1
|
Shi Z, Liu L, Wu X, Ma Z, Li Y, Sun W, Li CM, Yang HB, Guo CX. Single iron catalyst with bi-atomic matching site to construct electrochemical chip for on-site inspection of antibiotic chloramphenicol. Talanta 2025; 289:127725. [PMID: 39987614 DOI: 10.1016/j.talanta.2025.127725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Chloramphenicol (CAP) as an amide-alcohol antibiotic is extensively used in aquaculture industries and can accumulate in the human body through the food chain and water sources, leading to various diseases. On-site inspection of CAP remains a challenge due to the lack of portable and sensitive sensing platforms. Herein, a bi-atomic matching catalyst that comprises atomic Fe uniformly distributed on an N-doped graphene matrix (A-Fe-NG) is synthesized. An electrochemical sensor based on A-Fe-NG is constructed for CAP, demonstrating a high sensitivity of 164.2 μA μM-1 cm-2 and a fast response time of 1.2 s, among the best of Fe-based electrochemical CAP sensors. The high performance should be attributed to the high active site density of A-Fe-NG as well as the bi-atomic matching-catalysis mechanism. A portable electrochemical chip based on A-Fe-NG is also built, delivering accurate monitoring of CAP in river water for practical on-site inspection.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Liang Liu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Zuqiang Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yunpeng Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Wei Sun
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Hong Bin Yang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China.
| | - Chun Xian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
2
|
Li YY, Niu X, Pei WY, Ma JF. Electrochemical Detection of Chloramphenicol with Different Modified Electrodes Based on the Metal-Cyclotriveratrylene Framework and Mesoporous Carbon. Inorg Chem 2025; 64:7543-7551. [PMID: 40181712 DOI: 10.1021/acs.inorgchem.5c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Design of high-performance electrochemical sensors for detection of antibiotics is greatly desirable for human health and ecological safety. Herein, a new metal-organic framework (MOF), namely, [Zn2L(PDC)2(H2O)2]·3H2O (1), was synthesized with isophthalic acid (H2PDC), Zn(II) cation, and cyclotriveratrylene-based ligand (L). By mechanical milling, 1 was incorporated with mesoporous carbon (MC) to produce 1@MC. Subsequently, 1@MC was decorated on different bare electrodes (glass carbon (GC), Au, Pt, or W electrode). The introduction of MC significantly improved the conductivity and the current response intensity for determination of chloramphenicol (CAP). Among these sensors, the current responses of CAP on 1@MC(1:2)/GCE and 1@MC(1:2)/Au were more intense. Markedly, they exhibited relatively wide linear ranges (0.5-400 μM on 1@MC(1:2)/GCE and 1-400 μM on 1@MC(1:2)/Au) and low limits of detection (0.15 μM on 1@MC(1:2)/GCE and 0.48 μM on 1@MC(1:2)/Au). Particularly, they can be used for the measurement of CAP in eye drop and milk sample with fine recoveries.
Collapse
Affiliation(s)
- Yu-Ying Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xia Niu
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Zhang H, Li L, Wang C, Liu Q, Chen WT, Gao S, Hu G. Recent advances in designable nanomaterial-based electrochemical sensors for environmental heavy-metal detection. NANOSCALE 2025; 17:2386-2407. [PMID: 39844644 DOI: 10.1039/d4nr04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The detection of heavy metals serves as a defence measure to safeguard the well-being of the human body and the ecological environment. Electrochemical sensors (ECS) offer significant benefits such as exceptional sensitivity, excellent selectivity, affordability, and portability. This review begins by elucidating the ECS principles and delves into recent advancements in the field of heavy metal detection, including the use of metal nanoparticles, carbon-based nanomaterials, and organic framework materials. Advanced materials enhance the sensitivity and selectivity of ECS, allowing it to efficiently and rapidly identify metallic contaminants in food and the environment. Finally, the future development of ECS and challenges encountered in the development process are discussed, and testing materials for the detection of heavy-metal ions for human health and environmental safety are comprehensively considered. This study is likely to attract the interest of environmentalists and those who prioritise human health.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming 650106, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Sanshuang Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
4
|
Tahir S, Iqbal M, Shad S, Nisa S, Ibrar A, Nadeem A, Attia SM, Thebo KH, Ullah K. Biosynthesis of Zr-doped WO 3 nanoparticles: Evaluation of antibacterial, antioxidant, and enzymatic activities. Microb Pathog 2025; 198:107192. [PMID: 39622481 DOI: 10.1016/j.micpath.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Herein, biocompatible pure tungsten oxide (WO3) and zirconium-doped tungsten oxide (Zr-doped WO3) nanoparticles (NPs) were prepared via a green approach from moringa plants with different doping concentrations (3, 5, and 7 %). The as-synthesized materials were morphologically and optically characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. The FTIR spectra clearly showed that two distinguishing bands at 603 and 674 cm-1 of WO3 were shifted to a higher wavenumber upon doping with zirconium. EDX analysis confirmed the successful synthesis of pure WO3 and Zr-doped WO3 by the green approach. The UV-Vis study exhibited that the bandgap of pure WO3 is blue-shifted upon Zr doping due to the Burstein-Moss effect. The XRD pattern revealed that the crystalline nature of WO3 is increased by increasing the Zr content. Further, the as-synthesized materials were evaluated for enzymatic, antibacterial, and antioxidant activities. The enzymatic results showed that 7 % of Zr-doped WO3 NPs have a higher activity for the α-amylase enzyme. Additionally, 7 % Zr-doped WO3 also showed better antioxidant activity, up to 85 % for free radical scavenging. The antibacterial performance of 7 % Zr-doped WO3 is higher as compared to other corresponding samples for different strains of bacteria. These results demonstrated that this facile and novel synthetic route will open a new door for designing an efficient nanomaterial for biomedical applications.
