1
|
Fang S, Fan L, Niu Y, Jiao G, Jia H, Wang F, Yang H, Kang Y. SERS imaging investigation of the removal efficiency of pesticide on vegetable leaves by using different surfactants. Food Chem 2024; 445:138722. [PMID: 38387315 DOI: 10.1016/j.foodchem.2024.138722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Pesticide residues on vegetables could be removed by commercial detergents to guarantee food safety, but the removal efficiencies of different formulations of detergents need to be further investigated. In this work, surface enhanced Raman scattering (SERS) imaging method due to its good space resolution as well as high sensitivity is used to track the thiram residue, and evaluate the pesticide removing efficiencies by mixtures of several surfactants at different ratios. Sodium linear alkylbenzene sulphonate-alkyl glycoside (LAS-APG) with the ratio at 5:5 and the concentration at 0.2 % show the best removing effect. In addition, HPLC method is employed to validate the results of SERS imaging. Furthermore, LAS-APG mixture could be efficiently washed out from the leaves through simple household cleaning, meaning no secondary contamination. It is perspective that SERS imaging is an effective technique to explore the effect of fruit and vegetable detergents in removing pesticide residues.
Collapse
Affiliation(s)
- Sugui Fang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Li Fan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Yulian Niu
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Guoshuai Jiao
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | - Yan Kang
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China.
| |
Collapse
|
2
|
Piccolo A, Drosos M, Nuzzo A, Cozzolino V, Scopa A. Enhanced washing of polycyclic aromatic hydrocarbons from contaminated soils by the empowered surfactant properties of de novo O-alkylated humic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16995-17004. [PMID: 38329672 PMCID: PMC10894171 DOI: 10.1007/s11356-024-32292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Aqueous solutions of humic acid (HA) derivatized by a catalyzed O-alkylation reaction with methyl, pentyl, and benzyl groups at 40, 60, and 80% of total HA acidity were used to wash off polycyclic aromatic hydrocarbons (PAHs) from two contaminated soils. The enhanced surfactant properties enabled the alkylated HA to remove phenanthrene, anthracene, fluoranthene, and pyrene from both soils more extensively than the original unmodified HA, the 60% benzylation generally showing the greatest soil washing efficiency. For both soils, all alkylated HA revealed greater PAH removals than Triton X-100 nonionic surfactant, while the benzylated and methylated HA nearly and fully matched pollutants release by the anionic SDS in the coarse- and fine-textured soils, respectively. A consecutive second washing with 60% benzylated HA removed additional PAHs, in respect to the first washing, from the coarser-textured soil, except for fluoranthene, while removal from the finer-textured soil incremented even more for all PAHs. These findings indicate that the enhanced hydrophobicity obtained by a simple and unexpensive chemical derivatization of a natural humic surfactant can be usefully exploited in the washing of polluted soils, without being toxic to the soil biota and by potentially promoting the subsequent bio-attenuation of organic pollutants.
