1
|
Pasieczna-Patkowska S, Cichy M, Flieger J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025; 30:684. [PMID: 39942788 PMCID: PMC11821210 DOI: 10.3390/molecules30030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The fundamental principle of Fourier Transform Infrared (FTIR) spectroscopy is based on the vibration and rotation of atoms, and it has become a universal and widely used spectral methodology for the detection of internal molecular structures in a diverse range of fields. A considerable number of review articles pertaining to the applications of FTIR spectroscopy have been published in recent years. Nevertheless, a comprehensive summary of the application of FTIR spectroscopy in nanoparticles' (NPs') green synthesis has yet to be presented. In the present paper, we propose a series of case studies that demonstrate the application of FTIR spectroscopy in the analysis of metal and metal oxide NPs that have been synthesized using green synthesis processes. Furthermore, a summary is presented of the position of functional group bands in FTIR spectra that are responsible for the reduction, capping and stabilization of NPs. In this review, we explore the advantages and limitations of FTIR and propose methodologies for overcoming these challenges. We also present potential solutions for the analysis of complex FTIR spectra. The present summary is intended to serve as a compendium of information for researchers engaged in the field of green synthesis of NPs, utilizing FTIR spectroscopy as a research tool.
Collapse
Affiliation(s)
- Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland;
| | - Marcin Cichy
- Department of Chemical Technology, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Uysal Y, Görkem Doğaroğlu Z, Çaylali Z, Karakulak DS. Rosemary-Mediated Green Synthesis of ZnO Nanoparticles and their Integration into Hydrogel Matrices: Evaluating Effects on Wheat Growth and Antibacterial Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400120. [PMID: 39545255 PMCID: PMC11557514 DOI: 10.1002/gch2.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Indexed: 11/17/2024]
Abstract
In this study, the impact of zinc oxide nanoparticles (ZnO-NPs) generated using rosemary extract, synthesized using environmentally friendly processes and integrated into a cross-linked polymer matrix, on growth performance of wheat is evaluated. Rosemary extract used as coating, stabilizing, and reducing agents in this green synthesis method. Fourier transform infrared spectroscopy analyses demonstrated the presence of phytochemical constituents of the plant extract that served as capping agents during the synthesis process. The nanoparticles are sprayed to the plant leaves. The effects of nanoparticles within the hydrogel on plant development are compared with the effects of nanoparticles in suspension. The percentage of seed germination is unaffected by either rosemary- or raw-ZnO-NPs; however, the root and shoot elongation are considerably impacted by the nanoparticle treatments. The threshold concentrations are determined as 3000 mg L-1 for rosemary-ZnO-NPs and 2000 mg L-1 for raw-ZnO-NPs. Additionally, antibacterial test results showed that the activity level on Escherichia coli is higher for rosemary-ZnO-NPs compared to raw-ZnO-NPs. The results of this research may provide guidance on how green synthesis methods and the use of nanoparticle-hydrogel composites in plant breeding can be used in future agricultural applications. This can be considered an important step in terms of agricultural innovations and sustainability.
Collapse
Affiliation(s)
- Yağmur Uysal
- Engineering FacultyEnvironmental Engineering DepartmentMersin UniversityMersinTurkey
| | | | - Zehranur Çaylali
- Engineering FacultyEnvironmental Engineering DepartmentMersin UniversityMersinTurkey
| | | |
Collapse
|
3
|
Bhushan D, Shoran S, Kumar R, Gupta R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. CHEMOSPHERE 2024; 365:143340. [PMID: 39278321 DOI: 10.1016/j.chemosphere.2024.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.
Collapse
Affiliation(s)
- Divya Bhushan
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Sachin Shoran
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Renuka Gupta
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India.
| |
Collapse
|
4
|
Jovanović D, Bognár S, Despotović V, Finčur N, Jakšić S, Putnik P, Deák C, Kozma G, Kordić B, Šojić Merkulov D. Banana Peel Extract-Derived ZnO Nanopowder: Transforming Solar Water Purification for Safer Agri-Food Production. Foods 2024; 13:2643. [PMID: 39200570 PMCID: PMC11353736 DOI: 10.3390/foods13162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Pure water scarcity is the most significant emerging challenge of the modern society. Various organics such as pesticides (clomazone, quinmerac), pharmaceuticals (ciprofloxacin, 17α-ethynilestradiol), and mycotoxins (deoxynivalenol) can be found in the aquatic environment. The aim of this study was to fabricate ZnO nanomaterial on the basis of banana peel extract (ZnO/BPE) and investigate its efficiency in the photocatalytic degradation of selected organics under various experimental conditions. Newly synthesized ZnO/BPE nanomaterials were fully characterized by the XRD, FTIR, SEM-EPS, XPS, and BET techniques, which confirmed the successful formation of ZnO nanomaterials. The photocatalytic experiments showed that the optimal catalyst loading of ZnO/BPE was 0.5 mg/cm3, while the initial pH did not influence the degradation efficiency. The reusability of the ZnO/BPE nanomaterial was also tested, and minimal activity loss was found after three photocatalytic cycles. The photocatalytic efficiency of pure banana peel extract (BPE) was also studied, and the obtained data showed high removal of ciprofloxacin and 17α-ethynilestradiol. Finally, the influence of water from Danube River was also examined based on the degradation efficiency of selected pollutants. These results showed an enhanced removal of ciprofloxacin in water from the Danube River, while in the case of other pollutants, the treatment was less effective.