Collapse
Affiliation(s)
- Sana Tahir
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan.
| | - Salma Shad
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Sobia Nisa
- Department of Microbiology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, 22620, KPK, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, 22620, KPK, Pakistan.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
| | - Kamran Ullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, 22620, KPK, Pakistan
| |
Collapse
|
5
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
6
|
K J A, Reddy S, B L, Harish KN, N M Y, R P, S M. MoS 2_CNTs_aerogel-based PEDOT nanocomposite electrochemical sensor for simultaneous detection of chloramphenicol and furazolidone in food samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:595-610. [PMID: 39287337 DOI: 10.1080/03601234.2024.2399461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Toxic intermediates in food caused by chloramphenicol (CP) and furazolidone (FZ) have gained interest in research toward their detection. Hence, fast, reliable, and accurate detection of CP and FZ in food products is of utmost importance. Here, a novel molybdenum disulfide-connected carbon nanotube aerogel/poly (3,4-ethylenedioxythiophene) [MoS2/CNTs aerogel/PEDOT] nanocomposite materials are constructed and deposited on the pretreated carbon paste electrode (PCPE) by a facile eletropolymerization method. The characterization of MoS2/CNTs aerogel/PEDOT nanocomposite was analyzed by scanning electron microscopy (SEM), cyclic voltammetry, and differential pulse voltammetry. The modified MoS2/CNTs aerogel/PEDOT nanocomposite has improved sensing characteristics for detecting CP and FZ in PBS solution. For this work, we have studied various parameters like electrocatalytic activity, the effect of scan rates, pH variation studies, and concentration variation studies. Under optimum conditions, the modified electrode exhibited superior sensing ability compared to the bare and pretreated CPE. This improvement in electrocatalytic activity can be the higher conductivity, larger surface area, increased heterogeneous rate constant, and presence of more active sites in the MoS2/CNTs aerogel/PEDOT nanocomposite. The modified electrode demonstrated distinct electrochemical sensing toward the individual and simultaneous analysis of CP and FZ with a high sensitivity of 0.701 µA. µM-1 .cm-2 for CP and 0.787 µA. µM-1 .cm-2 for FZ and a low detection limit of 3.74 nM for CP and 3.83 nM for FZ with good reproducibility, repeatability, and interferences. Additionally, the prepared sensor effectively detects CP and FZ in food samples (honey and milk) with an acceptable recovery range and a relative standard deviation below 4%.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - K N Harish
- Department of Chemistry, B.M.S. College of Engineering, Bangalore, Karnataka, India
| | - Yathish N M
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Pavanashree R
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Madhumitha S
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| |
Collapse
|
7
|
Luo Y, Sun Y, Wei X, He Y, Wang H, Cui Z, Ma J, Liu X, Shu R, Lin H, Xu D. Detection methods for antibiotics in wastewater: a review. Bioprocess Biosyst Eng 2024; 47:1433-1451. [PMID: 38907838 DOI: 10.1007/s00449-024-03033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/09/2024] [Indexed: 06/24/2024]
Abstract
Antibiotics are widely used as fungicides because of their antibacterial and bactericidal effects. However, it is necessary to control their dosage. If the amount of antbiotics is too much, it cannot be completely metabolized and absorbed, will pollute the environment, and have a great impact on human health. Many antibiotics usually left in factory or aquaculture wastewater pollute the environment, so it is vital to detect the content of antibiotics in wastewater. This article summarizes several common methods of antibiotic detection and pretreatment steps. The detection methods of antibiotics in wastewater mainly include immunoassay, instrumental analysis method, and sensor. Studies have shown that immunoassay can detect deficient concentrations of antibiotics, but it is affected by external factors leading to errors. The detection speed of the instrumental analysis method is fast, but the repeatability is poor, the price is high, and the operation is complicated. The sensor is a method that is currently increasingly studied, including electrochemical sensors, optical sensors, biosensors, photoelectrochemical sensors, and surface plasmon resonance sensors. It has the advantages of fast detection speed, high accuracy, and strong sensitivity. However, the reproducibility and stability of the sensor are poor. At present, there is no method that can comprehensively integrate the advantages. This paper aims to review the enrichment and detection methods of antibiotics in wastewater from 2020 to the present. It also aims to provide some ideas for future research directions in this field.
