1
|
Cao L, Liu L, Zhang C, Ren W, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Cao S, Zheng P. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135703. [PMID: 39226685 DOI: 10.1016/j.jhazmat.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) represents a hazardous heavy metal, prevalent in agricultural soil due to industrial and agricultural expansion. Its propensity for being absorbed by edible plants, even at minimal concentrations, and subsequently transferred along the food chain poses significant risks to human health. Accordingly, it is imperative to investigate novel genes and mechanisms that govern Cd tolerance and detoxification in plants. Here, we discovered that the transcription factor MYC2 directly binds to the promoters of HMA2 and HMA4 to repress their expression, thereby altering the distribution of Cd in plant tissues and negatively regulating Cd stress tolerance. Additionally, molecular, biochemical, and genetic analyses revealed that MYC2 interacts and cooperates with MYB43 to negatively regulate the expression of HMA2 and HMA4 and Cd stress tolerance. Notably, under Cd stress conditions, MYC2 undergoes degradation, thereby alleviating its inhibitory effect on HMA2 and HMA4 expression and plant tolerance to Cd stress. Thus, our study highlights the dynamic regulatory role of MYC2, in concert with MYB43, in regulating the expression of HMA2 and HMA4 under both normal and Cd stress conditions. These findings present MYC2 as a promising target for directed breeding efforts aimed at mitigating Cd accumulation in edible plant roots.
Collapse
Affiliation(s)
- Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linyao Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Kou B, Huo L, Cao M, Ke Y, Wang L, Tan W, Yuan Y, Zhu X. Insights into the critical roles of water-soluble organic matter and humic acid within kitchen compost in influencing cadmium bioavailability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122769. [PMID: 39369524 DOI: 10.1016/j.jenvman.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Compost has demonstrated potential as a cadmium (Cd) remediation agent, while it still remains unclear about the core components in driving the bioactive transformation of Cd. To address this issue, this study isolated three components-kitchen compost powder (KC), humic acid (HA), and water-soluble organic matter (DOM)-from kitchen compost to regulate soil properties, bacterial community structures and functions, and Cd migration risks. The results revealed that the addition of 20% KC and HA reduced the bioavailability factor of Cd by 47.20% and 16.74%, respectively, with HA contributing 35.47% of the total reduction achieved with KC. Conversely, the application of DOM increased the Cd risk through a reduction in soil pH and an increase in the abundance of Cd-activating bacteria, which adversely affected the stability of Cd complexes. However, the porous structure and organic matter in KC and HA provided adsorption sites for Cd passivation and promoted the growth of Cd-fixing bacteria. This study effectively identifies both the positive and negative effects of key compost components on Cd migration and provides scientific guidance for applying kitchen compost in soil management.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
4
|
Chen J, Yang D, Xu M, Long L, Li Q, Jin J, Chen C, Wu J, Yang G. Foliar application of silicon and selenium reduce the toxicity of cadmium to soybeans. CHEMOSPHERE 2024; 366:143390. [PMID: 39332583 DOI: 10.1016/j.chemosphere.2024.143390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Silicon (Si) and selenium (Se), two environmental protection materials, which are beneficial to plant growth and stress resistance, can also alleviate crop stress induced by heavy metals. However, the effects of Si, Se and their interactions in reducing cadmium (Cd) toxicity and the related mechanisms require further elucidation. Hence, this study implemented a foliar application of Si and Se on soybean (Glycine max L.) that subjected to Cd-induced stress with four treatments (sole/combined application of Si, Se, no fertilizer treatment). The results demonstrated that Si and Se showed effective mitigation of Cd toxicity on soybeans mainly by promoting growth, enhancing photosynthesis, maintaining root vigor, improving antioxidant capacity, alleviating oxidative damage, altering the storage form, subcellular distribution of Cd in soybeans, and was more noticeable when combined overall (Si + Se>Se>Si). Si + Se increased root activity by 28% and CAT activity in leaves by 130.65%. Overall, the combined application of Si and Se exhibited a pronounced synergistic effect in enhancing the healthy growth of soybean plants under Cd pollution, with a more prominent impact observed following the second fertilization.
Collapse
Affiliation(s)
- Jie Chen
- Chengdu University of Technology, No. 218, Section 3, University City Road, Yibin City, 610059, China
| | - Dan Yang
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Min Xu
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lulu Long
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Qiao Li
- Chengdu Engineering Corporation Limited (Power China), No. 1 North Huanhua Road, Qingyang District, Chengdu, 610072, China
| | - Jiyuan Jin
- Chengdu Engineering Corporation Limited (Power China), No. 1 North Huanhua Road, Qingyang District, Chengdu, 610072, China
| | - Chao Chen
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jun Wu
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Gang Yang
- China College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
5
|
Cao L, Ren W, Liu L, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Zheng P. CDR1, a DUF946 domain containing protein, positively regulates cadmium tolerance in Arabidopsis thaliana by maintaining the stability of OPT3 protein. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135313. [PMID: 39067296 DOI: 10.1016/j.jhazmat.2024.135313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Industrial and agricultural production processes lead to the accumulation of cadmium (Cd) in soil, resulting in crops absorb Cd from contaminated soil and then transfer it to human body through the food chain, posing a serious threat to human health. Thus, it is necessary to explore novel genes and mechanisms involved in regulating Cd tolerance and detoxification in plants. Here, we found that CDR1, a DUF946 domain containing protein, localizes to the plasma membrane and positively regulates Cd stress tolerance. The cdr1 mutants exhibited Cd sensitivity, accumulated excessive Cd in the seeds and roots, but decreased in leaves. However, CDR1-OE transgenic plants not only showed Cd tolerance but also significantly reduced Cd in seeds and roots. Additionally, both in vitro and in vivo assays demonstrated an interaction between CDR1 and OPT3. Cell free protein degradation and OPT3 protein level determination assays indicated that CDR1 could maintain the stability of OPT3 protein. Moreover, genetic phenotype analysis and Cd content determination showed that CDR1 regulates Cd stress tolerance and affect the distribution of Cd in plants by maintaining the stability of OPT3 protein. Our discoveries provide a key candidate gene for directional breeding to reduce Cd accumulation in edible seeds of crops.
