (reactive oxygen species, membrane damage and lipid peroxidation), while an increase in tolerance parameters (antioxidants) and growth parameters (pigment contents). However, these general trends vary greatly with respect to different types of amendments, trace elements, plant species, plant organs and exposure cultures. In addition, the trends also varied for different types of response items of stress, tolerance and growth parameters (e.g., POD vs CAT, H2O2 vs O2). Manuscript critically discusses some mechanistic explanations for these general and specific trends in literature data. Finally, this review proposed key research gaps and important future perspectives. All the aspects discussed in this review have been strengthened with 23 Tables and 7 Figures. The research gaps and scientific queries established in this review based on meta-analysis of literature data will open new aspects of future research and discussion in the fields of ecotoxicology, stress physiology and remediation.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan.
| |
Collapse
|
39
|
Abstract
One of the possibilities of removing heavy metals (HMs) from soil is the use of phytoremediation techniques supported with biosolids, which also allow for their disposal. Therefore, the objective of the research was the determination of the sewage sludge suitability after its application to urban soil in order to increase the phytoremediation efficiency of contaminated soil. A field experiment was established on lawns in Białystok (Poland) in two locations with different traffic. The research plots were fertilized with sludge in doses of 14.5 t DM/ha and 29 t DM/ha. A mixture of lawn grasses was sown on the prepared plots. During two years of experiment soil/plant samples were collected, and pH, organic matter, dehydrogenase and catalase activity (soil), the total content of Cd, Cr, Cu, Mo, Ni, Pb, Zn, and Hg (soil/plant), and their fractions (soil) were determined. The HMs in soil were present mainly in residual and reducible fractions. Zn had the highest share in acid-soluble fractions (17–45%). The efficiency of urban soil phytoremediation was determined by the calculation of bioconcentration (BCF) and translocation (TF) factors. The highest values for BCF and TF were obtained for Mo (1.97 and 1.99, respectively). In the presented study, sludge amendment caused an immobilization of heavy metals.
Collapse
|
40
|
Tong R, Fang Y, Zhang B, Wang Y, Yang X. Monitoring and evaluating the control effect of dust suppressant on heavy metals based on ecological and health risks: a case study of Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14750-14763. [PMID: 33219505 DOI: 10.1007/s11356-020-11648-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Dust suppressant is widely applied to control the road dust pollution, while the unified statement on its control effect has not been obtained. To fill this gap, an experiment was conducted at four typical sites in Beijing, where dust suppressant and water were sprayed at test and control sites, respectively. Samples were collected to analyze the concentrations of PM2.5, PM10, and heavy metals. With the application of potential ecological risk index and probabilistic health risk assessment, the ecological and health risks of heavy metals were obtained. Results showed that compared with control sites, the total concentrations of heavy metals in PM10 and PM2.5 at test sites decreased by 1555.40 and 784.95 ng/m3 in 14 days, with the suppression rate of 11.95% and 12.06%. Especially, the total ecological risks of heavy metals in PM10 reduced from 165.77 to 143.64, with their ecological hazard level changed from medium to slight. The carcinogenic risks of PM2.5 and PM10 reduced by 0.60E-05 and 1.52E-06, respectively. As for the non-carcinogenic risks, there were a reduction of 5.78% and 12.28% for PM2.5 and PM10, respectively. Notably, the ecological risk of Pb was the highest; Cr and Zn contributed the most to carcinogenic and non-carcinogenic risk. Finally, to mitigate road dust pollution from an integration perspective, some preventive measures were proposed.
Collapse
Affiliation(s)
- Ruipeng Tong
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Yingqian Fang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Boling Zhang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Yiran Wang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China
| | - Xiaoyi Yang
- School of Emergency Management and Safety Engineering, China University of Mining and Technology - Beijing, Beijing, 100083, China.
| |
Collapse
|
41
|
Abstract
The spatial distribution of potentially toxic elements in land near a heavily loaded highway in the West Attica region (Greece) is discussed. This study aimed to investigate the extent of soil contamination with trace elements on land in the margin of highways. The concentration of thirty-five elements in topsoil, car ash, and road sediment bulk samples was determined. Statistical and spatial analysis was applied for evaluating the geochemical dispersion of the examined elements. Geo-accumulation index was estimated. Elements content were compared to criteria and screening values established by the literature. The concentration of As, Cu, Mn, Ni, P, Pb, and Zn in topsoil appeared to be influenced by traffic emissions. It is found that engine exhaust, tyre wear, and brake lining contribute to the As, Ba, Cu, Mn, Ni, P, Pb, and Zn content recorded in topsoil in the margin of highways. The bulk sample of road sediment is moderately contaminated to extremely contaminated with Cu, Mn, Ni, P, Pb, and Zn. Comparison of elements content in topsoil with screening values revealed that Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Sb, V, and Zn pose a potential risk for plants.
