1
|
Zhang W, Liu MQ, Zhu XX, Liu C, Luo Y. Metal Coordination-Induced Structural Regulation of Twisted Cucurbit[14]uril-Based Supramolecular Assemblies for Mercury Ions Detection on Smart Platform. ACS Sens 2025; 10:1419-1428. [PMID: 39954000 DOI: 10.1021/acssensors.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The high selectivity and reversibility of metal coordination enable precise modulation of the structural morphology of supramolecular assemblies, which is essential for the development and intelligent application of functionalized materials. In this study, sheet-like supramolecular assemblies (Pyr-O@tQ[14]) constructed by twisted cucurbit[14]urils (tQ[14]) and pyrene derivatives (Pyr-O) through host-guest interactions, which exhibit excellent optical properties, achieves highly sensitive detection of Hg2+ by fluorescence quenching, with a limit of detection of 0.177 μM. A novel smart platform, compatible with smartphones, is developed to enhance the detection efficiency and practicality for practical applications. From a microscopic structural perspective, adjusting the concentration of Hg2+ can change the structural morphology of Pyr-O@tQ[14] from lamellar to square and finally to spherical, demonstrating the dynamic control of the assembly structure in response to environmental stimuli. This study not only presents a novel and efficient intelligent quantitative sensing platform for Hg2+ detection but also highlights the unique advantages of tQ[14] in constructing supramolecular assemblies with tunable, responsive structures, opening new avenues for the design and synthesis of advanced smart materials.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China
| | - Mao-Qin Liu
- College of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China
| | - Xin-Xuan Zhu
- College of Chemistry and Materials, Guizhou Normal University, Guiyang 550025, China
| | - Chun Liu
- School of Culture and Tourism, Guiyang Healthcare Vocational University, Guiyang 550081, China
| | - Yang Luo
- College of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
2
|
Tian S, Chen C, Huang L, Yao X, She A, Su X. The liquid-vapor water generation characteristics of thermo-responsive polymer based on the multi-scale method. iScience 2025; 28:111619. [PMID: 39850361 PMCID: PMC11754082 DOI: 10.1016/j.isci.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025] Open
Abstract
Thermo-responsive polymer is becoming a potential water purification and water harvesting material. To clarify the water diffusion characteristics, the desorption ratio of liquid water and water vapor for a poly (N-isopropylacrylamide) was researched by the multi-scale method. Firstly, macro and micro structures for the hydrogel with different water content were characterized. Second, the dynamic moisture preserving status of the hydrogel during the desorption process were tested. Thirdly, the dynamic liquid-vapor desorption rate was quantified. The macro volume of the polymer is of liner relationship with water content. During the desorption process, free and immobilized water transfers to immobilized and bound water. About 80% of the purified liquid water can be collected directly in closed environment, while the amount decreased to 21%-25% in air convection condition. The results suggested a heating method for improving liquid water collection rate with low energy cost for practical applications.