Collapse
Affiliation(s)
- Lei Cao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wangmei Ren
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Linyao Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Qu M, Guang X, Chen J, Zhao Y, Huang B, Wang M, Wang H, Wang Y. Soil environmental carrying capacity and its spatial high-precision accounting framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173620. [PMID: 38815834 DOI: 10.1016/j.scitotenv.2024.173620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Human activity intensity should be controlled within the carrying capacity of soil units, which is crucial for environmental sustainability. However, the existing assessment methods for soil environmental carrying capacity (SECC) rarely consider the relationship between human activity intensity and pollutant emissions, making it difficult to provide effective early warning of human activity intensity. Moreover, there is a lack of spatial high-precision accounting methods for SECC. This study first established a spatial soil environmental capacity (SEC) model based on the pollutant thresholds corresponding to the specific protection target. Next, a spatial net-input flux model was proposed based on soil pollutants' input/output fluxes. Then, the quantitative relationship between human activity intensity and pollutant emissions was established and further incorporated into the SECC model. Finally, the spatial high-precision accounting framework of SECC was proposed. The methodology was used to assess the SECC for the copper production capacity in a typical copper smelting area in China. The results showed that (i) the average SECs for Cu, Cd, Pb, Zn, As and Cr are 427.89, 16.84, 306.41, 376.8, 71.63, and 392.7 kg hm-2, respectively; (ii) heavy metal (HM) concentrations and land-use types jointly influence the spatial distribution pattern of SEC; (iii) atmospheric deposition is the dominant HM input pathway and the high net-input fluxes are mainly located in the southeast of the study area; (iv) with the current human activity intensity for 50 years, the average SECs for Cu, Cd, Pb, Zn, As and Cr are 202.31, 1.71, 20.9, 66.15, 36.73, and 3 kg hm-2, respectively; and (v) to maintain the protection target at the acceptable risk level within 50 years, the SECC for the increased copper production capacity is 1.53 × 106 t. This study provided an effective tool for early warning of human activity intensity.
Collapse
Affiliation(s)
- Mingkai Qu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Xu Guang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jian Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yongcun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongmei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
7
|
Fu Y, Hu F, Wang F, Xu M, Jia Z, Amelung W, Mei Z, Han X, Virta M, Jiang X, Tiedje JM. Distinct Assembly Patterns of Soil Antibiotic Resistome Revealed by Land-Use Changes over 30 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10216-10226. [PMID: 38802328 DOI: 10.1021/acs.est.3c10423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Compared with the ever-growing information about the anthropogenic discharge of nutrients, metals, and antibiotics on the disturbance of antibiotic resistance genes (ARGs), less is known about how the potential natural stressors drive the evolutionary processes of antibiotic resistance. This study examined how soil resistomes evolved and differentiated over 30 years in various land use settings with spatiotemporal homogeneity and minimal human impact. We found that the contents of soil organic carbon, nitrogen, soil microbial biomass, and bioavailable heavy metals, as well as related changes in the antibiotic resistome prevalence including diversity and abundance, declined in the order of grassland > cropland > bareland. Sixty-nine remaining ARGs and 14 mobile genetic elements (MGEs) were shared among three land uses. Multiple factors (i.e., soil properties, heavy metals, bacterial community, and MGEs) contributed to the evolutionary changes of the antibiotic resistome, wherein the resistome profile was dominantly driven by MGEs from both direct and indirect pathways, supported by a partial least-squares path model analysis. Our results suggest that pathways to mitigate ARGs in soils can coincide with land degradation processes, posing a challenge to the common goal of managing our environment sustainably.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjun Jia
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102,China
| | - Wulf Amelung
- Agrosphere institute (IBG-3), Forschungszentrum Jülich GmbH, 52428Jülich ,Germany
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, University of Bonn, 53113Bonn, Germany
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014Helsinki,Finland
| | - Xiaozeng Han
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014Helsinki,Finland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Qu M, Guang X, Wu S, Zhao Y, Huang B, Wang Y. Determining the net input fluxes of pollutants based on the spatial source apportionment receptor model for early warning of regional soil pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134409. [PMID: 38678717 DOI: 10.1016/j.jhazmat.2024.134409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Understanding the soil pollutants' net input fluxes is essential for accurate early warning of regional soil pollution. However, the traditional input-output investigation method for soil pollutants' net input fluxes is often costly, especially at the regional scale. This study first assessed the land-use effects on soil heavy metals around a typical copper smelting area in China. Next, an improved spatial source apportionment receptor model, namely robust absolute principal component scores/robust geographically weighted regression with category land-use information (RAPCS/RGWR-CLU), was proposed to apportion the net source contributions, and its performance was compared with those of RAPCS/RGWR and the traditional absolute principal component scores/multiple linear regression (APCS/MLR). Finally, the net input fluxes of soil heavy metals were determined based on RAPCS/RGWR-CLU, and its performance was compared with that of the traditional input-output investigation method. Results showed that (i) land-use effects are significant for soil As, Cu, Pb, and Zn; (ii) RAPCS/RGWR-CLU achieves higher source apportionment accuracy than RAPCS/RGWR and APCS/MLR; and (iii) the net input fluxes determined by RAPCS/RGWR-CLU have similar accuracy to those determined by the traditional input-output investigation method but with significantly lower costs. Therefore, this study provided a cost-effective solution to determine the net input fluxes of soil pollutants.
Collapse
Affiliation(s)
- Mingkai Qu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Xu Guang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Saijia Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongcun Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
9
|
Amarloei A, Mirzaei SA, Noorimotlagh Z, Nazmara S, Nourmoradi H, Fard NJH, Heidari M, Mohammadi-Moghadam F, Mazloomi S. Human health risk assessment of toxic heavy metals in summer crops and vegetables: a study in Ilam Province, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:139-148. [PMID: 38887759 PMCID: PMC11180035 DOI: 10.1007/s40201-023-00881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Purpose The presence of toxic heavy metals (HMs) in agricultural crops can be considered as a noteworthy threat for consumers. The aim of this study was to assess the content of HMs (Pb, As, Cr, Cd, Co, Hg, and Ag) and their potential health risk in summer crops and vegetables (watermelon, cantaloupe, cucumber, melon, tomato, onion, potato, raw and stewed vegetables) in Ilam province, Iran. Methods Totally, 31 crop samples were collected from local farms during the 2019 harvest season and the elements content were evaluated using inductively coupled plasma-mass spectrometry (ICP-MS). The non-carcinogenic health risk of HMs to the adults and children was estimated by Monte Carlo simulation method and target hazard quotients (THQs). Results In general, the results showed that the concentration of Cr in the studied agricultural crops was higher than other HMs. As well as, the carcinogenic risk (CR) obtained for adults and children were more than the acceptable range for As. Also, CR for As in raw vegetable was the most (8.19E-1) and violated the threshold risk limit. The total carcinogenic risk of HMs in children was higher than that in adults. Conclusion These results suggest that the agricultural crops were not safe for human consumption with potential risks associated. Due to the possible health effects of such products consumption, proper action should be taken to avoid chronic exposure, prevention of further pollution and consequent adverse health implications.
