1
|
Deng W, Lv X, Xu Z, Zhang Q, Zhao M, Huang X. Recovery of heavy metal complexes from wastewaters: A critical review of mechanisms and technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125339. [PMID: 40239352 DOI: 10.1016/j.jenvman.2025.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Heavy metal complexes (HMCs) pose significant ecological challenges while also holding attractive economic value. This review comprehensively summarizes advanced techniques for recovering HMCs from wastewater, including reductive recovery, oxidative decomplexation-recovery, and non-redox separation. Physical and chemical separation approaches utilize specific properties of metal complexes for efficient segregation. Specifically, we explore oxidative decomposition techniques, emphasizing the underlying mechanisms and practical application for selective and non-selective decomplexation techniques. The crucial role of cathodic potential on the efficiency and selectivity of electrochemical reduction processes is also examined. In addition, a comprehensive cost assessment, including energy consumption, associated with these recovering processes is investigated, and opinions on the inadequacy of current studies are provided. Overall, this review uniquely integrates findings on selective physical separation, oxidation, and reduction processes as well as the cost assessments for these techniques, providing a novel and comprehensive perspective on heavy metal recovery. It aims to bridge existing gaps in literature and advance the development of effective recovery methodologies for HMCs.
Collapse
Affiliation(s)
- Wei Deng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; School of Engineering, University of Northern British Columbia, 3333 University Way, V2N 4Z9, British Columbia, Canada
| | - Xiaoli Lv
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhe Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Min Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Dada AO, Inyinbor AA, Atunwa BT, Gonuguntla S, Bello OS, Adekola FA, Pal U. Agrowaste-carbon and carbon-based nanocomposites for endocrine disruptive cationic dyes removal: A critical review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00860. [PMID: 39678013 PMCID: PMC11639365 DOI: 10.1016/j.btre.2024.e00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024]
Abstract
Dyes are considered to be pollutants that pose a considerable worldwide health risk, as they have been discovered as agents that affect the endocrine system. Adsorption is the most commonly used method for removing different substances since it is sustainable, flexible, affordable, and easy to use. Researchers have investigated the usage of agro-waste-based adsorbents that are ecologically friendly for the process of adsorption. This research has emphasized the potential of these adsorbents in developing carbon-based nanocomposites. Improved surface functionalization, great compatibility, and flexibility are beneficial uniqueness of carbon-based nanocomposites as well as a wide variety of applications. As a result, they are highly successful in removing cationic dyes. This paper specifically examines the environmentally friendly usage of activated carbons obtained from agricultural waste and the development of carbon-based-nanocomposites to adsorb positively charged dyes. Additionally, it offers an in-depth investigation of various cationic dyes, operating parameters, adsorption isotherms, kinetics, processes, and thermodynamic investigations. Further research is necessary to determine the effectiveness of carbon-based nanocomposites in removing new endocrine-disrupting pollutants. Additionally, these nanocomposites have the potential to be widely used in treating industrial effluents.
Collapse
Affiliation(s)
- Adewumi O. Dada
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of, Chemical Technology, Hyderabad, India
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 7: Affordable and Clean Energy, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 11: Sustainable Cities and Communities, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Adejumoke A. Inyinbor
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Bukola T. Atunwa
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Spandana Gonuguntla
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of, Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Olugbenga S. Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Folahan A. Adekola
- Department of Industrial Chemistry, P.M.B 1515, University of Ilorin, Ilorin, Nigeria
| | - Ujjwal Pal