Collapse
Affiliation(s)
- Dušica Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Vesna Despotović
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Nina Finčur
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Sandra Jakšić
- Scientific Veterinary Institute “Novi Sad”, Rumenački Put 20, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Cora Deák
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Square 1, H-6720 Szeged, Hungary; (C.D.); (G.K.)
| | - Branko Kordić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| | - Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (D.J.); (S.B.); (V.D.); (N.F.); (B.K.)
| |
Collapse
|
5
|
Joy A, Viswanathan MR, Vijayan BK, Silva CG, Basheer I, Sugathan S, Mohamed PA, Solaiappan A, Shereef A. Solar photocatalysts: non-metal (C, N, and S)-doped ZnO synthesized through an industrially sustainable in situ approach for environmental remediation applications. RSC Adv 2024; 14:21655-21667. [PMID: 38979471 PMCID: PMC11229408 DOI: 10.1039/d4ra03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024] Open
Abstract
One of the biggest issues the world is currently experiencing is the scarcity of pure water due to the contamination of pure water by human activities. Highly efficient, semiconducting photocatalytic materials have great potential as future catalytic materials for facilitating the clean-up process of contaminated water. Among the many semiconductor photocatalysts, non-metal-doped zinc oxide (ZnO) nanoparticles have attracted special attention in the scientific field for environmental remediation applications. The present paper reports an easy and viable synthesis of C-, N-, and S-based ZnO semiconductor photocatalysts through a simple heating method. The structural changes in the obtained samples were studied using XRD, TG/DTA, and FT-IR analyses, and morphological examinations were performed using TEM and SEM. The quantification of non-metal dopants was carried out using CNS and XPS analyses. The surface areas of the samples were analyzed using the BET method and the band energies of the samples were measured using UV-vis-diffuse reflectance Kubelka-Munk plots. Photoactivity studies were performed and revealed that the utilized in situ method resulted in the development of high-performance sulphur - (81.4%, k = 1.951 × 10-2 min-1), nitrogen - (78.5%, k = 2.271 × 10-2 min-1), and carbon - (67.2%, k = 1.392 × 10-2 min-1) doped ZnO photocatalysts. As revealed through XPS and UV analyses, a possible electron-transfer mechanism is suggested, wherein electronic transition occurred from different sub-bands when non-metal elements were introduced into the ZnO lattice. The study paves the way for the bulk-scale fabrication of doped nanoparticles through a simple heating method, whereby the unique combination of the present method with bandgap engineering will ultimately produce advanced non-metal-based ZnO photocatalysts that could find useful applications in sustainable industrial sectors.
Collapse
Affiliation(s)
- Amala Joy
- Department of Chemistry, T. K. M. College of Arts and Science, Research Centre, University of Kerala Kerala India
| | - Mangalaraja R Viswanathan
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez Diag. Las Torres 2640, Peñalolén, Región Metropolitana 7941169 Santiago Chile
| | - Baiju K Vijayan
- Department of Chemistry/Nanoscience, Kannur University Swami Anandha Theertha Campus Payyannur Kerala India
| | - Claudia G Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto Rua Dr Roberto Frias S/n 4200-465 Porto Portugal
| | - Irfana Basheer
- Department of Chemistry, T. K. M. College of Arts and Science, Research Centre, University of Kerala Kerala India
| | - Sreejamol Sugathan
- Department of Chemistry, T. K. M. College of Arts and Science, Research Centre, University of Kerala Kerala India
| | - Peer A Mohamed
- Materials Science and Technology Division (MSTD), National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) Trivandrum Kerala India
| | - Ananthakumar Solaiappan
- Materials Science and Technology Division (MSTD), National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) Trivandrum Kerala India
| | - Anas Shereef
- Department of Chemistry, T. K. M. College of Arts and Science, Research Centre, University of Kerala Kerala India
- Materials Science and Technology Division (MSTD), National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) Trivandrum Kerala India
| |
Collapse
|
6
|
Vasiljevic Z, Vunduk J, Bartolic D, Miskovic G, Ognjanovic M, Tadic NB, Nikolic MV. An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2024; 7:3014-3032. [PMID: 38597359 DOI: 10.1021/acsabm.