Collapse
Affiliation(s)
- Ali Amarloei
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyed Abbas Mirzaei
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Heshmatollah Nourmoradi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sajad Mazloomi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
10
|
Wang JF, Liu C, Xu ZM, Wang FP, Sun YY, Huang JW, Li QS. Microbial mechanisms in nitrogen fertilization: Modulating the re-mobilization of clay mineral-bound cadmium in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171809. [PMID: 38513845 DOI: 10.1016/j.scitotenv.2024.171809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Soil cadmium (Cd) can affect crop growth and food safety, and through the enrichment in the food chain, it ultimately poses a risk to human health. Reducing the re-mobilization of Cd caused by the release of protons and acids by crops and microorganisms after stabilization is one of the significant technical challenges in agricultural activities. This study aimed to investigate the re-mobilization of stabilized Cd within the clay mineral-bound fraction of soil and its subsequent accumulation in crops utilizing nitrogen ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N), at 60 and 120 mg kg-1. Furthermore, the study harvested root exudates at various growth stages to assess their direct influence on the re-mobilization of stabilized Cd and to evaluate the indirect effects mediated by soil microorganisms. The results revealed that, in contrast to the NO3--N treatment, the NH4+-N treatment significantly enhanced the conversion of clay mineral-bound Cd in the soil to NH4NO3-extractable Cd. It also amplified the accumulation of Cd in edible amaranth, with concentrations in roots and shoots rising from 1.7-6.0 mg kg-1 to 4.3-9.8 mg kg-1. The introduction of NH4+-N caused a decrease in the pH value of the rhizosphere soil and stimulated the production and secretion organic and amino acids, such as oxalic acid, lactic acid, stearic acid, succinic acid, and l-serine, from the crop roots. Furthermore, compared to NO3--N, the combined interaction of root exudates with NH4+-N has a more pronounced impact on the abundance of microbial genes associated with glycolysis pathway and tricarboxylic acid cycle, such as pkfA, pfkB, sucB, sucC, and sucD. The effects of NH4+-N on crops and microorganisms ultimately result in a significant increase in the re-mobilization of stabilized Cd. However, the simulated experiments showed that microorganisms only contribute to 3.8-6.6 % of the re-mobilization of clay mineral-bound Cd in soil. Therefore, the fundamental strategy to inhibit the re-mobilization of stabilized Cd in vegetable cultivation involves the regulation of proton and organic acid secretion by crops.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Can Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Kuang X, Hu Y, Chen S, Ge Y, Hu Y, Song H, Song K, Peng L. Ecological responses and functional significance of paddy crust in the southern Chinese environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123908. [PMID: 38570157 DOI: 10.1016/j.envpol.2024.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Paddy Crusts (PC) play a pivotal role in the migration and transformation of heavy metals within paddy ecosystems, situated at the critical intersection of air, water, and soil. This study focused on PC samples from heavy metal-contaminated rice paddies in six southern Chinese provinces. It's the first time we've screened and quantified the impact of nutrition, physicochemical properties, and heavy metals on bacterial diversity in PC. Our results highlight the significant influence of zinc, total nitrogen, and soil manganese on bacterial diversity. Using structural equation models, we identified the pathways through which these three types of environmental factors shape bacterial diversity. Heavy metal indicators and physical and chemical indicators exerted a direct negative effect on bacterial diversity in PC, while nutritional indicators had a direct and significant positive effect on bacterial diversity. Variance partitioning analysis revealed heavy metals had the most significant impact, accounting for 7.77% of the total effect. Moreover, the influence of heavy metals on bacterial diversity increased as diversity decreased, ranging from 3.81% to 42.09%. To remediate specific heavy metal pollution, our proposed method involves cultivating indigenous bacteria by controlling these environmental factors, based on an analysis of the interplay among bacterial diversity, environmental variables, and heavy metal bioconcentration factors. These findings enhance our understanding of PC and provide insights into rice field heavy metal pollution mitigation.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yiyi Hu
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yili Ge
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yiling Hu
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Ke Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Gong C, Xia X, Lan M, Shi Y, Lu H, Wang S, Chen Y. Source identification and driving factor apportionment for soil potentially toxic elements via combining APCS-MLR, UNMIX, PMF and GDM. Sci Rep 2024; 14:10918. [PMID: 38740813 DOI: 10.1038/s41598-024-58673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
The contamination and quantification of soil potentially toxic elements (PTEs) contamination sources and the determination of driving factors are the premise of soil contamination control. In our study, 788 soil samples from the National Agricultural Park in Chengdu, Sichuan Province were used to evaluate the contamination degree of soil PTEs by pollution factors and pollution load index. The source identification of soil PTEs was performed using positive matrix decomposition (PMF), edge analysis (UNMIX) and absolute principal component score-multiple line regression (APCS-MLR). The geo-detector method (GDM) was used to analysis drivers of soil PTEs pollution sources to help interpret pollution sources derived from receptor models. Result shows that soil Cu, Pb, Zn, Cr, Ni, Cd, As and Hg average content were 35.2, 32.3, 108.9, 91.9, 37.1, 0.22, 9.76 and 0.15 mg/kg in this study area. Except for As, all are higher than the corresponding soil background values in Sichuan Province. The best performance of APCS-MLR was determined by comparison, and APCS-MLR was considered as the preferred receptor model for soil PTEs source distribution in the study area. ACPS-MLR results showed that 82.70% of Cu, 61.6% of Pb, 75.3% of Zn, 91.9% of Cr and 89.4% of Ni came from traffic-industrial emission sources, 60.9% of Hg came from domestic-transportation emission sources, 57.7% of Cd came from agricultural sources, and 89.5% of As came from natural sources. The GDM results showed that distance from first grade highway, population, land utilization and total potassium (TK) content were the main driving factors affecting these four sources, with q values of 0.064, 0.048, 0.069 and 0.058, respectively. The results can provide reference for reducing PTEs contamination in farmland soil.