Collapse
Affiliation(s)
- Alessandro Piccolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Marios Drosos
- School of Agricultural, Forestal, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Assunta Nuzzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Antonio Scopa
- School of Agricultural, Forestal, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Ren Y, Li F, Zhai L, Dong D, Han R, Qi X, Zhang X, Li L, Jiang W, Chen X. Tween 80 assisted washing ciprofloxacin-contaminated soil, and recycled it using active chlorines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121735. [PMID: 37146871 DOI: 10.1016/j.envpol.2023.121735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Active chlorines (ACs) can selectively oxidize contaminants with benzene rings to recycle surfactants, which greatly facilitates the resource cycle. This paper firstly utilized Tween 80 to assist in ex-situ washing the ciprofloxacin (CI) contaminated soil, including the solubilization experiment, shake washing and soil column washing, all of which showed that 2 g/L of Tween 80 (TW 80) was the most effective in removing CI. Then electrochemically treated the collected soil washing effluent (SWE) at 10 V with an electrolyte of 20 mM NaCl + 10 mM Na2SO4; Pre-experiments screened the range of electrode spacing, pH and temperature, based on which an orthogonal design Table L9 (34) was designed. Visual analysis and ANOVA were performed on the ciprofloxacin removal efficiency and Tween 80 retention efficiency during the orthogonal experiments in 9 groups, and the results showed that CI was usually degraded within 30 min, and 50% of TW 80 was still present at the end of the experiment, and there was no significant effect of all three factors. LC-MS demonstrated that CI was mainly degraded synergistically by ·OH and ACs, and ·OH effectively reduced the biotoxicity of the SWE, so the mixed electrolyte may be more suitable for the electrochemical recycling system of ACs. This paper conducted the washing remediation study of CI-contaminated soil for the first time, and applied the theory of selective oxidation by ACs on benzene ring to treat the SWE, which provides a new treatment idea for antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fengchun Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Luwei Zhai
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dianxiao Dong
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ruifu Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiaoyi Qi
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xin Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xia Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
4
|
Ren Y, Meng X, Zhang X, He Y, Gao G, Wang P, Gu Y, Ding Y, Jiang W. Potential for selective oxidation of aniline in soil washing effluent by active chlorine and testing its practicality. CHEMOSPHERE 2023; 311:137082. [PMID: 36336015 DOI: 10.1016/j.chemosphere.2022.137082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Recovery of surfactants in the soil washing effluent (SWE) can significantly reduce the cost of the soil washing (SW) technology. This paper consists of two parts experiments. The first part constructed a selective oxidation system of active chlorine by electrochemical technology to treat SWE. Three factors, current density, NaCl concentration and TW 80 to aniline concentration ratio (T/A), were set up for a total of nine sets of experiments after orthogonal design. The results of ANOVA analysis and visual analysis showed that the NaCl concentration greatly affected the aniline removal efficiency (ARE) and the TW 80 retention efficiency (TW 80 RE), and the effects were in opposite directions. The biotoxicity of the SWE decreased as the experiment progressed, and at the end of the experiment, 30%-45% of TW 80 was still present in each set. And the oxidation group quenching experiments determined that the degradation of aniline was mainly contributed by active chlorine. Because active chlorine slowed the loss rate of TW 80, the electrochemical treatment of SWE + soil in-situ sequential batch recirculation washing method was designed, and 50% of aniline in the soil was washed out after 125h. At the end of the experiment, the less biotoxic SWE was collected where no aniline and TW 80 were present, and only small organic acids were present after the GC-MS test. The method has a great potential to be applied as it shows good results in the treatment of soil pollution incidents.
Collapse
Affiliation(s)
- Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangxin Meng
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuhai He
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guangfei Gao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Pengqi Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yue Ding
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
5
|