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Emission of greenhouse gases and infectious diseases caused by improper agro-waste disposal has gained significant attention in recent years. To overcome these hurdles, agro-waste can be valorized into valuable bioactive compounds that act as reducing or stabilizing agents in the synthesis of nanomaterials. Herein, we report a simple circular approach using Citrus reticulata Blanco (C. reticulata) waste (peel powder/aqueous extract) as green reducing and capping/stabilizing agents and Zn nitrate/acetate precursors to synthesize ZnO nanoparticles (NPs) with efficient antimicrobial and photocatalytic activities. The obtained NPs crystallized in a hexagonal wurtzite structure and differed clearly in their morphology. UV-vis analysis of the nanoparticles showed a characteristic broad absorption band between 330 and 414 nm belonging to ZnO NPs. Fourier transform infrared (FTIR) spectroscopy of ZnO NPs exhibited a Zn-O band close to 450 cm-1. The band gap values were in the range of 2.84-3.14 eV depending on the precursor and agent used. The crystallite size obtained from size-strain plots from measured XRD patterns was between 7 and 26 nm, with strain between 16 and 4%. The highly crystalline nature of obtained ZnO NPs was confirmed by clear ring diffraction patterns and d-spacing values of the observed lattice fringes. ZnNPeelMan_400 and ZnNExtrMan showed good stability, as the zeta potential was found to be around -20 mV, and reduced particle aggregation. Photoluminescence analysis revealed different defects belonging to oxygen vacancies (VO+ and VO+2) and zinc interstitial (Zni) sites. The presence of oxygen vacancies on the surface of ZnAcExtrMan_400 and ZnAcPeelMan_400 increased antimicrobial activity, specifically against Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis). ZnNExtrMan with a minimal inhibitory concentration of 0.156 mg/mL was more effective against Gram-positive bacteria Staphylococcus aureus (S. aureus), revealing a high influence of particle size and shape on antimicrobial activity. In addition, the photocatalytic activity of the ZnO NPs was examined by assessing the degradation of acid green dye in an aqueous solution under UV light irradiation. ZnAcPeelMan_400 exhibited excellent photocatalytic activity (94%) within 90 min after irradiation compared to other obtained ZnO NPs.
Collapse
Affiliation(s)
- Zorka Vasiljevic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, 11158 Belgrade, Serbia
| | - Dragana Bartolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Goran Miskovic
- Silicon Austria Laboratories GMBH, High Tech Campus Villach, A-9524 Villach, Austria
| | - Milos Ognjanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad B Tadic
- Faculty of Physics, University of Belgrade, 11000 Belgrade, Serbia
| | - Maria Vesna Nikolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| |
Collapse
|
7
|
Doğaroğlu ZG, Uysal Y, Çaylalı Z, Karakoç G. Antibacterial and phytotoxicological properties assessment of Momordica charantia extract-based ZnO nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2851-2861. [PMID: 38012056 DOI: 10.1002/jsfa.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Utilizing the fruit extract of bitter melon (Momordica charantia), zinc nanoparticles (ZnO-NPs) were synthesized through a green approach, a novel endeavor in current literature. The primary objective was to evaluate the phytotoxic and growth-promoting effects of these ZnO-NPs on wheat, chosen as a test plant. Structural characterization using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy revealed the hexagonal wurtzite crystal structure of ZnO-NPs and identified spherical M. charantia-produced (MC)-ZnO-NPs ranging in size from 48 to 150 nm. RESULTS At a concentration of 2000 mg L-1 , both MC- and raw-ZnO-NPs augmented wheat germination percentages. Furthermore, raw-ZnO-NPs at 4000 mg L-1 demonstrated the highest chlorophyll content. Despite the plant's increased accumulation of MC-ZnO-NPs, no statistically significant toxic effects were observed. The antibacterial efficacy of ZnO-NPs was assessed against Gram-positive and Gram-negative microorganisms. MC-ZnO-NPs exhibited a 67.9% inhibition zone against Escherichia coli at 0.04 mg L-1 , while raw-ZnO-NPs exhibited 75.6% inhibition at the same concentration. CONCLUSION The study suggests that ZnO-NPs synthesized from M. charantia exhibit both growth-promoting effects on wheat without significant phytotoxicity and potent antibacterial properties, particularly against Escherichia coli. However, further investigations are warranted to comprehensively understand the interactions between ZnO-NPs and plants. Future research should focus on M. charantia, exploring its enhanced effects on plant growth, development and antibacterial attributes. These findings hold promise for potential agricultural applications, emphasizing the need for detailed phytotoxicological assessments of ZnO-NPs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeynep Görkem Doğaroğlu
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Yağmur Uysal
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Zehranur Çaylalı
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Gökçen Karakoç
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| |
Collapse
|
8
|
Omran BA, Baek KH. Dual extracellular mycofabrication of cobalt and zinc nano metal oxides mediated by mycelial-cell free filtrate of Aspergillus sojae: Characterization and assessment of antibacterial activity. J Mol Struct 2024; 1300:137190. [DOI: 10.1016/j.molstruc.2023.137190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, Junejo A, Ali A. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J Nanobiotechnology 2024; 22:26. [PMID: 38200605 PMCID: PMC10777661 DOI: 10.1186/s12951-023-02151-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024] Open