Collapse
Affiliation(s)
- Cang Gong
- Research Center of Applied Geology of China Geological Survey, Chengdu, China
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, China
| | - Xiang Xia
- Research Center of Applied Geology of China Geological Survey, Chengdu, China.
| | - Mingguo Lan
- Technology Innovation Center for Analysis and Detection of the Elemental Speciation and Emerging Contaminants, China Geological Survey, Kunming, China
| | - Youchang Shi
- Technology Innovation Center for Analysis and Detection of the Elemental Speciation and Emerging Contaminants, China Geological Survey, Kunming, China
| | - Haichuan Lu
- Research Center of Applied Geology of China Geological Survey, Chengdu, China
| | - Shunxiang Wang
- Research Center of Applied Geology of China Geological Survey, Chengdu, China
| | - Ying Chen
- Research Center of Applied Geology of China Geological Survey, Chengdu, China.
| |
Collapse
|
13
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
14
|
Qin X, Guinoiseau D, Ren Z, Benedetti MF. Redox control of chromium in the red soils from China evidenced by Cr stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133406. [PMID: 38194769 DOI: 10.1016/j.jhazmat.2023.133406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
With chromium isotopes, we study the intricate dynamics of adsorption and redox processes in soil ecosystems, focusing on chromium's behaviour, in red soil profiles enriched with iron-manganese nodules (FMNs) in South China. Key findings reveal that the primary geological source of chromium in the red soil profiles is the weathering of colluvium parent minerals. FMNs have higher chromium concentrations (325-1451 µg/g) compared to surrounding soils (95-247 µg/g) and display stable δ53Cr values (0.78 ± 0.17‰), indicating their role as stable chromium repositories, reflecting historical processes. Furthermore, by isolating chromium associated with iron oxides (FeO) and silicate minerals (ReS) within FMNs and surrounding soils using CBD extractions, we show that FeO predominantly carry chromium, particularly in FMNs. The δ53Cr values of FeO fractions consistently exhibit heavier signatures than ReS fractions, suggesting the sequestration of isotopically heavy chromium (VI) during Fe oxide precipitation. Fluctuations in soil's redox, rather than land use, play a pivotal role in controlling the precipitation of Fe oxides in surrounding soils and the formation of FMNs, thus influencing chromium mobility. This highlights the significance of these factors when utilizing chromium isotopic techniques for source tracking in soil systems, contributing to our understanding of chromium's behaviour in soil environments.
Collapse
Affiliation(s)
- Xiaoquan Qin
- Université Paris Cité - Institut de Physique du globe de Paris, CNRS, F75005 Paris, France
| | | | - Zongling Ren
- Department of Soil Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Marc F Benedetti
- Université Paris Cité - Institut de Physique du globe de Paris, CNRS, F75005 Paris, France.
| |
Collapse
|
15
|
Li L, Wu B, Guo S, Hu E, Zhang Y, Sun L, Li S. Multipath diffusion process and spatial accumulation simulation of Cd in lead-zinc mining areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133461. [PMID: 38211526 DOI: 10.1016/j.jhazmat.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
This study combined process simulation and actual measurement to construct a multipath diffusion and spatial accumulation model of Cd in a typical lead-zinc mining area through accuracy and root mean square error(RMSE) analysis. The results indicated that (1) the diffusion of Cd was in a quadratic inverse proportional relationship with the distance from the pollution source within watershed. The average annual atmospheric Cd sedimentation in study area was 0.71 * 10-6 g and the contribution of runoff diffusion to Cd exceeded 80%. (2) With the increase in the concentration range of Cd content (k) carried by unit runoff sediment, the model accuracy and RMSE showed decreasing trends. However, when the lower and upper limits of k were 10% and 90%, the model accuracy reached 75%. (3) Two sub-watersheds with same dominant wind direction but different runoff directions were selected to verify the model accuracy, indicating that the model construction method can precisely simulate the spatial accumulation of Cd in similar mining areas. The results provide a scientific basis for the prevention of heavy metal diffusion in lead-zinc mines. Future research should focus on the migration pathways of heavy metals through vertical infiltration caused by rainfall to further optimise the model structure and accuracy.
Collapse
Affiliation(s)
- Linlin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, PR China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, PR China
| | - Enzhu Hu
- Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, PR China
| | - Yunlong Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lixia Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Institute of Resources and Environmental Sciences, School of Metallurgy, Northeastern University, Shenyang 110819, PR China
| | - Shuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
16
|
Cui H, Zhao Y, Hu K, Xia R, Zhou J, Zhou J. Impacts of atmospheric deposition on the heavy metal mobilization and bioavailability in soils amended by lime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170082. [PMID: 38220003 DOI: 10.1016/j.scitotenv.2024.170082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Jin Y, Gao T, Zhao B, Liu Y, Liu C, Qin M. Modeling spatial trends and exchange fluxes of contaminants in agricultural soil under pollution prevention measures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120419. [PMID: 38422570 DOI: 10.1016/j.jenvman.2024.120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Modeling the long-term trends of contaminants in topsoil under controlled measures is critical for sustainable agricultural environmental management. Traditional mass balance equations cannot predict spatial variation and exchange flux of regional soil contaminants for it lacks a method of assigning input-output parameters to each simulated cell. To overcome this limitation, we allocate the estimated source contribution flux to the spatial grid cell in the regional chemical mass balance by integrated positive matrix factorization (P-RCMB) with historical trends quantification. Focusing on Cd and As, which are elements with elevated risks of food intake and volatilization/infiltration, the model is applied to 30 ha of agricultural land near the enterprise. Predictions indicate an additional 13.5% of the soil is contaminated, and approximately 2.57 ha may accrue after 100 years at the site, with an uncertainty range of 0.98-5.3 ha. Clean water irrigation (CWI) reduces contamination expansion by approximately 42%, including approximately 4813 g ha-1 yr-1 net As infiltration, playing a dominant role in preventing the formation of severely contaminated soil. Stop straw return, green fertilizers use, and reduced atmospheric deposition control the exchange flux of Cd (114.9 g ha-1 yr-1) in moderate/slight contamination areas. For the different contaminants' cumulative trends in dryland and paddy fields, achieving a net cumulative flux close to zero in marginally contaminated areas presents a viable approach to optimize current emission standards. if trade-off straw removal and additional fertilizer inputs, a straw return rate of approximately 40% in Cd-contaminated soil will yield overall benefits. This model contributes valuable insights and tools for policymaking in contaminated land sustainable utilization and emission standard optimization.