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of, Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Wu L, Garg S, Waite TD. Progress and challenges in the use of electrochemical oxidation and reduction processes for heavy metals removal and recovery from wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135581. [PMID: 39216250 DOI: 10.1016/j.jhazmat.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Heavy metals-laden industrial wastewater represents both a threat to ecosystems and human health and, in some instances, a potential source of valuable metals however the presence of organic ligands that bind the metals in heavy metal complexes (HMCs) renders metal removal (and, where appropriate, recovery) difficult. Electrochemical-based oxidation and reduction processes represent a potentially promising means of degrading the organic ligands and reducing their ability to retain the metals in solution. In this state-of-the-art review, we provide a comprehensive overview of the current status on use of electrochemical redox technologies for organic ligand degradation and subsequent heavy metal removal and recovery from industrial wastewaters. The principles and degradation mechanism of common organic ligands by various types of electrochemical redox technologies are discussed in this review and consideration given to recent progress in electrode materials synthesis, cell architecture, and operation of electrochemical redox systems. Furthermore, we highlight the current challenges in application of electrochemical redox technologies for treatment of HMC-containing wastewaters including (i) limited understanding of the chemical composition of industrial wastewaters, (ii) constrained mass transfer process affecting the direct/indirect electron transfer, (iii) absence of approaches to convert recovered metal into high-value-added products, and (iv) restricted semi-or full-industrial-scale application of these technologies. Potential strategies for improvement are accordingly provided to guide efforts in addressing these challenges in future research.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Song J, Zhu L, Yu S, Li G, Wang D. The synergistic effect of adsorption and Fenton oxidation for organic pollutants in water remediation: an overview. RSC Adv 2024; 14:33489-33511. [PMID: 39439830 PMCID: PMC11495274 DOI: 10.1039/d4ra03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Water pollution from industrial sources presents a significant environmental challenge due to the presence of recalcitrant organic contaminants. These pollutants threaten human health and necessitate effective remediation strategies. This article reviewed the synergistic application of adsorption and Fenton oxidation for water treatment. Adsorption, a common technique, concentrates pollutants onto a solid surface, but offers limited degradation. Fenton oxidation, an advanced oxidation process (AOP), utilizes hydroxyl radicals for efficient organic compound breakdown. When adsorption and Fenton oxidation combine, adsorption pre-concentrates pollutants, boosting Fenton oxidation effectiveness. This review delves into the mechanisms and advantages of this integrated approach, highlighting its potential for enhanced removal of organic contaminants. The discussion encompasses the mechanisms of Fenton oxidation and the synergistic effects it has with adsorption. Additionally, various support materials employed in this combined process are explored, including carbon-based supports (activated carbon, graphene, carbon nanotubes and biochar), metal-organic frameworks (MOFs), and clays. Finally, the applicability of this approach to diverse wastewater streams, such as medical and industrial wastewater, is addressed. The review contains 105 references and summarizes the key findings and future perspectives for this promising water remediation technology.
Collapse
Affiliation(s)
- Junzhe Song
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Sheng Yu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Guobiao Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Dong Wang
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| |
Collapse
|
5
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
6
|
Zhao R, Yang W, Xu Y, Hong C, Bu Q, Bai Z, Niu M, Xu B, Wang J. Activation of persulfate with magnetic Fe 3O 4-municipal solid waste incineration bottom ash-derived zeolite core-shell materials for tetracycline hydrochloride degradation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3840-3852. [PMID: 37409802 DOI: 10.1080/09593330.2023.2234673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023]
Abstract
A novel and environmentally friendly magnetic iron zeolite (MIZ) core-shell were successfully fabricated using municipal solid waste incineration bottom ash-derived zeolite (MWZ) coated with Fe3O4 and innovatively investigated as a heterogeneous persulfate (PS) catalyst. The morphology and structure composition of as-prepared catalysts were characterised, and it was proved that the core-shell structure of MIZ was successfully synthesised by coating Fe3O4 uniformly on the MWZ surface. The tetracycline hydrochloride (TCH) degradation experiment indicate that the optimum equimolar amount of iron precursors was 3 mmol (MIZ-3). Compared with other systems, MIZ-3 possessed a superior catalytic performance, and the degradation efficiency of TCH (50 mg·L-1) in the MIZ-3/PS system reached 87.3%. The effects of reaction parameters on the catalytic activity of MIZ-3, including pH, initial concentration of TCH, temperature, the dosage of catalyst, and Na2S2O8, were assessed. The catalyst had high stability according to three recycling experiments and the leaching test of iron ions. Furthermore, the working mechanism of the MIZ-3/PS system to TCH was discussed. The electron spin resonance (ESR) results demonstrated that the reactive radicals generated in the MIZ-3/PS system were sulphate radical (S O 4 - ∙ ) and hydroxyl radical (•OH). This work provided a novel strategy for TCH degradation under PS with a broad perspective on the fabrication of non-toxic and low-cost catalysts in practical wastewater treatment.