Abstract
Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged as promising candidates for pollution remediation due to their unique properties. This review paper provides a systematic analysis of the potential of NMs for environmental pollution remediation compared to conventional techniques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthesis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. However, further research and development are necessary to fully realize this potential, such as exploring new synthesis pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Alamdar Hussain
- Department of Botany, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Salar Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Ishtiaque Hussain
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
- Department of Environmental Science, Quaid-i-Azam University of Islamabad, Islamabad, 15320, Pakistan
| | - Aurangzeb Junejo
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Attarad Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
- Directorate of Quality Enhancement Cell, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
| |
Collapse
|
10
|
El Golli A, Contreras S, Dridi C. Bio-synthesized ZnO nanoparticles and sunlight-driven photocatalysis for environmentally-friendly and sustainable route of synthetic petroleum refinery wastewater treatment. Sci Rep 2023; 13:20809. [PMID: 38012203 PMCID: PMC10682493 DOI: 10.1038/s41598-023-47554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
The design of a green photocatalytic system that harnesses renewable and eco-friendly constituents holds the potential to offer valuable insights into alternative strategies for treating toxic multi-components in refinery water effluents. A significant challenge in implementing a practical and viable approach is the utilization of solar energy-an abundant, natural, and cost-effective resource-for photochemical processes within advanced oxidation processes. In this study, we explored the use of zinc oxide nanoparticles (ZnO NPs) as photocatalyst prepared via an environmentally friendly synthesis approach, resulting in the formation of crystalline wurtzite nanoparticles, with an average size of about 14 nm relatively spherical in shape. Notably, the extract derived from Moringa oleifera was employed in this investigation. These nanoparticles were characterized and validated using various characterization techniques, including X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. For comparison, conventionally synthesized ZnO NPs were also included in the evaluations. The findings reveal that, under illumination, biosynthesized ZnO nanoparticles (NPs) exhibit photocatalytic performance in effectively breaking down the organic compounds present in synthetic petroleum wastewater. Photochemical analysis further illustrates the degradation efficiency of Green-ZnO, which, within 180 min of irradiation resulted in 51%, 52%, 88%, and 93% of removal for Phenol, O-Cresol. Under optimal loading conditions, NPs produced via the green synthesis approach perform better when compared to chemically synthesized ZnO. This significant improvement in photocatalytic activity underscores the potential of eco-friendly synthesis methods in achieving enhanced water treatment efficiency.
Collapse
Affiliation(s)
- A El Golli
- Center of Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE Laboratory LR16CRMN01, Technopole of Sousse, B.P. 334, Sousse, Tunisia
- High School of Sciences and Technology of Hammam Sousse, University of Sousse, Sousse, Tunisia
| | - S Contreras
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007, Tarragona, Spain.
| | - C Dridi
- Center of Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE Laboratory LR16CRMN01, Technopole of Sousse, B.P. 334, Sousse, Tunisia.
| |
Collapse
|
11
|
Gao J, Wu F, Zhao Y, Bian X, Zhou C, Tang J, Zhang T. Tuning the Interfaces of ZnO/ZnCr 2 O 4 Derived from Layered-Double-Hydroxide Precursors to Advance Nitrogen Photofixation. CHEMSUSCHEM 2023; 16:e202300944. [PMID: 37528771 DOI: 10.1002/cssc.202300944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Drawing inspiration from the enzyme nitrogenase in nature, researchers are increasingly delving into semiconductor photocatalytic nitrogen fixation due to its similar surface catalytic processes. Herein, we reported a facile and efficient approach to achieving the regulation of ZnO/ZnCr2 O4 photocatalysts with ZnCr-layered double hydroxide (ZnCr-LDH) as precursors. By optimizing the composition ratio of Zn/Cr in ZnCr-LDH to tune interfaces, we can achieve an enhanced nitrogen photofixation performance (an ammonia evolution rate of 31.7 μmol g-1 h-1 using pure water as a proton source) under ambient conditions. Further, photo-electrochemical measurements and transient surface photovoltage spectroscopy revealed that the enhanced photocatalytic activity can be ascribed to the effective carrier separation efficiency, originating from the abundant composite interfaces. This work further demonstrated a promising and viable strategy for the synthesis of nanocomposite photocatalysts for nitrogen photofixation and other challenging photocatalytic reactions.