Collapse
Affiliation(s)
- Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xiuxia Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yuyang He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Haoxiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Zewen Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Jiaqi Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xingcai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Ruxin Shu
- Shanghai Tobacco Group Co. Ltd., Shanghai, 200082, People's Republic of China
| | - Huaqing Lin
- Shanghai Tobacco Group Co. Ltd., Shanghai, 200082, People's Republic of China
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
8
|
Yuan C, Tang C, Zhan X, Zhou M, Zhang L, Chen WT, Abdukayum A, Hu G. ZIF-67 based CoS 2 self-assembled on graphitic carbon nitride microtubular for sensitive electrochemical detection of paraquat in fruits. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133715. [PMID: 38359763 DOI: 10.1016/j.jhazmat.2024.133715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Paraquat (PQ) is a widely used and harmful herbicide that must be detected in the environment. This study reports a novel composite (CoS2-GCN) prepared by assembling cobalt disulfide (CoS2) derived from metal-organic frameworks (MOFs) on graphitic carbon nitride (GCN). An electrochemical sensor (CoS2-GCN/ glassy carbon electrode (GCE)) was successfully prepared by modifying CoS2-GCN onto a GCE to sensitively detect PQ. Different concentrations of PQ were detected using square-wave voltammetry, and the CoS2-GCN/GCE electrochemical sensor showed remarkable response signals for PQ in the range of 20 - 1000 nM and 1 - 13 μM, with a detection limit of 4.13 nM (S/N = 3). The CoS2-GCN/GCE electrochemical sensor exhibited high stability, reproducibility, and immunity to interference, which were attributed to the synergistic effects of CoS2 and GCN. In addition, the CoS2-GCN/GCE electrochemical sensor showed high applicability for the analysis of fruit samples. Therefore, the proposed sensor has potential applications in PQ detection.
Collapse
Affiliation(s)
- Chenghu Yuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Cui Tang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xuejia Zhan
- School of Agriculture and Biology & Key Laboratory of Urban Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menglin Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
9
|
Ali GK, Algethami FK, Omer KM. Gold single atom-based aptananozyme as an ultrasensitive and selective colorimetric probe for detection of thrombin and C-reactive protein. Mikrochim Acta 2023; 191:59. [PMID: 38153560 DOI: 10.1007/s00604-023-06147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
An ultra-efficient biocatalytic peroxidase-like Au-based single-atom nanozyme (Au-SAzymes) has been synthesized from isolated Au atoms on black nitrogen doped carbon (Au-N-C) using a simple complexation-adsorption-pyrolysis method. The atomic structure of AuN4 centers in black carbon was revealed by combined high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy. The Au-SAzymes showed a remarkable peroxidase activity with 1.7 nM as Michaelis-Menten constant, higher than most previously reported SAzyme activity. Density functional theory and Monte Carlo calculations revealed the adsorption of H2O2 on AuN4 with formation of OH* and O*. Molecular recognition was greatly enhanced via label-free integration of thiol-terminal aptamers on the surface of single Au atoms (Aptamer/Au-SAzyme) to design off-on ultrasensitive aptananozyme-based sensor for detecting thrombin and CRP with 550 pM and 500 pg mL-1 limits of detection, respectively. The Aptamer/Au-SAzyme showed satisfactory accuracy and precision when applied to the serum and plasma of COVID-19 patients. Due to the maximum Au atom utilization, approximately 3636 samples can be run per 1 mg of gold, highlighting the commercialization potential of the developed Aptamer/Au-SAzyme approach.