Collapse
Affiliation(s)
- Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Weiwei Yang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Youmei Xu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Chen Hong
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Zhuoshu Bai
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Mengyao Niu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Bin Xu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| | - Jianbing Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, People's Republic of China
| |
Collapse
|
7
|
Van Nguyen H, Tung Pham S, Vu TN, Van Nguyen H, La DD. Effective treatment of 2,4,6-trinitrotoluene from aqueous media using a sono-photo-Fenton-like process with a zero-valent iron nanoparticle (nZVI) catalyst. RSC Adv 2024; 14:23720-23729. [PMID: 39077310 PMCID: PMC11284922 DOI: 10.1039/d4ra03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
In this study, we examine the effectiveness of using a combination of a sono-photo-Fenton-like procedure and nano zero-valent iron catalyst (nZVI) to treat 2,4,6-trinitrotoluene (TNT) in an aquatic environment. Zero-valent iron particles were generated by a chemical reduction technique. nZVI nanoparticles were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) to characterize the nanocatalyst. The resulting nZVI nanoparticles were used as an addition in a sono-photo-Fenton method to remediate an aqueous solution contaminated with TNT. Furthermore, influences of operational factors such as temperature, catalyst dosage, wavelength, ultraviolet power, ultrasonic frequency and power, pH level, H2O2/nZVI ratio, initial TNT concentration, and reaction duration on the treatment of TNT were investigated. Under the conditions of an ideal pH of 3, temperature range of 40-45 °C, concentration of 50 mg per L TNT, dose of 2 mM of nZVI, and ratio of H2O2/Fe0 of 20, a treatment efficiency of 95.2% was achieved after a duration of 30 minutes. The sono-photo-Fenton process combined with nZVI showed a higher TNT removal efficiency compared to the Fenton, sono-Fenton, and photo-Fenton processes under the same conditions. Moreover, it promises a potential solution to treat TNT at the pilot scale while allowing reuse of the nZVI catalyst and the limitation of sludge.
Collapse
Affiliation(s)
| | | | | | | | - Duong Duc La
- Institute of Chemistry and Materials Hanoi Vietnam
| |
Collapse
|
8
|
Ikram M, Hu C, Zhou Y, Gao Y. Bimetallic Photo-Activated and Steerable Janus Micromotors as Active Microcleaners for Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33439-33450. [PMID: 38889105 DOI: 10.1021/acsami.4c04612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Photoactive colloidal motors whose motion can be controlled and even programed via external magnetic fields have significant potential in practical applications extending from biomedical fields to environmental remediation. Herein, we report a "three in one" strategy in a Co/Zn-TPM (3-trimethoxysilyl propyl methacrylate) bimetallic Janus colloidal micromotor (BMT-micromotor) which can be controlled by an optical field, chemical fuel, and magnetic field. The speed of the micromotors can be tuned by light intensity and with the concentration of the chemical fuel of H2O2, while it could be steered and programed through magnetic field due to the presence of Co in the bimetallic part. Finally, the BMT-micromotors were employed to effectively remove rubidium metal ions and organic dyes (methylene blue and rhodamine b). Benefited of excellent mobility, multiple active sites, and hierarchical morphology, the micromotors exhibit excellent adsorption capacity of 103 mg·g-1 to Rb metal ions and high photodegradation efficiency toward organic dyes in the presence of a lower concentration of H2O2. The experimental characterizations and DFT calculations confirmed the strong interaction of Rb metal ions on the surface of BMT-micromotors and the excellent decomposition of H2O2 which enhanced the photodegradation process. We expect the combination of light and fuel sensitivity with magnetic controllability to unlock an excess of opportunities for the application of BMT-micromotors in water treatments.
Collapse
Affiliation(s)
- Muhammad Ikram
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
| | - Chao Hu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
| | - Yongquan Zhou
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
9
|
Zhou D, Li Z, Hu X, Chen L, Zhu M. Single Atom Catalyst in Persulfate Oxidation Reaction: From Atom Species to Substance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311691. [PMID: 38440836 DOI: 10.1002/smll.202311691] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Indexed: 03/06/2024]
Abstract
With maximum utilization of active metal sites, more and more researchers have reported using single atom catalysts (SACs) to activate persulfate (PS) for organic pollutants removal. In SACs, single metal atoms (Fe, Co, Cu, Mn, etc.) and different substrates (porous carbon, biochar, graphene oxide, carbon nitride, MOF, MoS2, and others) are the basic structural. Metal single atoms, substances, and connected chemical bonds all have a great influence on the electronic structures that directly affect the activation process of PS and degradation efficiency to organic pollutants. However, there are few relevant reviews about the interaction between metal single atoms and substances during PS activation process. In this review, the SACs with different metal species and substrates are summarized to investigate the metal-support interaction and evaluate their effects on PS oxidation reaction process. Furthermore, how metal atoms and substrates affect the reactive species and degradation pathways are also discussed. Finally, the challenges and prospects of SACs in PS-AOPs are proposed.