Collapse
Affiliation(s)
- Junyu Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fan Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Xuanang Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Sivagami M, Asharani IV. Sunlight-assisted photocatalytic degradation of orange G dye using cost-effective zinc oxide nanoparticles. Photochem Photobiol Sci 2023; 22:2445-2462. [PMID: 37493919 DOI: 10.1007/s43630-023-00462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m2/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H2O2) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H2O2, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.
Collapse
Affiliation(s)
- M Sivagami
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - I V Asharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
13
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Green synthesis of ZnFe 2O 4 nanoparticles using plant extracts and their applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162212. [PMID: 36796693 DOI: 10.1016/j.scitotenv.2023.162212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Magnetic nanoparticles, particularly ZnFe2O4 are of enormous significance in biomedical and water treatment fields. However, chemical synthesis of ZnFe2O4 nanoparticles endures some major limitations, e.g., the use of toxic substances, unsafe procedure, and cost-ineffectiveness. Biological methods are more preferable approaches since they take advantages of biomolecules available in plant extract serving as reducing, capping, and stabilizing agents. Herein, we review plant-mediated synthesis and properties of ZnFe2O4 nanoparticles for multiple applications in catalytic and adsorption performance, biomedical, catalyst, and others. Effect of several factors such as Zn2+/Fe3+/extract ratio, and calcination temperature on morphology, surface chemistry, particle size, magnetism and bandgap energy of obtained ZnFe2O4 nanoparticles was discussed. The photocatalytic activity and adsorption for removal of toxic dyes, antibiotics, and pesticides were also evaluated. Main results of antibacterial, antifungal and anticancer activities for biomedical applications were summarized and compared. Several limitations and prospects of green ZnFe2O4 as an alternative to traditional luminescent powders have been proposed.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
14
|
Doğaroğlu ZG, Uysal Y, Çaylalı Z, Karakulak DS. Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60820-60837. [PMID: 37039921 DOI: 10.1007/s11356-023-26827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
Due to their distinctive characteristics and widespread application across all scientific disciplines, nanoparticles have attracted a lot of attention in the current millennium. Green synthesis of ZnO-NPs is gaining a lot of interest at the moment due to a number of its advantages over traditional methods, including being quicker, less expensive, and more environmentally friendly. In the current study, two distinct plant extracts are used to quickly, cheaply, and environmentally friendly synthesize zinc oxide nanoparticles (ZnO-NPs). Mint (Mentha spicata) and basil (Ocimum basilicum) were the plants employed in this study as stabilizing agents to synthesize ZnO-NPs with a green chemistry approach. The innovative aspect of the study is the use of mint and basil extracts in the conversion of zinc chloride to zinc oxide and then determining the effect of these two types of nanoparticles produced by green synthesis on the growth parameters of the plant when they reach the plants by foliar spraying and their uptake by plants and evaluating the antibacterial properties of these nanoparticles. The physical properties of the produced nanoparticles were investigated using XRD, SEM, and FTIR. Moreover, Escherichia coli and Staphylococcus aureus were used to demonstrate the antibacterial properties of ZnO-NPs against both gram-positive and gram-negative bacteria, respectively. Synthesized ZnO-NPs were also given as foliar treatment in order to determine Zn+2 uptake by plants and potential toxic effects on the growth of wheat. The shape of ZnO-NPs was triangular, as revealed by SEM analysis. In the X-ray diffraction study, strong and clearly discernible sharp peaks were seen, with an average size of 24.5 nm for M-ZnO-NPs and 26.7 nm for B-ZnO-NPs determined using Scherrer's formula. The phytoconstituents of the plant extract served as capping/stabilizing agents during the synthesis of ZnO-NPs, as demonstrated by Fourier transform-infrared spectroscopy. The produced nanoparticles were applied to the green parts of wheat plants by spraying, and the development of the plants and the change of zinc uptake were investigated. At the same time, the effect of these three types of nanoparticles on the germination of wheat seeds in the soil medium containing these nanoparticles was investigated. According to experimental results, M-ZnO-NPs (produced from mint) and B-ZnO-NPs (produced from basil) improved the germination percentage of wheat at 400 mg/L concentration (100%), while raw ZnO-NPs showed 90% germination at the same concentration. When the Zn+2 uptake of the plant by the leaves depending on the Zn+2 concentration in the environment after spraying was examined, it was determined that the Zn+2 uptake of the plants increased due to the increase in the applied Zn+2 concentration. The highest Zn+2 uptake of the plant was determined as 50, 25, and 50 mg/L for M-ZnO-NP, B-ZnO-NPs, and raw ZnO-NPs, respectively. Therefore, it has been determined that plant growth varies depending on the type and concentration of ZnO-NPs, and therefore, if foliar nanoparticle applications are made to wheat, the threshold concentrations, sizes, and types of ZnO-NPs should be carefully evaluated. In addition, antibacterial properties results showed that S. aureus was more sensitive to all three types of ZnO-NPs than E. coli.