Collapse
Affiliation(s)
- Yuanliang Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Bin Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Muhan Qin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
18
|
Liu H, Wang H, Zhou J, Zhang Y, Wang H, Li M, Wang X. Environmental cadmium pollution and health risk assessment in rice-wheat rotation area around a smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:433-444. [PMID: 38012484 DOI: 10.1007/s11356-023-31215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cadmium (Cd) pollution induced by smelting process is of great concern worldwide. However, the comprehensive risk assessment of Cd exposures in smelting areas with farming coexist is lacking. In this study, atmospheric deposition, soil, surface and drinking water, rice, wheat, vegetable, fish, pork, and human hair samples were collected in rice-wheat rotation area near nonferrous smelter to investigate smelting effect on environmental Cd pollution and human health. Results showed high Cd deposition (0.88-2.61 mg m-2 year-1) combined with high bioavailability (37-42% totality) in study area. Moreover, 90%, 83%, 57%, and 3% of sampled soil, wheat, rice, and vegetable of Cd were higher than national allowable limits of China, respectively, indicating smelting induced serious environmental Cd pollution. Especially, higher Cd accumulation occurred in wheat compared to rice by factors of 1.5-2.0. However, as for Cd exposure to local residents, due to rice as staple food, rice intake ranked as main route and accounted for 49-53% of total intake, followed by wheat and vegetable. Cd exposure showed high potential noncarcinogenic risks with hazard quotient (HQ) of 0.63-4.99 using Monte Carlo probabilistic simulation, mainly from crop food consumption (mean 94% totality). Further, residents' hair Cd was significant correlated with HQ of wheat and rice ingestion, highlighting negative impact of cereal pollution to resident health. Therefore, smelting process should not coexist with cereal cultivating.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| |
Collapse
|
19
|
Li F, Deng Y, Liu Y, Mai C, Xu Y, Wu J, Zheng X, Liang C, Wang J. Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132496. [PMID: 37703737 DOI: 10.1016/j.jhazmat.2023.132496] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) has long been recognized as toxic pollutant to crops worldwide. The biosynthesis of glutathione-dependent phytochelatin (PC) plays crucial roles in the detoxification of Cd in plants. However, its regulatory mechanism remains elusive. Here, we revealed that Arabidopsis transcription factor WRKY45 confers Cd tolerance via promoting the expression of PC synthesis-related genes PCS1 and PCS2, respectively. Firstly, we found that Cd stress induces the transcript levels of WRKY45 and its protein abundance. Accordingly, in contrast to wild type Col-0, the increased sensitivity to Cd is observed in wrky45 mutant, while overexpressing WRKY45 plants are more tolerant to Cd. Secondly, quantitative real-time PCR revealed that the expression of AtPCS1 and AtPCS2 is stimulated in overexpressing WRKY45 plants, but decreased in wrky45 mutant. Thirdly, WRKY45 promotes the expression of PCS1 and PCS2, electrophoresis mobility shift assay analysis uncovered that WRKY45 directly binds to the W-box cis-element of PCS2 promoter. Lastly, the overexpression of WRKY45 in Col-0 leads to more accumulation of PCs in Arabidopsis, and the overexpression of PCS1 or PCS2 in wrky45 mutant plants rescues the phenotypes induced by Cd stress. In conclusion, our results show that AtWRKY45 positively regulates Cd tolerance in Arabidopsis via activating PCS1 and PCS2 expression.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yun Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiarui Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuiyue Liang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
20
|
Luo S, Liu Y, Luo B, Yang Y, Li L, Fu X, Peng L, Zeng Q. Straw removal or non-removal affects cadmium (Cd) accumulation in soil-rice (Oryza sativa L.) system at different ambient air Cd levels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118477. [PMID: 37364489 DOI: 10.1016/j.jenvman.2023.118477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Despite the potential importance of the removal of contaminated straw for heavy metal output from agricultural soils, previous studies have primarily focused on the variation in the metal concentration without considering the impact input of heavy metals from atmospheric deposition. Here, rice was grown under field conditions, and, as a reference, in a deposition-free environment, and exposed to different ambient air Cd levels. Two consecutive years of pot experiments were conducted in two study areas (ZZ and LY) to examine the changes in soil physicochemical properties as well as Cd accumulation in the soil-rice (Oryza sativa L.) system in response to straw return or removal. The results showed that rice straw return enhanced the soil pH and organic matter (OM) content, but reduced the soil redox potential (Eh); and the variation in amplitude increased with number of cultivation years. After two years of cultivation, the concentrations of soil total Cd and extractable Cd in the straw-removal treatments reduced by 9.89-29.49% and 4.88-37.74%, respectively, whereas those in the straw-return treatments exhibited a slight decrease, or even an increase. This indicated that straw removal could effectively reduce the concentration and bioavailability of Cd in contaminated farmland, which was further confirmed by the results for accumulation of Cd in rice tissues. In addition, the contribution from atmospheric deposition was confirmed by the greater variation in Cd concentration in soils and rice tissues under deposition-free conditions. A major implication of our findings is that the adoption of reasonable straw-treatment measures and proper control over ambient air heavy metals can promote the remediation efficiency of Cd-contaminated fields.
Collapse
Affiliation(s)
- Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Yuling Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Bihao Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yihao Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Li Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xin Fu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Liang Peng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
21
|
Jiang Z, Guo Z, Peng C, Wang X, Zhou Z, Xiao X. Model development and probabilistic risks of cadmium transport in slag-soil-groundwater systems with heterogeneous conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165160. [PMID: 37379937 DOI: 10.1016/j.scitotenv.2023.165160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Prediction of the long-term risk of trace metals leaching from soils at smelting sites is essential for groundwater protection. Herein, a mass balance-based stochastic model was developed to simulate the transport and probabilistic risks of trace metals in heterogeneous slag-soil-groundwater systems. The model was applied to a smelting slag yard with three stacking scenarios, including (A) fixed stacking amount, (B) stacking amount increasing yearly, and (C) slag removal after 20 years. The simulations suggested that the leaching flux and net accumulation of Cd in soils of the slag yard and abandoned farmland were greatest for scenario (B), which was followed by scenarios (A) and (C). In the slag yard, a plateau occurred in the Cd leaching flux curves, followed by a sharp increase. After 100 years of leaching, only scenario (B) had a high probabilistic risk (>99.9 %) of threatening groundwater safety under heterogeneous conditions. <11.1 % of the exogenous Cd may leach into groundwater under the worst scenario. The key parameters affecting Cd leaching risk include runoff interception rate (IRCR), input flux from slag release (I), and stacking time (ST). The simulation results were consistent with the values measured in a field investigation and laboratory leaching experiments. The results should help guide remediation objectives and measures to minimize the leaching risk at smelting sites.
Collapse
Affiliation(s)
- Zhichao Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Xiaoyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ziruo Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
22
|
Xing SF, Tian HF, Yan Z, Song C, Wang SG. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131937. [PMID: 37421856 DOI: 10.1016/j.jhazmat.2023.131937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.