Collapse
Affiliation(s)
- Gona K Ali
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, 46002, Kurdistan Region, Iraq
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Slemani City, 46002, Kurdistan Region, Iraq.
| |
Collapse
|
10
|
Lai T, Shu H, Yao B, Lai S, Chen T, Xiao X, Wang Y. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Copolymer Functionalized with Arginine for the Detection of Chloramphenicol in Honey. BIOSENSORS 2023; 13:bios13050505. [PMID: 37232866 DOI: 10.3390/bios13050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Developing an efficient method for chloramphenicol (CAP) detection is of great significance for food safety. Arginine (Arg) was selected as a functional monomer. Benefiting from its excellent electrochemical performance, which is different from traditional functional monomers, it can be combined with CAP to form a highly selective molecularly imprinted polymer (MIP) material. It overcomes the shortcoming of poor MIP sensitivity faced by traditional functional monomers, and achieves high sensitivity detection without compounding other nanomaterials, greatly reducing the preparation difficulty and cost investment of the sensor. The possible binding sites between CAP and Arg molecules were calculated by molecular electrostatic potential (MEP). A low-cost, non-modified MIP electrochemical sensor was developed for the high-performance detection of CAP. The prepared sensor has a wide linear range from 1 × 10-12 mol L-1 to 5 × 10-4 mol L-1, achieves a very low concentration CAP detection, and the detection limit is 1.36 × 10-13 mol L-1. It also exhibits excellent selectivity, anti-interference, repeatability, and reproducibility. The detection of CAP in actual honey samples was achieved, which has important practical value in food safety.
Collapse
Affiliation(s)
- Tingrun Lai
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Hui Shu
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Siying Lai
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Ting Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
11
|
Zhang T, Zhu S, Wang J, Liu Z, Wang M, Li S, Huang Q. Construction of a novel nano-enzyme for ultrasensitive glucose detection with surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122307. [PMID: 36630808 DOI: 10.1016/j.saa.2022.122307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Fabricating more sensitive, stable and low-cost nanomaterials for the detection of glucose is important for the disease diagnosis and monitoring. Herein, we established a nanocomposite (polypyrrole bridging GO@Au@MnO2) as a novel surface-enhanced Raman scattering (SERS) nanoprobe for the quantitative detection of glucose in trace serum. Each component in the nanocomposites played an irreplaceable role in SERS detection of glucose. Polypyrrole (PPy) could act as Raman signal and extra SERS signal molecules didn't need to be introduced; Graphene oxide (GO) and gold nanoparticles (Au NPs) could enhance Raman signal of PPy; Au NPs also acted as glucose oxidase, which can oxidize glucose to produce gluconic acid and hydrogen peroxide(H2O2); Manganese oxide (MnO2) further enhanced Raman signal of PPy and responded to hydrogen peroxide, which will induce the decrease of Raman intensity of PPy. Thus, glucose can be quantified according to Raman signal output of PPy, which displayed a liner range from 1 to 10 μM, with detectable limit of 0.114 μM. Because of the merits in sensitivity, convenience and versatility, the novel method shows large potential space for disease-related substance detection in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shunhua Zhu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jingjing Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhiying Liu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mingxin Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| | - Qingli Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China; School of Pharmacy of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China.
| |
Collapse
|
12
|
Ultrasensitive detection of ineradicable and harmful antibiotic chloramphenicol residue in soil, water, and food samples. Anal Chim Acta 2023; 1243:340841. [PMID: 36697183 DOI: 10.1016/j.aca.2023.340841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Chloramphenicol (CAP) is a harmful antibiotic that inevitably enters our food chain through natural or manmade means. Its ineradicable residue pollutes soils and water, accumulates in plants and animal products, and eventually affects human health. An ultrasensitive method for detecting and monitoring CAP is therefore urgently required. Herein, we report an ultrafast extraction and amperometry detection method based on a graphite-sulfate-modified electrode for detecting CAP in soil, water, and food samples. The graphite sulfate is prepared by the oxidation method and its structural properties are comprehensively investigated. The developed sensor electrode showed a wider linear range of 0.3-32.0 μg kg-1 and an ultralow detection limit of 0.1 μg kg-1, both of which meet the European Commission Reg 1871/2019 reference points for action. The method works well with both meat and plant samples, achieving CAP recoveries ranging from 90.8 to 99.1% even at low concentrations. Moreover, the sensor electrode shows more than 95% selectivity toward CAP detection in the soil, water, and food matrices. The developed method exhibits good repeatability and reproducibility in the analysis of real samples.
Collapse
|
13
|
Jia L, Hao J, Yang L, Wang J, Huang L, Liu K. A Pyridine Diketopyrrolopyrrole-Grafted Graphene Oxide Nanocomposite for the Sensitive Detection of Chloramphenicol by a Direct Electrochemical Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:392. [PMID: 36770354 PMCID: PMC9921031 DOI: 10.3390/nano13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A novel direct electrochemical sensor, based on a pyridine diketopyrrolopyrrole/graphene oxide nanocomposite-modified glass carbon electrode (PDPP/GO/GCE), was developed herein for chloramphenicol (CAP) detection. In this research, PDPP was grafted onto GO by C-N bonds and π-π conjugation, which were synergistically confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphology study shows that PDPP was uniformly dispersed on the GO in the form of particles. The constructed PDPP/GO/GCE showed the strongest response signal to CAP in the evaluation of electrocatalytic activity by cyclic voltammetry compared to that of GO-modified and unmodified GCE, revealing that the introduction of PDPP can effectively improve the electrocatalytic activity of sensors. Moreover, PDPP/GO/GCE had a noticeable current signal when the concentration of CAP was as low as 0.001 uM and had a wide line range (0.01-780 uM) with a low limit of detection (1.64 nM). The sensor properties of the as-obtained PDPP/GO/GCE involved anti-interference, reproducibility, and stability, which were also evaluated and revealed satisfactory results.