Collapse
Affiliation(s)
- Shaochen Tian
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Chaoyang Chen
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Lei Huang
- Jiangsu JINYOU New Material Co., Ltd., Nantong, Jiangsu 226151, China
| | - Xueliang Yao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Anming She
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xing Su
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
3
|
Bahaidarah EA. An Effective Sol-Gel-Functionalized Polyurethane Foams Solid Platform Packed Minicolumns for Complete Extraction of Chromium (VI) from Water: Kinetic, Sorption Isotherms, Thermodynamic Study, and Analytical Utility. Int J Anal Chem 2024; 2024:3152894. [PMID: 39376696 PMCID: PMC11458274 DOI: 10.1155/2024/3152894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 10/09/2024] Open
Abstract
In the modern era, sol-gel plays a key role in the progress of a new generation of dispersive solid-phase microextractors (d-µ SPMEs) for the removal of organic and inorganic pollutants in complex matrices. Thus, the current study reports the use of sol-gel-functionalized polyurethane foams (PUFs) as a novel solid platform for complete extraction of chromium (VI) species from aqueous media. The planned protocol was based upon the complete extraction of the formed binary complex ion associates between the protonated ether and/or urethane groups of PUFs and chlorochromate anion [CrO3Cl]- aq in aqueous HCl (≥1M) medium in addition to H-bonding and the electrostatic π-π interaction that resulted between the CrO3Cl- and the silanol group (Si/ZrO2, Si-O-Zr) and siloxane (Si-O-Si) groups of the sol-gel. The impact of the analytical parameters (solution pH, natural mineral acids, shaking time, temperature, and chromium (VI) concentrations) was critically studied. At the optimal conditions, the uptake capacity of the established extractor (9.9 mg·g-1) was in agreement with the Langmuir adsorption capacity (12.08 mg·g-1) of the monolayer. The sorption data fitted well with the pseudo first-order kinetic model (R 2 = 0.9961) with an overall rate constant (k 1) of 0.081 min-1 and an equilibrium capacity (q e ) of 8.6 mg·g-1, which is in a good agreement with the experimental value (9.9 mg·g-1). The sorption of the oxyion [CrO3Cl]- aq onto the solid sorbent is an endothermic and spontaneous process as reflected from the values of ΔH (6.99 kJ·mol-1) and ΔG (-8.14 kJ·mol-1 at 293 K), respectively. The ΔS value (15.13 kJ·mol-1·K-1) reflects that the [CrO3Cl]- aq retention onto the sol-gel-treated PUFs sorbent proceeded in a more unplanned fashion. Sol-gel-treated PUFs sorbent-packed minicolumns were successfully used for the complete removal of trace levels of chromium (VI) species from water samples. Sorbed chromium (VI) species were recovered with NaOH (0.5 M) and analysed by spectrophotometry, which supports the utility of the sol-gel-treated PUFs as a low-cost solid extractor for water treatment.
Collapse
Affiliation(s)
- Effat A. Bahaidarah
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Kumarasamy K, Devendhiran T, Chien WJ, Lin MC, Ramasamy SK, Yang JJ. Bodipy-based quinoline derivative as a highly Hg 2+-selective fluorescent chemosensor and its potential applications. Methods 2024; 223:35-44. [PMID: 38228195 DOI: 10.1016/j.ymeth.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.
Collapse
Affiliation(s)
- Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Tamiloli Devendhiran
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, ROC
| | - Wei-Jyun Chien
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC.
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala 133207, Haryana, India
| | - Ji-Jhang Yang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| |
Collapse
|
5
|
Gu Y, Li S, Yu Y, Zhu J, Yuan X, Feng X, Lu Y. Pyrene-Based "Turn-On" Fluorescent Polymeric Probe with Thioacetal Units in the Main Chain for Mercury(II) Detection in Aqueous Solutions and Living Cells. Macromol Rapid Commun 2024; 45:e2300631. [PMID: 38158931 DOI: 10.1002/marc.202300631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Indexed: 01/03/2024]
Abstract
A water-soluble polymeric pyrene-based polythioacetal (PTA-Py) with thioacetal units in the main chain is simply synthesized by direct polycondensation of 3, 6-dioxa-1, 8-octanedithiol, 1-pyrene formaldehyde, and mPEG2k-SH. The probe PTA-Py shows a good fluorescence response to Hg2+ ions due to the Hg2+-promoted deprotection reaction of thioacetal groups to regenerate the original 1-pyrene formaldehyde compound. After adding Hg2+ to the PTA-Py solution, the fluorescence intensity (FI) gradually increases with increasing concentrations of Hg2+. Compared with other metal ions, the probe exhibits high sensitivity, good selectivity, and rapid response to Hg2+. The low detection limits are 12.3 nm in ethanol-PBS buffer and 13.3 nm in water, respectively. The results imply that the simply synthesized water-soluble polymeric probe had potential applications in the rapid detection of Hg2+ ions in aqueous solutions. Moreover, the polymeric PTA-Py shows high sensitivity for CH3Hg+ with detection limits of 26.5 nm in ethanol/PBS buffer. In addition, PTA-Py can efficiently detect Hg2+ ions in HeLa cells. The results demonstrate that a valuable method is developed for biocompatible polymeric sensors for Hg2+ ions in biological and environmental samples.