Cyclic solubilization and release of polycyclic aromatic hydrocarbons (PAHs) using gemini photosensitive surfactant combined with micro-nano bubbles: a promising enhancement technology for groundwater remediation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Zhang N, Gao F, Cheng S, Xie H, Hu Z, Zhang J, Liang S. Mn oxides enhanced pyrene removal with both rhizosphere and non-rhizosphere microorganisms in subsurface flow constructed wetlands. CHEMOSPHERE 2022; 307:135821. [PMID: 35944687 DOI: 10.1016/j.chemosphere.2022.135821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) are substantial wastewater pollutants emitted mostly by petroleum refineries and petrochemical industries, and their environmental fate has been of increasing concern among the public. Consequently, subsurface flow constructed wetlands (SFCWs) filled with Mn oxides (W-CW) or without Mn oxides (K-CW) were established to investigate the performance and mechanisms of pyrene (PYR) removal. The average removal rates of PYR in W-CW and K-CW were 96.00% and 92.33%, respectively. The PYR removal via other pathways (microbial degradation, photolysis, volatilisation, etc.) occupied a sizeable proportion, while the total PYR content in K-CW plant roots was significantly higher than that of W-CW. The microorganisms on the root surface and rhizosphere played an important role in PYR degradation in W-CW and K-CW and were higher in W-CW than that in K-CW in all matrix zones. The microorganisms between the 10-16 cm zone from the bottom of W-CW filled with Mn oxides (W-16) were positively correlated with PYR-degrading microorganisms, aerobic bacteria and facultative anaerobes, whereas K-16 without birnessite-coated sand was negatively correlated with these microorganisms.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, China
| | - Fuwei Gao
- Zhongke Hualu Soil Remediation Engineering Co., Ltd, Dezhou, 253000, China
| | - Shiyi Cheng
- Jiangsu Ecological Environmental Monitoring Co., Ltd, Nanjing, 320100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan, 250100, China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
7
|
Gu F, Zhang J, Shen Z, Li Y, Ji R, Li W, Zhang L, Han J, Xue J, Cheng H. A review for recent advances on soil washing remediation technologies. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:651-658. [PMID: 35908225 DOI: 10.1007/s00128-022-03584-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Contaminated soils have caused serious harm to human health and the ecological environment due to the high toxicity of organic and inorganic pollutants, which has attracted extensive attention in recent years. Because of its low cost, simple operation and high efficiency, soil washing technology is widely used to permanently remove various pollutants in contaminated soils and is considered to be the most promising remediation technology. This review summarized the recent developments in the field of soil washing technology and discusses the application of conventional washing agents, advanced emerging washing agents, the recycling of washing effluents and the combination of soil washing and other remediation technologies. Overall, the findings provide a comprehensive understanding of soil washing technology and suggest some potential improvements from a scientific and practical point of view.
Collapse
Affiliation(s)
- Fei Gu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China
- National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd, 100015, Beijing, PR China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, 223100, Huaian, PR China
| | - Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China
- National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd, 100015, Beijing, PR China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, 223100, Huaian, PR China
| | - Ziqi Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China
- National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd, 100015, Beijing, PR China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, 223100, Huaian, PR China
| | - Yang Li
- Jiangsu Institute of Geological Survey, 210018, Nanjing, PR China
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 210042, Nanjing, PR China
| | - Wei Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, 223100, Huaian, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 210042, Nanjing, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, 223100, Huaian, PR China
| | - Jianming Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China
- New Zealand Forest Research Institute (Scion), 8440, Christchurch, New Zealand
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, PR China.
- National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd, 100015, Beijing, PR China.
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem, 223100, Huaian, PR China.
| |
Collapse
|
8
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
9
|
Xu JC, Yang LH, Yuan JX, Li SQ, Peng KM, Lu LJ, Huang XF, Liu J. Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges. CHEMOSPHERE 2022; 303:135004. [PMID: 35598784 DOI: 10.1016/j.chemosphere.2022.135004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Non-aqueous phase liquids (NAPLs) pose a serious risk to the soil-groundwater environment. Coupling surfactants with in situ chemical oxidation (ISCO) technology is a promising strategy, which is attributed to the enhanced desorption and solubilization efficiency of NAPL contaminants. However, the complex interactions among surfactants, oxidation systems, and NAPL contaminants have not been fully revealed. This review provides a comprehensive overview on the development of surfactant-coupled ISCO technology focusing on the effects of surfactants on oxidation systems and NAPLs degradation behavior. Specifically, we discussed the compatibility between surfactants and oxidation systems, including the non-productive consumption of oxidants by surfactants, the role of surfactants in catalytic oxidation systems, and the loss of surfactants solubilization capacity during oxidation process. The effect of surfactants on the degradation behavior of NAPL contaminants is then thoroughly summarized in terms of degradation kinetics, byproducts and degradation mechanisms. This review demonstrates that it is crucial to minimize the negative effects of surfactants on NAPL contaminants oxidation process by fully understanding the interaction between surfactants and oxidation systems, which would promote the successful implementation of surfactant-coupled ISCO technology in remediation of NAPLs-contaminated sites.