Collapse
Affiliation(s)
- Lingpu Jia
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Juan Hao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Long Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei 230601, China
| | - Lijuan Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Yin J, Ouyang H, Li W, Long Y. An Effective Electrochemical Platform for Chloramphenicol Detection Based on Carbon-Doped Boron Nitride Nanosheets. BIOSENSORS 2023; 13:116. [PMID: 36671951 PMCID: PMC9855874 DOI: 10.3390/bios13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Currently, accurate quantification of antibiotics is a prerequisite for health care and environmental governance. The present work demonstrated a novel and effective electrochemical strategy for chloramphenicol (CAP) detection using carbon-doped hexagonal boron nitride (C-BN) as the sensing medium. The C-BN nanosheets were synthesized by a molten-salt method and fully characterized using various techniques. The electrochemical performances of C-BN nanosheets were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the electrocatalytic activity of h-BN was significantly enhanced by carbon doping. Carbon doping can provide abundant active sites and improve electrical conductivity. Therefore, a C-BN-modified glassy carbon electrode (C-BN/GCE) was employed to determine CAP by differential pulse voltammetry (DPV). The sensor showed convincing analytical performance, such as a wide concentration range (0.1 µM-200 µM, 200 µM-700 µM) and low limit of detection (LOD, 0.035 µM). In addition, the proposed method had high selectivity and desired stability, and can be applied for CAP detection in actual samples. It is believed that defect-engineered h-BN nanomaterials possess a wide range of applications in electrochemical sensors.
Collapse
Affiliation(s)
- Jingli Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| | - Huiying Ouyang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| | - Weifeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yumei Long
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Sukanya R, Mohandoss S, Lee YR. Synthesis of active-site rich molybdenum-doped manganese tungstate nanocubes for effective electrochemical sensing of the antiviral drug (COVID-19) nitazoxanide. CHEMOSPHERE 2023; 311:137005. [PMID: 36347350 PMCID: PMC9636157 DOI: 10.1016/j.chemosphere.2022.137005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nitazoxanide (NTZ), a promising antiviral agent, is currently being tested in clinical trials as a potential treatment for novel coronavirus disease 2019 (COVID -19). This paper describes a one-pot hydrothermal synthesis to prepare molybdenum (Mo)-doped manganese tungstate nanocubes (Mo-MnWO4 NCs) for the electrochemical sensing of NTZ. The as-prepared Mo-MnWO4 NCs were characterized using various techniques such as XRD, Raman, FE-SEM, FE-TEM, and XPS to confirm the crystal structure, morphology, and elemental composition. The obtained results demonstrate that Mo doping on MnWO4 generates many vacancy sites, exhibiting remarkable electrochemical activity. The kinetic parameters of the electrode modified with Mo-MnWO4 NCs were calculated to be (Ks) 1.1 × 10-2 cm2 s-1 and (α) 0.97, respectively. Moreover, a novel electrochemical sensor using Mo-MnWO4 NCs was fabricated to detect NTZ, which is used as a primary antibiotic to control COVID-19. Under optimal conditions, the electrochemical reduction of NTZ was determined with a low detection limit of 3.7 nM for a linear range of 0.014-170.2 μM with a high sensitivity of 0.78 μA μM-1 cm-2 and negligible interference with other nitro group-containing drugs, cations, and anions. The electrochemical sensor was successfully used to detect NTZ in the blood serum and urine samples and achieved high recoveries in the range of 94-99.2% and 95.3-99.6%, respectively. This work opens a way to develop high-performance sensing materials by exploring the introduction of defect engineering on metal tungstates to detect drug molecules for practical applications.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
16
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
K J A, Reddy S, Acharya S, B L, Deepak K, Naveen CS, Harish KN, Ramakrishna S. A review on nanomaterial-based electrodes for the electrochemical detection of chloramphenicol and furazolidone antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3228-3249. [PMID: 35997206 DOI: 10.1039/d2ay00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To grow food for people, antibiotics were used, and these antibiotics can accumulate in the human body through food metabolism, which may have remarkably harmful effects on human health and safety. Therefore, low-cost sensors are needed for the detection of antibiotic residues in food samples. Recently, nanomaterial-based electrochemical sensors such as carbon nanoparticles, graphene nanoparticles, metal oxide nanoparticles, metal nanoparticles, and metal-organic nanostructures have been successfully used as sensing materials for the detection of chloramphenicol (CP) and furazolidone (FZ) antibiotics. However, additional efforts are still needed to fabricate effective multi-functional nanomaterial-based electrodes for the preparation of portable electrochemical sensor devices. The current review focuses on a quick introduction to CP and FZ antibiotics, followed by an outline of the current electrochemical analytical methods. In addition, we have discussed in-depth different nanoparticle supports for the electrochemical detection of CP and FZ in different matrices such as food, environmental, and biological samples. Finally, a summary of the current problems and future perspectives in this area are also highlighted.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Shubha Acharya
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, 560064, India.