Collapse
Affiliation(s)
- Yu Gu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| | - Siyong Li
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| | - Jianjian Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| | - Xingyu Yuan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| | - Yanbing Lu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Changsha, 410082, P. R. China
| |
Collapse
|
6
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
7
|
Cheng X, Feng B, Chen F, Huang S, Zhang S, Gao F, Zeng W. Development of a Water-Soluble Fluorescent Probe Based on Natural Flavylium for Mercury(II) Ion Detection and Clinical Antidote Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13263-13269. [PMID: 37639577 DOI: 10.1021/acs.jafc.3c04537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The health hazard posed by Hg2+ makes it imperative to develop a fast and convenient means for detecting Hg2+ in water samples and living objects. While fluorescence sensing technology is considered a promising candidate, the poor water solubility and fluorescence quenching in aqueous solutions of most existing probes limit their practical application. To overcome this, we developed a natural flavylium-inspired fluorescent probe with excellent water solubility. Our probe demonstrated outstanding performance of high sensitivity (LOD = 0.47 nM), fast response (<10 min), and great selectivity for Hg2+. Notably, we validated its applicability in real water, urine samples, and living cells. Furthermore, the probe was successfully applied to evaluate the effectiveness of antidotes for clinical Hg2+ poisoning.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shengwang Zhang
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Feng Gao
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
9
|
Jagadhane K, Bhosale SR, Gunjal DB, Nille OS, Kolekar GB, Kolekar SS, Dongale TD, Anbhule PV. Tetraphenylethene-Based Fluorescent Chemosensor with Mechanochromic and Aggregation-Induced Emission (AIE) Properties for the Selective and Sensitive Detection of Hg 2+ and Ag + Ions in Aqueous Media: Application to Environmental Analysis. ACS OMEGA 2022; 7:34888-34900. [PMID: 36211049 PMCID: PMC9535730 DOI: 10.1021/acsomega.2c03437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
It is critical to design a novel and simple bifunctional sensor for the selective and sensitive detection of ions in an aqueous media in environmental samples. As a result, in this study, tetraphenylethene hydrazinecarbothioamide (TPE-PVA), known as probe 1, was successfully synthesized and characterized as having impressive photophysical phenomena such as aggregation-induced emission (AIE) and mechanochromic properties by applying mechanical force to the solid of probe 1. The emission of the solid of probe 1 changed from turquoise blue to lemon yellow after grinding, from lemon yellow to parakeet green after annealing at 160 °C, and to arctic blue after fuming with DCM. Such characteristics could lead to a variety of applications in several fields. The probe was implemented and demonstrated remarkable selectivity and sensitivity toward mercury(II) and silver(I) ions by substantially switching off emission over other cations. Following an extensive photophysical analysis, it was discovered that detection limits (LOD) as low as 0.18344 and 0.2384 μg mL-1 for Hg2+ and Ag+, respectively, are possible with a quantum yield (Φ) of 2.26. Probe 1 was also explored as a Hg2+ and Ag+ paper strip-based sensor and kit for practical use. The binding mechanisms of probe 1 (TPE-PVA) with Hg2+ and Ag+ were confirmed by 1H NMR titration. These results could lead to the development of reliable onsite Hg2+ and Ag+ fluorescent probes in the future.