Collapse
|
42
|
Thoracic Fraction (PM10) of Resuspended Urban Dust: Geochemistry, Particle Size Distribution and Lung Bioaccessibility. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11020087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A fluidized bed aerosol generator was connected to a 13-stage cascade impactor (nanoMOUDI) for the size fractionation of urban dust (<10 µm), followed by the gravimetric analysis of loaded PTFE filter samples. This method was used to characterize the PM10 (thoracic) fraction of road dust sampled from expressways, arterial roads and local roads in Toronto, Canada. The fine particle fractions (<1.8 µm) of all the studied samples accounted for 51–72% of the resuspended PM10 (by weight). Elemental analysis using ICP-MS and ICP-OES revealed an overall trend of element enrichment in the <1.8 µm fraction compared to the coarse fraction (1.8–10 µm) of the road dust. By contrast, archived house dust samples displayed the reverse trend for most elements. The lung bioaccessibility of target elements (Al, B, Ba, Co, Cr, Fe, La, Mn, Mo, Sb, Sr, Ti, V and Zn) was assessed for each road dust fraction using 0.1 M ammonium citrate (pH 4.4) to simulate intracellular fluid and Gamble solution (pH 7.2) to simulate interstitial lung fluid. The <1.8 µm fraction of local road dust displayed significantly higher bioaccessibility (p < 0.05) for Zn when using Gamble solution, and for seven out of the 14 target elements when using ammonium citrate. These results show the importance of characterizing the fine fraction of road dust.
Collapse
|
43
|
Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Soil heavy metals along roadsides pose a great threat to ecosystems while their spatial variations and influencing factors still remain unclear in some regions, especially in tropical areas with complex landscape characteristics. Our study was carried out to determine how the land use, vegetation characteristics, topographical factors and distance to the road affect the soil heavy metal distribution. Taking Jinghong county in Yunnan Province, Southwest China as a case, soil samples were collected at different distances off roads and canonical correspondence analysis (CCA) methods were used to determine the relative importance of different factors. Our results showed that heavy metal sources were obtained mainly from the road, based on the principle component analysis (PCA) identification. There were no obvious trends of soil quality index (SQI) with distance to the road in natural soils, while SQI nutrients and SQI metals in farmlands had a decreasing and increasing trend, respectively, which could both be expressed by logarithm models. However, soil properties showed little differences for road levels while they showed significant differences under land use types. The CCA further showed that heavy metal variations in natural soils were jointly affected by distance, plant coverage, relative elevation and soil properties in decreasing order.
Collapse
|
44
|
Yu B, Lu X, Fan X, Fan P, Zuo L, Yang Y, Wang L. Analyzing environmental risk, source and spatial distribution of potentially toxic elements in dust of residential area in Xi'an urban area, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111679. [PMID: 33396011 DOI: 10.1016/j.ecoenv.2020.111679] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
A comprehensive study on concentration, spatial distribution, pollution, ecological-health risk and source of potentially toxic elements (PTEs) in dust of residential area in Xi'an, China were conducted to explore the environmental quality of residential area in urban district. The results show that the concentrations of V, Ni, and Mn in the dust were less than, while the contents of Cr, Zn, Pb, Cu, and Ba in the dust were obviously larger than, the soil background values of Shaanxi. The high-value area of PTEs primarily concentrated in densely populated areas, heavily trafficked areas and the surroundings of plants. Cr, Pb and Zn posed moderate enrichment and Pb possessed moderate ecological risk in the dust. The comprehensive pollution levels of PTEs in the dust were uncontaminated to moderately contaminated and their comprehensive ecological risk were moderate. The non-carcinogenic risks of the PTEs for adults and children were in the safe level and the carcinogenic risks of Ni and Cr were under the current acceptable value. Four major sources were discriminated on basis of the multivariate statistical analysis results and the content characteristics, enrichment degrees, and the spatial distribution features of the PTEs, viz. Mn, V, and Ni primarily came from natural source; Pb, Zn, and Cu mainly originated from traffic source; and Ba and Cr were respectively from construction source and coal-fired power plant source, which respectively contributed 22.8%, 28.3%, 47.3%, and 1.6% to the total content of PTEs determined in the dust.
Collapse
Affiliation(s)
- Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyao Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
45
|
A Landscape Study of Sediment Formation and Transport in the Urban Environment. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Sediment deposition in the urban environment affects aesthetic, economic, and other aspects of city life, and through re-suspension of dust, may pose serious risks to human health. Proper environmental management requires further understanding of natural and anthropogenic factors influencing the sedimentation processes in urbanized catchments. To fill the gaps in the knowledge about the relationship between the urban landscape and sedimentation, field landscape surveys were conducted in the residential areas of the Russian cities of Ekaterinburg, Nizhniy Novgorod, Rostov-on-Don, Tyumen, Chelyabinsk, and Murmansk. Methods: In each city, six elementary urban residential landscapes were chosen in blocks of multi-story apartment buildings typical for Russian cities. The method of landscape survey involved delineating functional segments within the elementary landscapes and describing each segment according to the developed procedure during a field survey. Results: The complexity of sedimentation processes in the urban environment was demonstrated. The following main groups of factors have significant impacts on sediment formation and transport in residential areas in Russian cities: low adaptation of infrastructure to a high density of automobiles, poor municipal services, and bad urban environmental management in the course of construction and earthworks. Conclusion: A high sediment formation potential was found for a considerable portion of residential areas.
