1
|
Li S, Zhou Y, Wang J, Dou M, Zhang Q, Huo K, Han C, Shi J. Sewage sludge pyrolysis 'kills two birds with one stone': Biochar synergies with persulfate for pollutants removal and energy recovery. CHEMOSPHERE 2024; 363:142824. [PMID: 38996980 DOI: 10.1016/j.chemosphere.2024.142824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.
Collapse
Affiliation(s)
- Shaoya Li
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Yanmei Zhou
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China; The Center of National Railway Intelligent Transportation System Engineering and Technology, China Academy of Railway Sciences Corporation Limited, Beijing, 100081, China.
| | - Jin Wang
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China.
| | - Mengmeng Dou
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Qingyun Zhang
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Kaili Huo
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Chao Han
- School of Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Jinyang Shi
- School of Traffic and Transportation, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| |
Collapse
|
2
|
Han Y, Tai M, Yao Y, Li J, Wu Y, Hu B, Ma Y, Liu C. Iron-decorated covalent organic framework as efficient catalyst for activating peroxydisulfate to degrade 2,4-dichlorophenol: Performance and mechanism insight. J Colloid Interface Sci 2024; 663:238-250. [PMID: 38401444 DOI: 10.1016/j.jcis.2024.02.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Herein, a novel two-dimensional double-pore covalent organic framework (JLNU-305) was synthesized using N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TAPD) and 2,2'-bipyridine-5,5'-dicarboxaldehyde (BPDA). The extended π-π conjugated structure and nitrogen-riched pyridine in JLNU-305 (JLNU = Jilin Normal University) provide abundant binding sites for Fe doping. The obtained JLNU-305-Fe exhibited high and recycled catalytic efficiency for peroxydisulfate (PDS) activation to completely degrade 10 mg/L 2,4-dichlorophenol (2,4-DCP) within 8 min. The JLNU-305-Fe/PDS system showed excellent catalytic activity and cyclic stability. The capture experiments and electron paramagnetic resonance (ESR) analysis indicated that the catalytic behavior of JLNU-305-Fe/PDS is contributed to the synergistic effect between free radicals and non-free radicals. It is the first time to activate PDS for covalent organic frameworks (COFs) being used to degrade 2,4-DCP, which has a great potential for development and practical application in related water environment remediation.
Collapse
Affiliation(s)
- Yuhang Han
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Meng Tai
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Yuxin Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Jingyang Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yuanyuan Wu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Bo Hu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
| | - Yunchao Ma
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
3
|
Narayanan M, Devarayan K, Verma M, Selvaraj M, Ghramh HA, Kandasamy S. Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106851. [PMID: 38325057 DOI: 10.1016/j.aquatox.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Center for Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Vettar River View Campus, Nagapattinam 611 002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea; Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
4
|
Ruan X, Wang H, Huang F, Wang F, Yang X. Degradation of 2, 4-dichlorophenol by peroxymonosulfate catalyzed by ZnO/ZnMn 2 O 4. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10984. [PMID: 38298030 DOI: 10.1002/wer.10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
In this study, a highly efficient peroxymonosulfate (PMS) activator, ZnO/ZnMn2 O4 , was synthesized using a simple one-step hydrothermal method. The resulting bimetallic oxide catalyst demonstrated a homogenous and high-purity composition, showcasing synergistic catalytic activity in activating PMS for degrading 2, 4-dichlorophenol (2, 4-DCP) in aqueous solution. This catalytic performance surpassed that of individual ZnO, Mn2 O3 , and ZnMn2 O4 metal materials. Under the optimized conditions, the removal efficiency of 2, 4-DCP reached approximately 86% within 60 min, and the catalytic ability remained almost constant even after four cycles of recycling. The developed degradation system proved effective in degrading other azo-dye pollutants. Certain inorganic anions such as HPO4 - , HCO3 - , and NO3 - significantly inhibited the degradation of 2, 4-DCP, while Cl- and SO4 2- did not exhibit such interference. Results from electrochemical experiments indicated that the electron transfer ability of ZnO/ZnMn2 O4 surpassed that of individual metals, and electron transfer occurred between ZnO/ZnMn2 O4 and the oxidant. The primary active radicals responsible for degrading 2, 4-DCP were identified as SO4 •- , OH• and O2 •- , generated through the oxidation and reduction of PMS catalyzed by Zn (II) and Mn (III). Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the fresh and used catalysts revealed that the exceptional electron transfer ability of ZnO facilitated the valence transfer of Mn (III) and the transfer of electrons to the catalyst's oxygen surface, thus enhancing the catalytic efficiency. The analysis of radicals and intermediates indicates that the two main pathways for degrading 2, 4-DCP involve hydroxylation and radical attack on its aromatic ring. PRACTITIONER POINTS: A bimetallic ZnO/ZnMn2 O4 catalyst was synthesized and characterized. ZnO/ZnMn2 O4 can synergistically activate PMS to degrade 2, 4-DCP compared with single metal oxide. Three primary active radicals, O2 •- , • OH, and SO4 •- , were generated to promote the degradation. ZnO promoted electron transfer among the three species of Mn to facilitate oxidizing pollutants. Hydroxylation and radical attack on the aromatic ring of 2, 4-DCP are the two degradation pathways.