Collapse
Affiliation(s)
- Jing-Cheng Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Heng Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Jing-Xi Yuan
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
10
|
You Y, Huang S, He Z. Activation of persulfate for degradation of sodium dodecyl sulfate by a hybrid catalyst hematite/cuprous sulfide with enhanced Fe III/Fe II redox cycling. CHEMOSPHERE 2022; 295:133839. [PMID: 35122824 DOI: 10.1016/j.chemosphere.2022.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Surfactants are recalcitrant compounds that require advanced treatment for their degradation. Heterogeneous advanced oxidation processes (AOPs) using iron-based catalysts can be a promising method for surfactant degradation. The acceleration of the FeIII/FeII redox cycling is the key to enhance the catalytic degradation. Herein, a hybrid catalyst composed of α-Fe2O3 and Cu2S was synthesized to improve the reduction of FeIII in a heterogeneous persulfate-AOP system. The results of XRD, Raman and TEM demonstrated the successful preparation of the hybrid catalyst. Because of the optimized FeII regeneration, the AOP containing the catalyst FC75 achieved 100.0% removal of sodium dodecyl sulfate (SDS) in a neutral aquatic environment, significantly higher than 22.9 ± 2.4% with pure α-Fe2O3 or 39.6 ± 2.5% with pure Cu2S. The catalyst FC75 demonstrated effective SDS removal in the recycling test (82.7 ± 7.0% after six recycling test) and in actual wastewater (84.4 ± 4.5%). The regeneration of FeII was confirmed by the increased proportion of FeII from 39.5% in the fresh catalyst to 42.6% in the used catalyst. The main active species was revealed to be sulfate radicals under an acidic condition and shifted to hydroxyl radicals under a basic condition. In the hybrid catalyst, α-Fe2O3 provided FeII to activate persulfate to radicals, with an oxidation product of FeIII, which was then reduced to FeII by CuI provided by Cu2S, coupling with the oxidation of CuI to CuII. The S element in Cu2S could directly or indirectly facilitate the FeIII/FeII redox cycling as an electron donor. Those results have demonstrated that the developed hybrid catalyst is able to promote FeII regeneration for effective SDS removal.
Collapse
Affiliation(s)
- Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
11
|
Lin M, Li F, Cheng W, Rong X, Wang W. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C 3N 4 for enhanced visible light photocatalytic degradation of phenanthrene. CHEMOSPHERE 2022; 288:132620. [PMID: 34688717 DOI: 10.1016/j.chemosphere.2021.132620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The rational design of a novel and environmentally friendly photocatalytic composite for persistent pollutant removal, energy production and catalytic applications have attracted widespread interest. In this study, the new composite composed of KOH-modified biochar and g-C3N4 with different morphologies was successfully prepared with facile supramolecular self-assembly and thermal poly-condensation method. The characterization results of the as-prepared composites suggested that KOH-modified biochar had been well combined with g-C3N4 with different morphologies. These synthesized catalysts were used to degrade phenanthrene under visible light radiation. A-BC/g-C3N4-D performed best and removed 76.72% phenanthrene. Its first-order reaction rate constant was 0.355 h-1, which was 3.7 times higher than that of g-C3N4. A-BC/g-C3N4-D still exhibited a high photocatalytic activity after four cycles. Radical quenching results showed that superoxide radical (·O2-), hydroxyl radical (·OH) and hole (h+) could be used as active species in the redox reaction with phenanthrene. Based on the exploration results of gas chromatography-mass spectrometer (GC-MS), a possible reaction pathway of phenanthrene degradation was also proposed. This study provides a novel strategy for fabricating various high-performance photocatalysts and the removal of persistent organic pollutants.