Collapse
Affiliation(s)
- Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui-Fang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
23
|
Awan SA, Khan I, Rizwan M, Irshad MA, Xiaosan W, Zhang X, Huang L. Reduction in the cadmium (Cd) accumulation and toxicity in pearl millet (Pennisetum glaucum L.) by regulating physio-biochemical and antioxidant defense system via soil and foliar application of melatonin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121658. [PMID: 37075919 DOI: 10.1016/j.envpol.2023.121658] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is among the toxic pollutants that harms the both animals and plants. The natural antioxidant, melatonin can improve Cd-stress tolerance but its potential role in reducing Cd stress and resilience mechanisms in pearl millet (Pennisetum glaucum L.) is remain unclear. The present study suggests that Cd causes severe oxidative damage by decreasing photosynthesis, and increasing reactive oxygen species (ROS), malondialdehyde content (MDA), and Cd content in different parts of pearl millet. However, exogenous melatonin (soil application and foliar treatment) mitigated the Cd toxicity and enhanced the growth, antioxidant defense system, and differentially regulated the expression of antioxidant-responsive genes i. e superoxide dismutase SOD-[Fe] 2, Fe-superoxide dismutase, Peroxiredoxin 2C, and L-ascorbate peroxidase-6. The results showed that foliar melatonin at F-200/50 significantly increased the plant height, chlorophyll a, b, a+b and carotenoids by 128%, 121%, 150%, 122%, and 69% over the Cd treatment, respectively. The soil and foliar melatonin at S-100/50 and F-100/50 reduced the ROS by 36%, and 44%, and MDA by 42% and 51% over the Cd treatment, respectively. Moreover, F200/50 significantly boosted the activities of antioxidant enzymes i. e SOD by 141%, CAT 298%, POD 117%, and APX 155% over the Cd treatment. Similarly, a significant reduction in Cd content in root, stem, and leaf was found on exposure to higher concentrations of exogenous melatonin. These findings suggest that exogenous melatonin may significantly and differentially improve the tolerance to Cd stress in crop plants. However, field applications, type of plant species, concentration of dose, and type of stress may vary with the degree of tolerance in crop plants.
Collapse
Affiliation(s)
- Samrah Afzal Awan
- College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Imran Khan
- College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Wang Xiaosan
- College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Wu B, Li L, Guo S, Li Y. Source apportionment of heavy metals in the soil at the regional scale based on soil-forming processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130910. [PMID: 36736212 DOI: 10.1016/j.jhazmat.2023.130910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Source apportionment is crucial to the prevention and control of heavy metals in the soil. The major methods focus on the identification of soil heavy metals from different pollution sources. However, they are unsuited to the source apportionment at a regional scale due to ignoring the spatial heterogeneity of heavy metal content caused by soil formation. Thus, we built a source apportionment model by introducing the weathering and leaching coefficients as the key parameters of soil-forming processes. In this study, we selected Liaohe Plain in China as the study area, which was the starting point of China's industrial development, with dense industrial areas and high levels of heavy-metal emission. Heavy metals concentrations in surface and deep soil of reference and grid points were collected as model data. The results showed that the average contribution rates of soil-forming process to Cd, Hg, As, and Pb were 82.7%, 85.2%, 88.6%, and 91.7%, respectively, and those of anthropogenic activities were 17.3%, 14.8%, 11.4%, and 8.3%, respectively. Spatial distribution of contribution rates showed the superposition of soil environmental background and pollution sources. This study provides a feasible method to quantify heavy metals contents from natural and anthropogenic sources at a regional scale.
Collapse
Affiliation(s)
- Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Linlin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, PR China.
| | - Yang Li
- Liaoning Provincial Ecology & Environment Monitoring Center, Shenyang 110161, PR China
| |
Collapse
|
25
|
Mi Y, Zhou J, Liu M, Liang J, Kou L, Xia R, Tian R, Zhou J. Machine learning method for predicting cadmium concentrations in rice near an active copper smelter based on chemical mass balance. CHEMOSPHERE 2023; 319:138028. [PMID: 36736477 DOI: 10.1016/j.chemosphere.2023.138028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Identification the sources of heavy metals can effectively control and prevent agricultural soil pollution. Here we performed a three-year mass balance study along a gradient of soil pollution near a smelter to quantify the potential contribution and net cadmium (Cd) fluxes and predict Cd concentration in rice grains by multiple regression (MR) and back propagation (BP) neural network. The Cd inputs were mainly from the irrigation water (54.6-60.8%) in the moderately polluted and background sites but from atmospheric deposition (90.9%) in the highly polluted site. The Cd outputs were mainly from the surface runoff (55.8-59.5%) in the moderately polluted and background sites, but from Sedum plumbizincicola phytoextraction (83.6%) in the highly polluted site. The soil Cd concentrations, the annual fluxes of atmospheric deposition, pesticides and fertilizers, irrigation water, surface runoff, and leaching water were selected as the dependent factors to predict Cd concentrations in rice grains. The genetic algorithms (GA)-BP neural network model gives the best prediction accuracy compared to the BP neural network model and multivariate regression analysis. The major implication is that the health risks through the consumption of rice can be rapidly assessed based on the Cd concentrations in rice grains predicted by the model.
Collapse
Affiliation(s)
- Yazhu Mi
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Mengli Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Leyong Kou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ruiyun Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| |
Collapse
|
26
|
Ogunkunle CO, Balogun GY, Olatunji OA, Han Z, Adeleye AS, Awe AA, Fatoba PO. Foliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130567. [PMID: 37055974 DOI: 10.1016/j.jhazmat.2022.130567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Foliar application of nanoparticles (NPs) as a means for ameliorating abiotic stress is increasingly employed in crop production. In this study, the potential of CeO2-NPs as stress suppressants for cadmium (Cd)-stressed okra (Abelmoschus esculentus) plants was investigated, using two cycles of foliar application of CeO2-NPs at 200, 400, and 600 mg/l. Compared to untreated stressed plants, Cd-stressed plants treated with CeO2-NPs presented higher pigments (chlorophyll a and carotenoids). In contrast, foliar applications did not alter Cd root uptake and leaf bioaccumulation. Foliar CeO2-NPs application modulated stress enzymes (APX, SOD, and GPx) in both roots and leaves of Cd-stressed plants, and led to decreases in Cd toxicity in plant's tissues. In addition, foliar application of CeO2-NPs in Cd-stressed okra plants decreased fruit Cd contents, and improved fruit mineral elements and bioactive compounds. The infrared spectroscopic analysis of fruit tissues showed that foliar-applied CeO2-NPs treatments did not induce chemical changes but induced conformational changes in fruit macromolecules. Additionally, CeO2-NPs applications did not alter the eating quality indicator (Mg/K ratio) of okra fruits. Conclusively, the present study demonstrated that foliar application of CeO2-NPs has the potential to ameliorate Cd toxicity in tissues and improve fruits of okra plants.