| | - K Deepak
- Department of Physics, School of Applied Science, REVA University, Bangalore, 560064, India
| | - C S Naveen
- Department of Physics, School of Engineering, Presidency University, Bengaluru-560064, India
| | - K N Harish
- Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, 560078, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| |
Collapse
|
18
|
Bu L, Chen X, Song Q, Jiang D, Shan X, Wang W, Chen Z. Supersensitive detection of chloramphenicol with an EIS method based on molecularly imprinted polypyrrole at UiO-66 and CDs modified electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Liu C, Chen Y, Huang H, Duan C, Ma X, Wang G, Luo J, Luo H, Li J. Controllable electrochemical activation of Mn3O4: Anion effect on phase transition, morphology and capacitive performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
21
|
David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. MICROMACHINES 2022; 13:mi13050677. [PMID: 35630144 PMCID: PMC9143398 DOI: 10.3390/mi13050677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
Abstract
Amphenicols are broad-spectrum antibiotics. Despite their benefits, they also present toxic effects and therefore their presence in animal-derived food was regulated. Various analytical methods have been reported for their trace analysis in food and environmental samples, as well as in the quality control of pharmaceuticals. Among these methods, the electrochemical ones are simpler, more rapid and cost-effective. The working electrode is the core of any electroanalytical method because the selectivity and sensitivity of the determination depend on its surface activity. Therefore, this review offers a comprehensive overview of the electrochemical sensors and methods along with their performance characteristics for chloramphenicol, thiamphenicol and florfenicol detection, with a focus on those reported in the last five years. Electrode modification procedures and analytical applications of the recently described devices for amphenicol electroanalysis in various matrices (pharmaceuticals, environmental, foods), together with the sample preparation methods were discussed. Therefore, the information and the concepts contained in this review can be a starting point for future new findings in the field of amphenicol electrochemical detection.
Collapse
|
22
|
Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting. COATINGS 2022. [DOI: 10.3390/coatings12050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogen is a great sourcez of energy due to having zero emission of carbon-based contents. It is found primarily in water, which is abundant and renewable. For electrochemical splitting of water molecules, it is necessary to use catalytic materials that minimize energy consumption. As a famous carbon material, graphitic carbon nitride, with its excellent physicochemical properties and diversified functionalities, presents great potential in electrocatalytic sensing. In the present work, graphitic carbon nitride-fabricated metal tungstate nanocomposites are synthesized by the hydrothermal method to study their applications in catalysis, electrochemical sensing, and water splitting for hydrogen production. Nanocomposites using different metals, such as cobalt, manganese, strontium, tin, and nickel, were used as a precursor are synthesized via the hydrothermal process. The synthesized materials (g-C3N4/NiWO4, g-C3N4/MnWO4, g-C3N4/CoWO4, g-C3N4/SnWO4, g-C3N4/SrWO4) were characterized using different techniques, such as FTIR and XRD. The presence of a functional groups between the metal and tungstate groups was confirmed by the FTIR spectra. All the nanocomposites show a tungstate peak at 600 cm−1, while the vibrational absorption bands for metals appear in the range of 400–600 cm−1. X-ray diffraction (XRD) shows that the characteristic peaks matched with the JCPDS in the literature, which confirmed the successful formation of all nanocomposites. The electrochemical active surface area is calculated by taking cyclic voltammograms of the potassium–ferrocyanide redox couple. Among the entire series of metal tungstate, the g-C3N4/NiWO4 has a large surface area owing to the high conductive properties towards water oxidation. In order to study the electrocatalytic activity of the as-synthesized materials, electrochemical water splitting is performed by cyclic voltammetry in alkaline medium. All the synthesized materials proved to be efficient catalysts with enhanced conductive properties towards water oxidation. Among the entire series, g-C3N4-NiWO4 is a very efficient electrocatalyst owing to its higher active surface area and conductive activity. The order of electrocatalytic sensing of the different composites is: g-C3N4-NiWO4 > g-C3N4-SrWO4 > g-C3N4-CoWO4 > g-C3N4-SnWO4 > g-C3N4-MnWO4. Studies on electrochemically synthesized electrocatalysts revealed their catalytic activity, indicating their potential as electrode materials for direct hydrogen evolution for power generation.