Collapse
Affiliation(s)
- Xinchao Ruan
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| | - Huan Wang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
| | - Fengyun Huang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
| | - Fanye Wang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
| | - Xiaojun Yang
- School of Environment Engineering, Wuhan Textile University, Wuhan, China
- Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, China
| |
Collapse
|
5
|
Chen S, Guo F, Hao L, Zhang X. Fabrication of a PCN/BiOBr 2D hybrid with improved photocatalytic performance of 2,4-dichorophenol degradation. RSC Adv 2024; 14:1150-1155. [PMID: 38174230 PMCID: PMC10760509 DOI: 10.1039/d3ra08028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Photocatalysis has received much attention as an environmentally friendly route to manage the emerging organic pollution problems. Herein, BiOBr nanosheets have been synthesized by a hydrothermal method, and then PCN/BiOBr hybrids are designed via a facile wet chemical method. The as-prepared PCN/BiOBr hybrids are characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The PCN/BiOBr composite exhibits remarkable improved activity in the degradation of 2,4-dichlorophenol (2,4-DCP) as compared to the pristine BiOBr. Based on the ·OH amount-related fluorescence spectra fluorescence and the photoelectrochemistry (PEC) tests, it is confirmed that the enhanced photocatalytic performance of PCN/BiOBr is attributed to the promoted charge separation. Moreover, by means of the radical-trapping experiments it is demonstrated that the formed ·O2- species, as the electron-modulated direct products, are the primary active species during the photocatalytic degradation of 2,4-DCP. This work would provide a feasible design strategy to fabricate high-activity photocatalysts for 2,4-DCP degradation.
Collapse
Affiliation(s)
- Shuangying Chen
- Analysis and Testing Center, Shandong University of Technology Zibo 255000 P. R. China
| | - Fushui Guo
- Analysis and Testing Center, Shandong University of Technology Zibo 255000 P. R. China
| | - Liantao Hao
- Analysis and Testing Center, Shandong University of Technology Zibo 255000 P. R. China
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology Zibo 255000 P. R. China
| |
Collapse
|
6
|
Lu Q, Wang S, Ping Q, Li Y. A novel approach to enhance methane production during anaerobic digestion of waste activated sludge by combined addition of trypsin, nano-zero-valent iron and activated carbon. CHEMOSPHERE 2023; 341:140007. [PMID: 37657702 DOI: 10.1016/j.chemosphere.2023.140007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
A novel approach with a combination of trypsin, nano-zero-valent iron (NZVI) and activated carbon (AC) was conducted to promote the methane production of waste activated sludge (WAS) during the anaerobic digestion (AD) processes. Results showed that the combined addition of trypsin-NZVI-AC exhibited the synergistic effect during different AD stages. Trypsin mainly facilitated the hydrolysis process and the acetic acid conversion, while NZVI-AC enhanced the substrate metabolism and the electronic transfer to subsequently produce methane. A dose of 1000 mg/L trypsin was optimal to maximize this synergistic effect. Metagenomic analysis showed that trypsin-NZVI-AC addition effectively improved the relative abundance of acetyl-CoA carboxylase, and then strengthened both acetoclastic methanogenesis (M00357) and hydrogenotrophic methanogenesis (M00567). Hydrogenotrophic methanogens such as Methanobacterium, Methanoculleus, and Methanosarcina were greatly enriched with trypsin-NZVI-AC compared with trypsin or NZVI-AC addition. Moreover, electroactive bacteria G. sulfurreducens and G. metallireducens were also enriched by this method to conduct direct interspecies electron transfer among methanogens, leading to the better improvement of methane production. These findings supply a promising way to optimize the enzyme pretreatment technology and elevate the methanogenic efficiency of WAS.