Collapse
Affiliation(s)
- Zeynep Görkem Doğaroğlu
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Yağmur Uysal
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey.
| | - Zehranur Çaylalı
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| | - Delil Sefkan Karakulak
- Engineering Faculty, Environmental Engineering Department, Mersin University, Mersin, Turkey
| |
Collapse
|
15
|
Al-Otibi FO, Yassin MT, Al-Askar AA, Maniah K. Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens. Microorganisms 2023; 11:microorganisms11040945. [PMID: 37110368 PMCID: PMC10144991 DOI: 10.3390/microorganisms11040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings.
Collapse
Affiliation(s)
- Fatimah O. Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Synergistic Antibacterial Proficiency of Green Bioformulated Zinc Oxide Nanoparticles with Potential Fosfomycin Synergism against Nosocomial Bacterial Pathogens. Microorganisms 2023; 11:microorganisms11030645. [PMID: 36985218 PMCID: PMC10053094 DOI: 10.3390/microorganisms11030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract of Hibiscus sabdariffa and then characterized using different physicochemical techniques. The antibacterial effectiveness of the bioprepared ZnO-NPs and their synergism with fosfomycin were evaluated using disk diffusion assay against the concerned pathogens. Transmission electron microscopy (TEM) investigation of the bioprepared ZnO-NPs showed that their average particle size was 18.93 ± 2.65 nm. Escherichia coli expressed the highest sensitivity to the bioinspired ZnO-NPs with a suppressive zone of 22.54 ± 1.26 nm at a concentration of 50 µg/disk, whereas the maximum synergistic effect of the bioinspired ZnO-NPs with fosfomycin was noticed against Klebsiella pneumoniae strain with synergism ratio of 100.29%. In conclusion, the bioinspired ZnO-NPs demonstrated significant antibacterial and synergistic efficacy with fosfomycin against the concerned nosocomial bacterial pathogens, highlighting the potential of using the ZnO NPs-fosfomycin combination for effective control of nosocomial infections in intensive care units (ICUs) and health care settings. Furthermore, the biogenic ZnO-NPs’ potential antibacterial action against food pathogens such as Salmonella typhimurium and E. coli indicates their potential usage in food packaging applications.
Collapse
|
17
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
18
|
Metal and metal oxide nanostructures applied as alternatives of antibiotics. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Yassin MT, Elgorban AM, Al-Askar AA, Sholkamy EN, Ameen F, Maniah K. Synergistic Anticandidal Activities of Greenly Synthesized ZnO Nanomaterials with Commercial Antifungal Agents against Candidal Infections. MICROMACHINES 2023; 14:209. [PMID: 36677271 PMCID: PMC9865458 DOI: 10.3390/mi14010209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
The high occurrence of mycological resistance to conventional antifungal agents results in significant illness and death rates among immunodeficient patients. In addition, the underprivileged therapeutic results of conventional antifungal agents, besides the potential toxicity resulting from long term therapy necessitate the fabrication of efficient antimicrobial combinations. Hence, the objective of the present investigation is to synthesize, characterize and investigate the anticandidal action of green zinc oxide nanoparticles (ZnO-NPs) formulated using Camellia sinensis leaf extract against three candidal pathogens. The eco-friendly synthesized ZnO-NPs were characterized utilizing different physicochemical methods and their anticandidal potency was tested utilizing a disk diffusion assay. In this setting, the size of the biofabricated ZnO-NPs was detected using transmission electron microscope (TEM) micrographs, recording an average particle size of 19.380 ± 2.14 nm. In addition, zeta potential analysis revealed that the ZnO-NPs surface charge was -4.72 mV. The biogenic ZnO-NPs reveal the highest anticandidal activity against the C. tropicalis strain, demonstrating relative suppressive zones measured at 35.16 ± 0.13 and 37.87 ± 0.24 mm in diameter for ZnO-NPs concentrations of 50 and 100 μg/disk, respectively. Excitingly, Candida glabrata showed a high susceptibility to the biofabricated ZnO nanomaterials at both ZnO-NPs' concentrations (50 and 100 μg/disk) compared to the control. Moreover, the biosynthesized ZnO-NPs revealed potential synergistic effectiveness with nystatin and terbinafine antifungal agents against the concerned strains. The maximum synergistic efficiency was noticed against the C. glabrata strain, demonstrating relative synergistic percentages of 23.02 and 45.9%, respectively. The biogenic ZnO-NPs revealed no hemolytic activity against human erythrocytes revealing their biosafety and hemocompatibility. Finally, the high anticandidal effectiveness of biogenic ZnO-NPs against the concerned candidal pathogens, as well as potential synergistic patterns with conventional antifungal agents such as nystatin and terbinafine, emphasize the prospective application of these combinations for the fabrication of biocompatible and highly efficient antifungal agents.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
20
|