Collapse
|
23
|
Zhao C, Jing T, Dong M, Pan D, Guo J, Tian J, Wu M, Naik N, Huang M, Guo Z. A Visible Light Driven Photoelectrochemical Chloramphenicol Aptasensor Based on a Gold Nanoparticle-Functionalized 3D Flower-like MoS 2/TiO 2 Heterostructure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2276-2286. [PMID: 35138855 DOI: 10.1021/acs.langmuir.1c02956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing a photoactive material by combining the characteristics of a wide light response range and effective separation of photogenerated electron-hole pairs remains a huge challenge for the construction of a photoelectrochemical (PEC) sensing platform. Herein, a gold nanoparticle (AuNP)/MoS2/TiO2 composite was prepared through the facile hydrothermal method coupled with an in situ photoreduction technology. Benefiting from both the compositional and structure merits, the composite not only extends the absorption range to visible light but also enhances the photoelectric conversion efficiency by transferring photogenerated electrons into the conduction band of semiconductors from the plasmonic AuNP. Meanwhile, the thiolated aptamers were attached to the surface of AuNP/MoS2/TiO2 composites through the Au-S bonding to construct a visible light driven PEC aptasensor for ultrasensitive detection chloramphenicol (CAP). In the presence of CAP, the aptamers anchored on the surface of the photoactive materials could specifically recognize CAP and interact with it to form a bioaffinity complex with a steric hindrance effect, resulting in the rapid decrease of photocurrent responses. Based on this photocurrent suppression strategy, the constructed PEC aptasensing platform exhibited a high sensitivity with a wide linear range from 5 pM to 100 nM and a low detection limit of 0.5 pM.
Collapse
Affiliation(s)
- Chunqi Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar 161006, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar 161006, China
| | - Mengyao Dong
- Key Laboratory of Material Processing and Mold Technology, School of Mechanical Engineering and Automation, Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| | - Jiang Guo
- Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech. LLC, Knoxville, Tennessee 37934, United States
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingzhi Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar 161006, China
| | - Min Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar 161006, China
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Mina Huang
- Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech. LLC, Knoxville, Tennessee 37934, United States
- Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Dong J, Chen F, Xu L, Yan P, Qian J, Chen Y, Yang M, Li H. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Liu B, Zheng S, Li H, Xu J, Tang H, Wang Y, Wang Y, Sun F, Zhao X. Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags. Talanta 2022; 237:122955. [PMID: 34736680 DOI: 10.1016/j.talanta.2021.122955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Ultrasensitive, multiplex, rapid, and accurate quantitative determination of trace antibiotics remains a challenging issue, which is of importance to public health and safety. Herein, we presented a multiplex strategy based on magnetic nanoparticles and surface-enhanced Raman scattering (SERS) nanotags for simultaneous detection of chloramphenicol (CAP) and tetracycline (TTC). In practice, SERS nanotags based on Raman reporter probes (RRPs) encoded gold-silver core-shell nanostars were used as detection labels for identifying different types of antibiotics, and the magnetic nanoparticles could be separated simply by magnetic force, which significantly improves the detection efficiency, reduces the analysis cost, and simplifies the operation. Our results demonstrate that the as-proposed assay possesses the capacities of high sensitivity and multiplexing with the limits of detection (LODs) for CAP and TTC of 159.49 and 294.12 fg mL-1, respectively, as well as good stability and reproducibility, and high selectivity and reliability. We believe that this strategy holds a great promising perspective for the detection of trace amounts of antibiotics in microsystems, which is crucial to our life. Additionally, the assay can also be used to detect other illegal additives by altering the appropriate antibodies or aptamers.