Collapse
Affiliation(s)
- Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Siyuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
New insights into engineering the core size and carbon shell thickness of Co@C core-shell catalysts for efficient and stable Fenton-like catalysis. J Colloid Interface Sci 2023; 634:521-534. [PMID: 36549201 DOI: 10.1016/j.jcis.2022.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein, we engineered the cobalt core size and carbon shell thickness of Co@C by molten salt electrolysis (MSE) to investigate the enhanced essence of decreasing core size as well as the shell thickness dependence-mediated transition of catalytic mechanisms. We found that the reaction activation energy (RAE) of Co@C/peroxymonosulfate (PMS) systems was intimately dependent on the core sizes for sulfamethoxazole (SMX) degradation. The smaller core size of 26 nm provided a lower RAE of 13.39 kJ mol-1. In addition, increasing carbon shell thicknesses of Co@C altered the catalytic mechanisms from a radical pathway of SO4•- and •OH to to a non-radical pathway of 1O2 and electron-transfer process (ETP), which were verified by experimental results and density functional theory (DFT) calculations. Interestingly, increasing carbon shell thicknesses promoted the charge transfer between Co metal slab and carbon shell, increased the adsorption energy of PMS molecule on the Co@C slab, and decreased the length of OO, which favoured the occurrence of non-free radical processes.
Collapse
|
8
|
Yu W, Xu M, Liang X, Wang J, Fang W, Wang F. Construction of a novel Cu 1.8S/NH 2-La MOFs decorated Black-TNTs photoanode electrode for high-efficiently photoelectrocatalytic degradation of 2, 4-dichlorophenol. CHEMOSPHERE 2023; 313:137591. [PMID: 36563722 DOI: 10.1016/j.chemosphere.2022.137591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Photoelectrocatalysis (PEC) has long been regarded as an efficient and green method to eliminate various organic pollutants from wastewater. However, the lack of highly photoelectrocatalytic active and stable electrodes limits the development of the PEC technologies. Herein, a novel hierarchical photo-electrode with hollow Cu1.8S/NH2-La MOFs decorated black titanium dioxide nanotubes (Cu1.8S/NH2-La MOFs/Black TNTs) was fabricated by a two-step water-heating method. The prepared photoelectrode was used to degradation of 2, 4-dichlorophenol (2, 4-DCP). Analysis of photoelectrocatalytic degradation process of 2, 4-DCP was evaluated using UV-Vis absorption spectroscopy and the main degradation paths were analyzed by LC-MS. The results showed that 99.3% of the pollutant could be rapidly degraded within 180 min. Furthermore, the Cu1.8S/NH2-La MOFs/Black TNTs photoelectric pole exhibited excellent stability after 15 cycling experiments.
Collapse
Affiliation(s)
- Wenkai Yu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, People's Republic of China; School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Mai Xu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, People's Republic of China.
| | - Xian Liang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, People's Republic of China
| | - Jiayi Wang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, People's Republic of China; School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Wenyan Fang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, People's Republic of China
| | - Fengwu Wang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, People's Republic of China.