Collapse
Affiliation(s)
- Meixia Lin
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 210418, China; School of Resources and Environmental Science, Hunan Agricultural University, Changsha, 410128, China.
| | - Fayun Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 210418, China; School of Resources and Environmental Science, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenyuan Cheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Xiangmin Rong
- School of Resources and Environmental Science, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 210418, China
| |
Collapse
|
12
|
Wang Z, Zheng X, Wang Y, Lin H, Zhang H. Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Liu F, Zhao J, Ma Y, Liu Z, Xu Y, Zhang H. Removal of diesel from soil washing effluent by electro-enhanced Fe2+ activated persulfate process. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Huang Y, Yu X, Gan H, Jiang L, Gong H. Degradation and chlorination mechanism of fumaric acid based on SO 4•-: an experimental and theoretical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48471-48480. [PMID: 33907958 DOI: 10.1007/s11356-021-12756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
It is well known that chloride ions could affect the oxidation kinetics and mechanism of contaminant based on SO4•- in the wastewater. Here, the degradation of an organic acid, fumaric acid (FA), was investigated in the presence of chloride (0-300 mM) by the Fe(II)/peroxymonosulfate (Fe(II)/PMS) system. A negative impact of chloride was observed on the rates of FA degradation. The degree of inhibitory effect was higher in Fe(II)/PMS addition order. Some chlorinated byproducts were identified during the FA oxidation process in the presence of Cl- by the ultraperformance liquid chromatography and quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS). With the increasing content of Cl-, an accumulation of adsorbable organic halogen (AOX), an increase in acute toxicity, and an inhibition of mineralization were observed. According to the results of kinetic modeling, the production and transformation of oxidative species were dependent on Cl- dosage and reaction time. SO4•- was supposed to be the main radical for FA degradation with Cl- concentration below 5 mM, whereas Cl2•- was primarily responsible for the depletion of FA at [Cl-] > 5 mM. A possible degradation pathway of FA was discussed. This study reveals the potential environmental risk of organic acid and is necessary to explore useful strategies for ameliorating the treatment of chloride-rich wastewater.
Collapse
Affiliation(s)
- Ying Huang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Li Jiang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Hancheng Gong
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
15
|
Zhao C, Xu J, Shang D, Zhang Y, Zhang J, Xie H, Kong Q, Wang Q. Application of constructed wetlands in the PAH remediation of surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146605. [PMID: 34030309 DOI: 10.1016/j.scitotenv.2021.146605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose adverse risks to ecosystems and public health because of their carcinogenicity and mutagenicity. As such, the extensive occurrence of PAHs represents a worldwide concern that requires urgent solutions. Wastewater treatment plants are not, however, designed for PAH removal and often become sources of the PAHs entering surface waters. Among the technologies applied in PAH remediation, constructed wetlands (CWs) exhibit several cost-effective and eco-friendly advantages, yet a systematic examination of the application and success of CWs for PAH remediation is missing. This review discusses PAH occurrence, distribution, and seasonal patterns in surface waters during the last decade to provide baseline information for risk control and further treatment. Furthermore, based on the application of CWs in PAH remediation, progress in understanding and optimising PAH-removal mechanisms is discussed focussing on sediments, plants, and microorganisms. Wetland plant traits are key factors affecting the mechanisms of PAH removal in CWs, including adsorption, uptake, phytovolatilization, and biodegradation. The physico-chemical characteristics of PAHs, environmental conditions, wetland configuration, and operation parameters are also reviewed as important factors affecting PAH removal efficiency. Whilst significant progress has been made, several key problems need to be addressed to ensure the success of large-scale CW projects. These include improving performance in cold climates and addressing the toxic threshold effects of PAHs on wetland plants. Overall, this review provides future direction for research on PAH removal using CWs and their large-scale operation for the treatment of PAH-contaminated surface waters.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Yanmeng Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Jinan 250100, China.
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|