Collapse
|
46
|
Peng L, Li X, Sun X, Yang T, Zhang Y, Gao Y, Zhang X, Zhao Y, He A, Zhou M, Cao Y, Mielke HW. Comprehensive Urumqi screening for potentially toxic metals in soil-dust-plant total environment and evaluation of children's (0-6 years) risk-based blood lead levels prediction. CHEMOSPHERE 2020; 258:127342. [PMID: 32947679 DOI: 10.1016/j.chemosphere.2020.127342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Environmental contaminations by potentially toxic metals (PTMs) are associated with energy exploitation and present a significant problem in urban areas due to their impacts on human health. The PTMs status in Urumqi total environment inevitably impacted by extensive development of coal and oil industries has been lack of understanding comprehensively. A series of PTMs (As, Ba, Ce, Co, Cr, Cu, Ga, La, Mn, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn, Zr) in the soil-dust-plant (foliage of Ulmus pumila L.) system of Urumqi (NW China) were screened by XRF and ICPMS. Multivariate statistics, risk models, GIS-based geostatistics, Positive Matrix Factorization (PMF) receptor modelling and blood lead levels of 0-6 aged children evaluated by IEUBK model are used to determine the priority pollutants, sources and health effects of the investigated elements. The spatial distribution of PTMs in soil-dust-plant system significantly coincides with coal combustion, traffic emission, and industrial activity. Although all PTM toxicants in soil, dust and tree foliage show some effects, the priority contaminants are observed for Cu, Pb and Zn as single element. The total carcinogenic and non-carcinogenic risks from PTMs are beyond the tolerance range of 0-6 year's old children, and the dust (TCR = 1.07E-04) PTMs pose approximatively equivalent carcinogenic risk to soil PTMs (TCT = 1.09E-04). The predicted BLLs (75-83 μ g·L-1) of 1-2 years children are most strongly influenced by Pb in soil and dust, and therefore more attention should be focused on sources of Pb to support the primary health care of the toddlers in Urumqi.
Collapse
Affiliation(s)
- Liyuan Peng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China.
| | - Xuemeng Sun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Tao Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Yuchao Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Yu Gao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Yanan Zhao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Ana He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Ming Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Yuhan Cao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi, 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China
| | - Howard W Mielke
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, PR China; Environmental Signaling Laboratory, Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
47
|
Hong N, Yang B, Tsang DCW, Liu A. Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115253. [PMID: 32693304 DOI: 10.1016/j.envpol.2020.115253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 05/15/2023]
Abstract
A range of source tracking approaches have been developed to identify sources in the environmental pollution research field. A comparison of source tracking approaches is essential for a better understanding and practical applications of these approaches. This study compared the commonly used source tracking approaches, namely positive matrix factorization (PMF), Unmix, flag element ratio (FER), and chemical mass-balance based stochastic approach (SCMD). A case study was illustrated for tracing heavy metals (Pb, Zn, Cr, Cu, and Ni) attached to road deposited sediments, which can significantly influence urban road stormwater quality. The results indicated that the accuracy of PMF and Unmix are affected by the number of chemical species used and whether useful markers can be identified for particular sources. However, this does not have an essential influence on FER and SCMD. PMF and Unmix are easier on data preparation and calculation processes but more difficult for source identification process than FER and SCMD. This study also provided recommendations related to the selection of source tracking approach based on different study scenarios and result requirements. These study results are able to provide important guidance for undertaking effective source tracking and devising environmental pollution mitigations.
Collapse
Affiliation(s)
- Nian Hong
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
48
|
A comparative analysis of artificial neural networks and wavelet hybrid approaches to long-term toxic heavy metal prediction. Sci Rep 2020; 10:13439. [PMID: 32778720 PMCID: PMC7417571 DOI: 10.1038/s41598-020-70438-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
The occurrence of toxic metals in the aquatic environment is as caused by a variety of contaminations which makes difficulty in the concentration prediction. In this study, conventional methods of back-propagation neural network (BPNN) and nonlinear autoregressive network with exogenous inputs (NARX) were applied as benchmark models. Explanatory variables of Fe, pH, electrical conductivity, water temperature, river flow, nitrate nitrogen, and dissolved oxygen were used as different input combinations to forecast the long-term concentrations of As, Pb, and Zn. The wavelet transformation was applied to decompose the time series data, and then was integrated with conventional methods (as WNN and WNARX). The modelling performances of the hybrid models of WNN and WNARX were compared with the conventional models. All the given models were trained, validated, and tested by an 18-year data set and demonstrated based on the simulation results of a 2-year data set. Results revealed that the given models showed general good performances for the long-term prediction of the toxic metals of As, Pb, and Zn. The wavelet transform could enhance the long-term concentration predictions. However, it is not necessarily useful for each metal prediction. Therefore, different models with different inputs should be used for different metals predictions to achieve the best predictions.
Collapse
|