Collapse
Affiliation(s)
- Kishor
S. Jagadhane
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Sneha R. Bhosale
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Datta B. Gunjal
- Fluorescence
Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Omkar S. Nille
- Fluorescence
Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Govind B. Kolekar
- Fluorescence
Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Sanjay S. Kolekar
- Analytical
Chemistry and Material Science Research Laboratory, Department of
Chemistry, Shivaji University, Kolhapur,Maharashtra 416004, India
| | - Tukaram D. Dongale
- Computational
Electronics and Nanoscience Research Laboratory, School of Nanoscience
and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Prashant V. Anbhule
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra 416004, India
| |
Collapse
|
10
|
Heavy Metal Ions Trigger a Fluorescent Quenching in DNA–Organic Semiconductor Hybrid Assemblies. Polymers (Basel) 2022; 14:polym14173591. [PMID: 36080666 PMCID: PMC9460141 DOI: 10.3390/polym14173591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The significance of DNA is no longer limited to its role as a biological information carrier; as a natural polymer, it also become in the field of materials. Single-stranded DNA (ssDNA) molecules with specific sequences can form a G-quadruplex or hairpin-shaped conformation with specific heavy metal ions through coordination bonds. In this study, ssDNA molecules of the four sequences were prepared into hybrid assemblies with one of the famous display materials, the tris-(8-hydroxyquinoline)aluminum (Alq3) semiconductor. Based on these hybrid assemblies, heavy metal ions, namely Pb2+, Hg2+, Cd2+ and As3+, were detected individually at the ppb level. Apart from this, in practical application, many samples containing heavy metal ions are digested with acid. By introducing MES buffer solution, the influence of acidity on the fluorescent signal of Alq3 was excluded. This strategy showed promising results in the practical application of detecting heavy metal ions in shrub branches and leaves.
Collapse
|
11
|
Chen H, Li X, Gao P, Pan Y, Liu J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Sharma R, Lee HI. Recent advances in polymeric chemosensors for the detection and removal of mercury ions in complex aqueous media. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2054348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rini Sharma
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
13
|
Jiang D, Zhang X, Chen Y, Zhang P, Gong P, Cai L, Wang Y. An α-naphtholphthalein-derived colorimetric fluorescent chemoprobe for the portable and visualized monitoring of Hg 2+ by the hydrolysis mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01051h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An ɑ-naphtholphthalein-derived colorimetric fluorescent chemoprobe was elaborately designed for the portable and visual monitoring of Hg2+ in environmental and biological samples.
Collapse
Affiliation(s)
- Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
14
|
Ouyang S, Zhang Y, Yao S, Feng L, Li P, Zhu S. The efficiency of
MSC‐based
targeted
AIE
nanoparticles for gastric cancer diagnosis and treatment: An experimental study. Bioeng Transl Med 2021; 7:e10278. [PMID: 35600644 PMCID: PMC9115694 DOI: 10.1002/btm2.10278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs), due to their tumor tropism, are strongly recruited by various solid tumors and mobilized by inflammatory signals in the tumor microenvironment. However, effective cellular uptake is critical for MSC‐based drug delivery. In this study, we synthesized a spherical copolymer, polyethylenimine–poly(ε‐caprolactone), with aggregation‐induced emission (AIE) material and the anticancer drug, paclitaxel, coloaded onto its inner core. This was followed by the addition of a transactivator of transcription (TAT) peptide, a type of cell‐penetrating peptide, to modify the nanoparticles (NPs). Finally, the MSCs were employed to carry the TAT‐modified AIE‐NPs drug to the tumor sites and assist in simultaneous cancer diagnosis and targeted tumor therapy. In vitro, the TAT‐modified AIE‐NPs showed good biocompatibility, targeting, and stability in an aqueous solution besides high drug‐loading and encapsulation efficiency. In vitro, the AIE‐NPs exhibited a controllable release under a mildly acidic environment. The in vivo and in vitro studies showed high antitumor efficacy and low cytotoxicity of the AIE‐NP drug, whereas biodistribution confirmed the tumor tropism of MSCs. To summarize, the MSC‐based AIE‐NP drugs loaded with TAT possessed good biocompatibility and high antitumor efficacy via the enhanced NP‐drug uptake. In addition, the tumor tropism of MSCs provided selective drug uptake by the tumor cells and thus reduced the systemic side effects.
Collapse
Affiliation(s)
- Sushan Ouyang
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yi Zhang
- Department of Hepatobiliary Surgery The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Sheng Yao
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Department of Gastroenterology The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) Co., Ltd. Guangzhou China
| | - Ping Li
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Senlin Zhu
- Department of Gastroenterology and Hepatology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
15
|
Organosilanes: Synthesis and modification to magnetic silica nanoparticles for recognition of Hg (II) ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|