Collapse
Affiliation(s)
- C O Ogunkunle
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.
| | - G Y Balogun
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| | - O A Olatunji
- Department of Plant Biology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Z Han
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A A Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - P O Fatoba
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
27
|
Sun J, Luo J, Ma R, Lin J, Fang L. Effects of microwave and plastic content on the sulfur migration during co-pyrolysis of biomass and plastic. CHEMOSPHERE 2023; 305:135457. [PMID: 36584830 DOI: 10.1016/j.chemosphere.2022.135457] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
In order to reduce the risks of sulfur-containing contaminants present in biofuels, the effects of microwave and content of hydrogen donor on the cracking of C-S bonds and the migration of sulfur were studied by co-pyrolysis of biomass and plastic. The synergistic mechanism of microwave and hydrogen donor was explored from the perspective of deducing the evolution of sulfur-containing compounds based on microwave thermogravimetric analysis. By combining temperature-weight curves, it was found that microwaves and hydrogen radicals promoted the cracking of sulfur-containing compounds and increased the mass loss of biomass during pyrolysis. The mixing ratio of hydrogen donor (plastic) was the key parameter resulting in the removal of sulfur from oil. By adjusting the mixing ratio, the yield of co-pyrolyzed oil was three times higher than that of cow dung pyrolysis alone and the relative removal rate of sulfur reached 73.67%. The relative content of sulfur in the oil was reduced by 73.77% due to the escape of sulfur-containing gases (H2S, COS and C2H5SH) and the formation of sulfate crystals in the char. Microwave selectively heated sulfur-containing organics and hydrogen radicals stimulated the breaking of C-S bonds, which improved the cracking efficiency of the oil. This breaking will provide a theoretical and technological reference for the environmentally friendly treatment of biomass and biofuels.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
28
|
Wang L, Li Z, Zhang G, Liang X, Hu L, Li Y, He Y, Zhan F. Dark septate endophyte Exophiala pisciphila promotes maize growth and alleviates cadmium toxicity. Front Microbiol 2023; 14:1165131. [PMID: 37113231 PMCID: PMC10126344 DOI: 10.3389/fmicb.2023.1165131] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Dark septate endophytes (DSE) are typical root endophytes with the ability to enhance plant growth and tolerance to heavy metals, but the underlying mechanisms are unclear. Here, the physiological and molecular mechanisms of a DSE strain, Exophiala pisciphila, in mitigating cadmium (Cd, 20 mg/kg) toxicity in maize were investigated. Our results showed, under Cd stress, E. pisciphila inoculation enhanced the biomass of maize and reduced both inorganic and soluble forms of Cd (high toxicity) by 52.6% in maize leaves, which may be potentially contributing to Cd toxicity mitigation. Besides, E. pisciphila inoculation significantly affected the expression of genes involved in the signal transduction and polar transport of phytohormone, and then affected abscisic acid (ABA) and indole-3-acetic acid (IAA) contents in maize roots, which was the main reason for promoting maize growth. In addition, E. pisciphila also made a 27% increase in lignin content by regulating the expression of genes involved in the synthesis of it, which was beneficial to hinder the transport of Cd. In addition, E. pisciphila inoculation also activated glutathione metabolism by the up-regulation of genes related to glutathione S-transferase. This study helps to elucidate the functions of E. pisciphila under Cd stress, sheds light on the mechanism of detoxifying Cd and provides new insights into the protection of crops from heavy metals.
Collapse
Affiliation(s)
- Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Linyan Hu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- *Correspondence: Fangdong Zhan,
| |
Collapse
|
29
|
Mei H, Huang W, Wang Y, Xu T, Zhao L, Zhang D, Luo Y, Pan X. One stone two birds: Bone char as a cost-effective material for stabilizing multiple heavy metals in soil and promoting crop growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156163. [PMID: 35623524 DOI: 10.1016/j.scitotenv.2022.156163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Remediation of farmland soils contaminated with high levels of multiple heavy metals near PbZn smeltery is still a great challenge. It is of great significance to find cost-effective green remediation technologies for stabilization of multiple heavy metals in soil and reduce metal accumulation in crops with ensured yield. In this study, we demonstrated that bone char (BC) is an effective heavy metal stabilizer which can substantially increase residual fractions of heavy metals and reduce metal accumulation in pea (Pisum sativum) with its enhanced growth. We chose the soils contaminated with high levels of Pb, Zn, Cu and Cd near the Baiyin PbZn smeltery as the tested soil. After 2 months of BC application, the relative mobile fractions (non-residual fractions) of Cu, Zn, Pb and Cd in the contaminated soil decreased while the residual fraction increased significantly. The leachability of Cu, Zn, Pb and Cd decreased by 91.2%, 38.6%, 67.6% and 54.3%, respectively compared with the control. BC application remarkably promoted pea growth and reduced accumulation of heavy metals in shoots. The mechanisms for stabilization of multiple heavy metals BC include ion exchange, surface complexation and subsequent mineralization, accompanied with release of Ca and phosphate. The immobilization of heavy metals led to their reduced toxicity to plant, and thus increased pea growth. The results show that BC is a cost-effective and sustainable heavy metal stabilizer with phosphate fertilization function. It can simultaneously immobilize multiple heavy metals in soil and facilitate crop production.