Biosynthesis of TiO2 nanoparticles by Caricaceae (Papaya) shell extracts for antifungal application. Sci Rep 2022; 12:15960. [PMID: 36153393 PMCID: PMC9509329 DOI: 10.1038/s41598-022-19440-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) were prepared by Caricaceae (Papaya) Shell extracts. The Nanoparticles were analyzed by UV–Vis spectrums, X-ray diffractions, and energy-dispersive X-rays spectroscopy analyses with a scanning electron microscope. An antifungal study was carried out for TiO2 NP in contradiction of S. sclerotiorums, R. necatrixs and Fusarium classes that verified a sophisticated inhibitions ratio for S. sclerotiorums (60.5%). Germs of pea were individually preserved with numerous concentrations of TiO2 NPs. An experience of TiO2 NPs (20%, 40%, 80% and 100%), as well as mechanisms that instigated momentous alterations in seed germinations, roots interval, shoot lengths, and antioxidant enzymes, were investigated. Associated with controls, the supreme seeds germinations, roots and plant growth were perceived with the treatments of TiO2 NPs. Super-oxide dis-mutase and catalase activities increased because of TiO2 NPs treatments. This advocates that TiO2 Nanoparticles may considerably change antioxidant metabolisms in seed germinations.
Collapse
|
21
|
Sportelli MC, Gaudiuso C, Volpe A, Izzi M, Picca RA, Ancona A, Cioffi N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022; 3:423-441. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
| | - Caterina Gaudiuso
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa Volpe
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonio Ancona
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
22
|
Abdullah FH, Bakar NHHA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127416. [PMID: 34655867 DOI: 10.1016/j.jhazmat.2021.127416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Industrial wastewaters contain hazardous contaminants that pollute the environment and cause socioeconomic problems, thus demanding the employment of effective remediation procedures such as photocatalysis. Zinc oxide (ZnO) nanomaterials have emerged to be a promising photocatalyst for the removal of pollutants in wastewater owing to their excellent and attractive characteristics. The dynamic tunable features of ZnO allow a wide range of functionalization for enhanced photocatalytic efficiency. The current review summarizes the recent advances in the fabrication, modification, and industrial application of ZnO photocatalyst based on the analysis of the latest studies, including the following aspects: (1) overview on the properties, structures, and features of ZnO, (2) employment of dopants, heterojunction, and immobilization techniques for improved photodegradation performance, (3) applicability of suspended and immobilized photocatalytic systems, (4) application of ZnO hybrids for the removal of various types of hazardous pollutants from different wastewater sources in industries, and (5) potential of bio-inspired ZnO hybrid nanomaterials for photocatalytic applications using renewable and biodegradable resources for greener photocatalytic technologies. In addition, the knowledge gap in this field of work is also highlighted.
Collapse
Affiliation(s)
- F H Abdullah
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - N H H Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - M Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
23
|
Sustainable Green Nanotechnologies for Innovative Purifications of Water: Synthesis of the Nanoparticles from Renewable Sources. NANOMATERIALS 2022; 12:nano12020263. [PMID: 35055280 PMCID: PMC8779975 DOI: 10.3390/nano12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023]
Abstract
Polluting the natural water resources is a serious global issue, which is confirmed by the fact that today at least 2 billion people consume water from contaminated sources. The conventional wastewater treatment methods cannot effectively remove the persistent pollutants (e.g., drugs, organic dyes, pesticides) from the aqueous environment. Heterogeneous photocatalysis is a promising and sustainable alternative for water remediation. It is based on the interaction between light irradiation and the semiconductors (e.g., TiO2, ZnO) as photocatalysts, but these compounds, unfortunately, have some disadvantages. Hence, great attention has been paid to the nanotechnology as a possible way of improvement. Nanomaterials have extraordinary properties; however, their conventional synthesis is often difficult and requires a significant amount of dangerous chemicals. This concise topical review gives recent updates and trends in development of sustainable and green pathways in the synthesis of nanomaterials, as well as in their application for water remediation. In our review we put emphasis on the eco-friendly, mostly plant extract-based materials. The importance of this topic, including this study as well, is proved by the growing number of publications since 2018. Due to the current serious environmental issues (e.g., global warming, shortage of pure and quality water), it is necessary for the traditional TiO2 and ZnO semiconductors to be replaced with the harmless, non-toxic, and more powerful nanocomposites as photocatalysts. Not only because of their higher efficiency as compared to the bulk semiconductors, but also because of the presence of biomolecules that can add up to the pollutant removal efficiency, which has been already confirmed in many researches. However, despite the fact that the application of heterogeneous photocatalysis together with green nanotechnology is absolutely the future in water purification, there are some challenges which have to be overcome. The exact effects of the biomolecules obtained from plants in the synthesis of nanoparticles, as well as in the photocatalytic processes, are not exactly known and require further investigation. Furthermore, heterogeneous photocatalysis is a well-known and commonly examined process; however, its practical use outside the laboratory is expensive and difficult. Thus, it has to be simplified and improved in order to be available for everyone. The aim of our review is to suggest and prove that using these bio-inspired compounds it is possible to reduce human footprint in the nature.