| |
Collapse
|
9
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
10
|
Ma Y, Du K, Guo Y, Tang M, Yin H, Mao X, Wang D. Biphase Co@C core-shell catalysts for efficient Fenton-like catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128287. [PMID: 35065308 DOI: 10.1016/j.jhazmat.2022.128287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Despite the vital roles of Co nanoparticles catalytic oxidation in the Fenton-like system for eliminating pollutants, contributions of Co phases are typically overlooked. Herein, a biphase Co@C core-shell catalyst was synthesized by the electrochemical co-reduction of CaCO3 and Co3O4 in molten carbonate. Unlike the traditional pyrolysis method that is performed over 700 °C, the electrolysis was deployed at 450 °C, at which biphase structures, i.e., face-centered cubic (FCC) and hexagonal close-packed (HCP) structures, can be obtained. The biphase Co@C shows excellent catalytic oxidation performance of diethyl phthalate (DEP) with a high turnover frequency value (TOF, 28.14 min-1) and low catalyst dosage (4 mg L-1). Furthermore, density functional theory (DFT) calculations confirm that the synergistic catalytic effect of biphase Co@C is the enhancement for the breaking of the peroxide O-O bond and the charge transfer from catalysts to PMS molecule for the activation. Moreover, the results of radicals quenching experiments and electron paramagnetic resonance (EPR) tests confirm that SO4•-, •OH, O2•-, and 1O2 co-degrade DEP. Remarkably, 100% removals of three model contaminants, including DEP, sulfamethoxazole (SMX) and 2,4-dichlorophen (2,4-DCP), were achieved, either in pure water or actual river water. This paper provides an electrochemical pathway to leverage the phase of catalysts and thereby mediate their catalytic capability for remediating refractory organic contaminants.
Collapse
Affiliation(s)
- Yongsong Ma
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China
| | - Kaifa Du
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China
| | - Yifan Guo
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China
| | - Mengyi Tang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China
| | - Huayi Yin
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China; Key Laboratory for Ecological Metallurgy of Multimetallic Mineral of Ministry of Education, School of Metallurgy, Northeastern University, Shenyang 110819, PR China
| | - Xuhui Mao
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China
| | - Dihua Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
11
|
Zeng Y, Fang G, Fu Q, Peng F, Wang X, Dionysiou DD, Guo J, Gao J, Zhou D, Wang Y. Mechanistic Study of the Effects of Agricultural Amendments on Photochemical Processes in Paddy Water during Rice Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4221-4230. [PMID: 35275630 DOI: 10.1021/acs.est.2c00145] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photochemical properties of paddy water might be affected by the commonly used amendments in rice fields owing to the associated changes in water chemistry; however, this important aspect has rarely been explored. We examined the effects of agricultural amendments on the photochemistry of paddy water during rice growth. The amendments significantly influenced the photogenerated reactive intermediates (RIs) in paddy water, such as triplet dissolved organic matter (3DOM*), singlet oxygen, and hydroxyl radicals. Compared with control experiments without amendments, the application of straw and lime increased the RI concentrations by up to 16.8 and 11.1 times, respectively, while biochar addition had limited effects on RI generation from paddy water in in situ experiments under sunlight. Fluorescence emission-excitation matrix spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry, and structural equation modeling revealed that upon the addition of straw and lime amendments, humified DOM substances contained lignins, proteins, and fulvic acids, which could produce more RIs under irradiation. Moreover, the amendments significantly accelerated the degradation rate of 2,4-dichlorophenol but led to the 3DOM*-mediated formation of more toxic and stable dimeric products. This study provides new insights into the effects of amendments on the photochemistry of paddy water and the pathways of abiotic degradation of organic contaminants in paddy fields.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, P. R. China
| | - Fei Peng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xinghao Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221-0071, United States
| | - Jianbo Guo
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Wang J, Sun Y, Liu H, Hou Y, Dai Y, Luo C, Wang X. Preparation of Bi 3Fe 0.5Nb 1.5O 9/g-C 3N 4 heterojunction photocatalysts and applications in the photocatalytic degradation of 2,4-dichlorophenol in environment. NEW J CHEM 2022. [DOI: 10.1039/d2nj01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The energy band relationship and the active substances were studied to determine photocatalyst accords with the Z-type transfer mechanism.