Collapse
Affiliation(s)
- Bing Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Shiya Zheng
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haitao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Junjie Xu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Hanyu Tang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
26
|
Gopi PK, Srinithi S, Chen SM, Hunsur Ravikumar C. Simple construction of GdBiVO4 assembled on reduced graphene oxide for selective and sensitive electrochemical detection of chloramphenicol in food samples. NEW J CHEM 2022. [DOI: 10.1039/d1nj04457e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, the influence of phase purity and crystallinity on the electrochemical properties of well-designed GdBiVO4@rGO nanocomposite, fabricated by the facile hydrothermal method for the detection of chloramphenicol (CP), is reported.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Subburaj Srinithi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Chandan Hunsur Ravikumar
- Centre for Nano and Materials Sciences, Jain global campus, Jain University, Jakkasandra post Ramanagaram dist., India, 52110
| |
Collapse
|
27
|
David IG, Buleandră M, Popa DE, Bercea AM, Ciucu AA. Simple Electrochemical Chloramphenicol Assay at a Disposable Pencil Graphite Electrode by Square Wave Voltammetry and Linear Sweep Voltammetry. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2012480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Mihaela Buleandră
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Ana Maria Bercea
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Anton Alexandru Ciucu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
28
|
Ramadhass KD, Ganesan M, Chen TW, Chen SM, Hao Q, Lei W, Gopalakrishnan G. Porous-coral-like cerium doped tungsten oxide/graphene oxide micro balls: A robust electrochemical sensing platform for the detection of antibiotic residue. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Li HK, Ye HL, Zhao XX, Sun XL, Zhu QQ, Han ZY, Yuan R, He H. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Niu X, Bo X, Guo L. MOF-derived hollow NiCo 2O 4/C composite for simultaneous electrochemical determination of furazolidone and chloramphenicol in milk and honey. Food Chem 2021; 364:130368. [PMID: 34242879 DOI: 10.1016/j.foodchem.2021.130368] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
Abstract
Herein, bimetallic Co/Ni-MOF derived hollow NiCo2O4@C composite modified glassy carbon electrode (NiCo2O4@C/GCE) is constructed and applied to simultaneously detect furazolidone (FZD) and chloramphenicol (CAP) for the first time. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy confirm that NiCo2O4@C has hollow and mesoporous structure, abundant carbon matrixes, sufficient oxygen defects and mixed-valence metallic elements. These advantages make NiCo2O4@C/GCE show distinguished electrocatalytic performance toward the simultaneous determination of FZD and CAP. The NiCo2O4@C/GCE shows wide linear ranges of 0.5-240 µM for FZD and 0.5-320 µM for CAP, low limit of detection of 8.47 nM for FZD and 35 nM for CAP. The mechanism studies show that reductions of FZD and CAP on NiCo2O4@C/GCE are both four-electron and four-proton processes. Moreover, the sensor obtains desirable recoveries for the simultaneous determination of FZD (95.85%-103.9%) and CAP (95.72%-104.4%) in milk and honey by standard addition method.
Collapse
Affiliation(s)
- Xia Niu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
31
|
Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Zhu Y, Li X, Xu Y, Wu L, Yu A, Lai G, Wei Q, Chi H, Jiang N, Fu L, Ye C, Lin CT. Intertwined Carbon Nanotubes and Ag Nanowires Constructed by Simple Solution Blending as Sensitive and Stable Chloramphenicol Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:1220. [PMID: 33572293 PMCID: PMC7915990 DOI: 10.3390/s21041220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Chloramphenicol (CAP) is a harmful compound associated with human hematopathy and neuritis, which was widely used as a broad-spectrum antibacterial agent in agriculture and aquaculture. Therefore, it is significant to detect CAP in aquatic environments. In this work, carbon nanotubes/silver nanowires (CNTs/AgNWs) composite electrodes were fabricated as the CAP sensor. Distinguished from in situ growing or chemical bonding noble metal nanomaterials on carbon, this CNTs/AgNWs composite was formed by simple solution blending. It was demonstrated that CNTs and AgNWs both contributed to the redox reaction of CAP in dynamics, and AgNWs was beneficial in thermodynamics as well. The proposed electrochemical sensor displayed a low detection limit of up to 0.08 μM and broad linear range of 0.1-100 μM for CAP. In addition, the CNTs/AgNWs electrodes exhibited good performance characteristics of repeatability and reproducibility, and proved suitable for CAP analysis in real water samples.
Collapse
Affiliation(s)
- Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
| | - Yuting Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (L.F.)
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Guosong Lai
- Department of Chemistry, Hubei Normal University, Huangshi 435002, China;
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (L.F.)
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Wu K, Fu P, Ruan B, Wu M, Wu M, Wu R. Performances of MnWO 4@AC mixed oxide composite materials as Pt-free counter electrodes for high efficiently dye sensitized solar cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj05541g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Replacing the expensive Pt catalyst of counter electrodes (CEs) with a low-cost Pt-free catalyst has been regarded as one of the crucial steps for cost effectiveness of dye-sensitized solar cells (DSSCs).
Collapse
Affiliation(s)
- Kezhong Wu
- Key Laboratory of Inorganic Nano-materials of Hebei Province
- Department of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Pengyuan Fu
- Key Laboratory of Inorganic Nano-materials of Hebei Province
- Department of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Bei Ruan
- Key Laboratory of Inorganic Nano-materials of Hebei Province
- Department of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Mengmeng Wu
- Key Laboratory of Inorganic Nano-materials of Hebei Province
- Department of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Mingxing Wu
- Key Laboratory of Inorganic Nano-materials of Hebei Province
- Department of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Ruitao Wu
- Key Laboratory of Inorganic Nano-materials of Hebei Province
- Department of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| |
Collapse
|