Collapse
Affiliation(s)
- Hanyi Mei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Wenfeng Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Tao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Liwei Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
30
|
Liu H, Zhou J, Li M, Xia R, Wang X, Zhou J. Dynamic Behaviors of Newly Deposited Atmospheric Heavy Metals in the Soil-Pak Choi System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12734-12744. [PMID: 35977088 DOI: 10.1021/acs.est.2c04062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic behaviors of the newly deposited atmospheric heavy metals in the soil-pak choi (Brassica chinensis L.) system are investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.5-year and 1.5-year atmospheric depositions. The results showed approximately 17-87%, 19-64%, and 43-84% of the Cu, Cd, and Pb in pak choi edible parts were contributed from the new depositions, respectively. For the newly deposited metals, foliar uptake was the key pathway of shoot bioaccumulation rather than from root uptake of the deposited metals in soils, resulting in no significant soil contribution differences between pak chois growing in 0.5-year and 1.5-year exposed soils. Indeed, highly bioavailable metals in atmospheric deposition significantly increased the soil plant-bioavailable Cu, Cd, and Pb fractions; however, soil aging resulted in similar percentages of the plant-bioavailable fractions in 0.5-year and 1.5-year exposed soils, which indicated the bioavailability of metals deposited into soils rapidly decreased with aging. The soil aging process of the deposited metals was well fitted with the first-order exponential decay model, and soil organic matter and clay were the major driving factors. Our findings highlight high plant bioaccumulation rates and the rapid soil aging process of newly deposited metals during the plant growth period.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts 01854, United States
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, P.R. China
| |
Collapse
|
31
|
Gao G, Xie S, Zheng S, Xu Y, Sun Y. Two-step modification (sodium dodecylbenzene sulfonate composites acid-base) of sepiolite (SDBS/ABsep) and its performance for remediation of Cd contaminated water and soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128760. [PMID: 35358811 DOI: 10.1016/j.jhazmat.2022.128760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
To enhance the remediation capability of cadmium (Cd) polluted water and soil, our approach involved two-step modification of sepiolite (Sep) through acid-base compound treatment and sodium dodecylbenzene sulfonate (referring as SDBS/ABsep), and then the batch adsorption and soil culture experiments were conducted to investigate its immobilization potential and mechanisms of Cd. The findings revealed that the SDBS/ABsep had a rougher surface and higher porosity, and the maximum adsorption capacity of Cd2+ onto SDBS/ABsep was 241.39 mg g-1, which was 5.32 times higher than that on Sep. It conformed to the pseudo-second-order kinetic and Redlich-Paterson isotherm models. SDBS/ABsep exhibited a high efficiency for immobilization-induced remediation of Cd polluted soils. Upon the addition of different concentrations of SDBS/ABsep, DTPA-Cd content decreased by 17.41-47.33% compared with the control groups, and the ratio of residual fraction-Cd increased from 4.67% in unamended soil to 14.05% in the presence of 4% SDBS/ABsep. SEM-EDS, TEM, FTIR, XRD, and XPS analyses indicated that the interaction mechanisms between SDBS/ABsep and Cd included the electrostatic force, precipitation, ion exchange, and complexation of sulfonic acid groups. Therefore, SDBS/ABsep can be used as a promising effective passivation agent for remediation of Cd contaminated soil and water.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sha Xie
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
32
|
Yang Y, Xiao C, Wang F, Peng L, Zeng Q, Luo S. Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127183. [PMID: 34536851 DOI: 10.1016/j.jhazmat.2021.127183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation potential of two oil crop rotations (oilseed sunflower-rape (O+Ra) and peanut-oilseed rape (P+Ra)) was compared with three conventional cropping patterns (rice-rape (R+Ra), rice-rice (R+R), single cropped rice (SR)) in experimental plots with cadmium (Cd)-contaminated soil. A new approach was used to evaluate phytoremediation potential based on the balance between annual input and output fluxes of Cd in farmland soil. In O+Ra and P+Ra rotations, 77.24 and 62.09 g/ha Cd were removed, respectively, whereas in R+Ra, R+R, and SR patterns, 41.79, 46.46, and 23.85 g/ha Cd were removed, respectively. The balance between inputs and outputs of Cd was - 40.72 and - 25.76 g/ha under O+Ra and P+Ra rotations, respectively. Available Cd content in topsoil was reduced by 5.58% and 3.91% under O+Ra and P+Ra rotations, respectively. Based on the balance between Cd inputs and outputs, phytoremediation efficiencies of O+Ra (1.23%) and P+Ra (0.78%) rotations were higher than those of R+R (0.29%), R+Ra (0.13%), and SR (-0.38%) systems. Because crop removal is the main Cd output pathway, selection of a suitable crop is particularly important in remediation of Cd-contaminated farmland.
Collapse
Affiliation(s)
- Yihao Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Chenfeng Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fan Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
33
|
Zhu Y, Lv X, Song J, Li W, Wang H. Application of cotton straw biochar and compound Bacillus biofertilizer decrease the bioavailability of soil cd through impacting soil bacteria. BMC Microbiol 2022; 22:35. [PMID: 35081910 PMCID: PMC8790908 DOI: 10.1186/s12866-022-02445-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cd seriously threatens soil environment, remedying Cd in farmland and clearing the response of soil environment to modifiers in Cd-contaminated soils is necessary. In this study, the effects of cotton straw biochar and compound Bacillus biofertilizer used as modifiers on the biochemical properties, enzyme activity, and microbial diversity in Cd-contaminated soils (1, 2, and 4 mg·kg−1) were investigated. Results The results showed that both cotton straw biochar and compound Bacillus biofertilizer could improve the soil chemical characteristics, including the increase of soil C/N ratio, electrical conductance (EC) and pH, and the most important decrease of soil available Cd content by 60.24% and 74.34%, respectively (P < 0.05). On the other hand, adding cotton straw biochar and compound Bacillus biofertilizer in Cd stressed soil also improved soil biological characteristics. Among them, cotton straw biochar mainly through increasing soil alkaline phosphatase activity and improve bacteria abundance, compound Bacillus biofertilizer by increasing soil invertase, alkaline phosphatase, catalase, and urease activity increased bacterial community diversity. On the whole, the decrease of soil available Cd was mainly caused by the increase of soil pH, C/N, urease and alkaline phosphatase activities, and the relative abundance of Acidobacteria and Proteobacteria. Conclusions In summary, the applications of cotton straw biochar and compound Bacillus biofertilizer could decrease soil available Cd concentration, increase soil bacterial community diversity and functions metabolism, and reduce the damage of Cd stress, compared with cotton straw biochar, compound Bacillus biofertilizer was more effective in immobilizing Cd and improving soil environmental quality.
Collapse
Affiliation(s)
- Yongqi Zhu
- Agricultural College, Shihezi University, 832003, Shihezi, Xinjiang, P. R. China
| | - Xin Lv
- Agricultural College, Shihezi University, 832003, Shihezi, Xinjiang, P. R. China
| | - Jianghui Song
- Agricultural College, Shihezi University, 832003, Shihezi, Xinjiang, P. R. China
| | - Weidi Li
- Agricultural College, Shihezi University, 832003, Shihezi, Xinjiang, P. R. China
| | - Haijiang Wang
- Agricultural College, Shihezi University, 832003, Shihezi, Xinjiang, P. R. China.
| |
Collapse
|