Collapse
|
24
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2531-2571. [PMID: 35369682 PMCID: PMC8956152 DOI: 10.1007/s10311-022-01425-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 05/09/2023]
Abstract
Because many engineered nanoparticles are toxic, there is a need for methods to fabricate safe nanoparticles such as plant-based nanoparticles. Indeed, plant extracts contain flavonoids, amino acids, proteins, polysaccharides, enzymes, polyphenols, steroids, and reducing sugars that facilitate the reduction, formation, and stabilization of nanoparticles. Moreover, synthesizing nanoparticles from plant extracts is fast, safe, and cost-effective because it does not consume much energy, and non-toxic derivatives are generated. These nanoparticles have diverse and unique properties of interest for applications in many fields. Here, we review the synthesis of metal/metal oxide nanoparticles with plant extracts. These nanoparticles display antibacterial, antifungal, anticancer, and antioxidant properties. Plant-based nanoparticles are also useful for medical diagnosis and drug delivery.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuong Thi Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
25
|
Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS NANO 2021; 15:12655-12686. [PMID: 34346204 PMCID: PMC8397433 DOI: 10.1021/acsnano.1c03948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 05/24/2023]
Abstract
Agrochemicals have supported the development of the agricultural economy and national population over the past century. However, excessive applications of agrochemicals pose threats to the environment and human health. In the last decades, nanoparticles (NPs) have been a hot topic in many fields, especially in agriculture, because of their physicochemical properties. Nevertheless, the prevalent methods for fabricating NPs are uneconomical and involve toxic reagents, hindering their extensive applications in the agricultural sector. In contrast, inspired by biological exemplifications from microbes and plants, their extract and biomass can act as a reducing and capping agent to form NPs without any toxic reagents. NPs synthesized through these bioinspired routes are cost-effective, ecofriendly, and high performing. With the development of nanotechnology, biosynthetic NPs (bioNPs) have been proven to be a substitute strategy for agrochemicals and traditional NPs in heavy-metal remediation of soil, promotion of plant growth, and management of plant disease with less toxicity and higher performance. Therefore, bioinspired synthesis of NPs will be an inevitable trend for sustainable development in agricultural fields. This critical review will demonstrate the bioinspired synthesis of NPs and discuss the influence of bioNPs on agricultural soil, crop growth, and crop diseases compared to chemical NPs or agrochemicals.
Collapse
Affiliation(s)
- Liang Xu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Zhiwei Zhu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Li J, Xin WL, Dai YX, Shu G, Zhang XJ, Marks RS, Cosnier S, Shan D. Postmodulation of the Metal-Organic Framework Precursor toward the Vacancy-Rich Cu xO Transducer for Sensitivity Boost: Synthesis, Catalysis, and H 2O 2 Sensing. Anal Chem 2021; 93:11066-11071. [PMID: 34348024 DOI: 10.1021/acs.analchem.1c02183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-organic frameworks (MOFs) act as versatile coordinators for the subsequent synthesis of high-performance catalysts by providing dispersed metal-ion distribution, initial coordination condition, dopant atom ratios, and so on. In this work, a crystalline MOF trans-[Cu(NO3)2(Him)4] was synthesized as the novel precursor of a redox-alternating CuxO electrochemical catalyst. Through simple temperature modulation, the gradual transformation toward a highly active nanocomposite was characterized to ascertain the signal enhancing mechanism in H2O2 reduction. Owing to the proprietary structure of the transducer material and its ensuing high activity, a proof-of-principle sensor was able to provide an amplified sensitivity of 2330 μA mM-1 cm-2. The facile one-pot preparation and intrinsic nonenzymatic nature also suggests its wide potentials in medical settings.
Collapse
Affiliation(s)
- Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Wen-Li Xin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Guofang Shu
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu, China
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| |
Collapse
|