Collapse
Affiliation(s)
- Jingdao Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yanan Hou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
13
|
Wu S, Deng S, Ma Z, Liu Y, Yang Y, Jiang Y. Ferrous oxalate covered ZVI through ball-milling for enhanced catalytic oxidation of organic contaminants with persulfate. CHEMOSPHERE 2022; 287:132421. [PMID: 34600929 DOI: 10.1016/j.chemosphere.2021.132421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Zero-valent iron (ZVI), with high reduction capacity and cost effectiveness, has been widely used as an activator for persulfate in remediation of organic pollutants. However, the existence of inherent iron oxide shell blocked the transfer of proton and further reduced its reactivity. In present study, a novel persulfate (PS) activator BZVI@OA was synthesized via ball milling ZVI with oxalic acid dihydrate. Scanning electron microscope, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry and Time-of-flight secondary ion mass spectroscopy confirmed the original low proton conductive oxidation shell was replaced by a high proton conductive FeC2O4 shell. The generated shell significantly improved persulfate activated capacity, through which degradation rates of various contaminants were enhanced for 1.64 to 2.33 times. Dissolved oxalate was proved to form complexes with iron ions, dramatically reduced the potential difference and relieved the blocked cyclic conversion. Electron paramagnetic resonance and quenching experiments confirmed an inner sphere adsorption of PS on FeC2O4·2H2O shell which facilitated the peroxide bonds cleavage, leading high efficiency of ROS generation. The accelerated proton transition was confirmed with AC impedance method, resulting in fast and elevated surface bound Fe2+ for persulfate decomposition into active species. Furthermore, BZVI@OA/PS system demonstrated high tolerance over wide initial pH range and promising reusability within 6 cycles. This work clarifies an effective strategy for developing efficient modified ZVI as a PS activator for organic pollutant degradation in water.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, PR China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| |
Collapse
|
14
|
Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants. J Colloid Interface Sci 2021; 610:24-34. [PMID: 34920214 DOI: 10.1016/j.jcis.2021.12.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023]
Abstract
In this study, the S modified iron-based catalyst (S-Fe@C) for activating peroxydisulfate (PDS) was fabricated by heating the S-MIL-101 (Fe) precursor at 800 °C. The resulted S-Fe@C composite mainly consisted of carbon, Fe0, FeS, FeS2, and Fe3O4, and showed strong magnetism. Compared with Fe@C obtained from MIL-101 (Fe), the S-Fe@C exhibited much higher performance (1.5 times larger) on PDS activation and the S-Fe@C/PDS could rapidly degrade various organic pollutants in 5 min under the attack of the species of SO4-·, 1O2, electro-transfer and Fe(IV). The S element in enhancing the PDS activation mainly involved two mechanisms. Firstly, the doped S could speed up the electron transfer efficiency, resulting in a promotion on PDS decomposition; secondly, the S2- S22- or S0 could achieve the circulation of Fe2+ and Fe3+, leading to the formation of non-radicals Fe(IV) and 1O2.
Collapse
|
15
|
Liu C, Wei H, Gao Y, Wang N, Yuan X, Chi Z, Zhao G, Song S, Song J, Jin X. Application of CoMn/CoFe layered double hydroxide based on metal-organic frameworks template to activate peroxymonosulfate for 2,4-dichlorophenol degradation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3871-3890. [PMID: 34928849 DOI: 10.2166/wst.2021.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) have unique properties and stable structures, which have been widely used as templates/precursors to prepare well developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare a layered double hydroxide (LDH) nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which had higher specific surface area and well developed pore structure compared with LDH catalysts prepared by traditional methods, and thus provide more active sites to activate peroxymonosulfate (PMS). Due to the unique framework structure of MOFs, the MOF-derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2,4-dichlorophenol degradation of 99.3% and 99.2% within 20 minutes, respectively. In addition the two LDH catalysts displayed excellent degradation performance for bisphenol A, ciprofloxacin and 2,4-dichlorophenoxyacetic acid (2,4-D). X-ray photoelectron spectroscopy indicated that the valence state transformation of metal elements participated in PMS activation. Electron paramagnetic resonance manifested that sulfate radical (SO4•-) and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOF-derived LDH catalysts can basically eliminate the phytotoxicity of a 2,4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOF derivants.
Collapse
Affiliation(s)
- Chenyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Haitong Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Yanhui Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Ning Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Zhilong Chi
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Guangli Zhao
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Shuguang Song
- School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xinghui Jin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| |
Collapse
|