Collapse
Affiliation(s)
- Daixi Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P. R. China
| |
Collapse
|
10
|
Li L, Wang M, Pan Y, Liu B, Chen B, Zhang M, Liu X, Wang Z. Simultaneous decomplexation of Pb-EDTA and elimination of free Pb ions by MoS 2/H 2O 2: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134292. [PMID: 38631254 DOI: 10.1016/j.jhazmat.2024.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The critical challenge of effectively removing Pb-EDTA complexes and Pb(II) ions from wastewater is pivotal for environmental remediation. This research introduces a cutting-edge bulk-MoS2/H2O2 system designed for the simultaneous decomplexation of Pb-EDTA complexes and extraction of free Pb(II) ions, streamlining the process by eliminating the need for subsequent treatment stages. The system exhibits outstanding efficiency, achieving 98.1% decomplexation of Pb-EDTA and 98.6% removal of Pb. Its effectiveness is primarily due to the generation of reactive oxygen species, notably •OH and O2•- radicals, facilitated by bulk-MoS2 and H2O2. Key operational parameters such as reagent dosages, Pb(II): EDTA molar ratios, solution pH, and the presence of coexisting ions were meticulously evaluated to determine their impact on the system's performance. Through a suite of analytical techniques, the study confirmed the disruption of Pb-O and Pb-N bonds, further elucidating the decomplexation process. It also underscored the synergistic role of bulk-MoS2's adsorption properties and the formation of PbMoO4-like precipitates in enhancing Pb elimination. Demonstrating the bulk-MoS2/H2O2 system as a robust, one-step solution that meets stringent Pb emission standards, this study provides in-depth insights into the removal mechanisms of Pb-EDTA, affirming its potential for broader application in wastewater treatment practices.
Collapse
Affiliation(s)
- Li Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Haghmohammadi M, Sajjadi N, Beni AA, Hakimzadeh SM, Nezarat A, Asl SD. Synthesis of activated carbon/magnetite nanocatalyst for sono-Fenton-like degradation process of 4-chlorophenol in an ultrasonic reactor and optimization using response surface method. JOURNAL OF WATER PROCESS ENGINEERING 2023; 55:104216. [DOI: 10.1016/j.jwpe.2023.104216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
|
12
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
13
|
Gu Y, Sun Y, Zheng W. Novel strategy for copper precipitation from cupric complexes wastewater: Catalytic oxidation or reduction self-decomplexation? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131183. [PMID: 36966623 DOI: 10.1016/j.jhazmat.2023.131183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Cupric (Cu(II)) complexes in industrial wastewater are responsible for the failure of conventional alkaline precipitation, but the properties of cuprous (Cu(I)) complexes at alkaline circumstance have not been focused. This report proposed a novel strategy for the remediation of Cu(II)-complexed wastewater by coupling alkaline precipitation with green benign reductant, namely, hydroxylamine hydrochloride (HA). This remediation process (HA-OH) exhibits superior Cu removal efficiency that cannot be achieved with the same dosage of oxidants (3 mM). The possibility of Cu(I) activated O2 catalysis and self-decomplexation precipitation were investigated, and the results identified that 1O2 was generated from Cu(II)/Cu(I) cycle, but it was insufficient to annihilate organic ligands. Cu(I) self-decomplexation was the dominate mechanism of Cu removal. For real industrial wastewater, HA-OH process can realize the efficient Cu2O precipitation and Cu recovery. This novel strategy utilized intrinsic pollutant in wastewater without introducing other metals, complicated materials, and expensive equipment, broadening the insight for the remediation of Cu(II)-complexed wastewater.
Collapse
Affiliation(s)
- Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Ji X, Liang H, Hu S, Yang B, Xiao K, Yu G. Highly efficient decomplexation of chelated nickel and copper effluent through CuO-CeO 2-Co 3O 4 nanocatalyst loaded on ceramic membrane. CHEMOSPHERE 2023; 334:138981. [PMID: 37209848 DOI: 10.1016/j.chemosphere.2023.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
A novel CuO-CeO2-Co3O4 nanocatalyst loaded on Al2O3 ceramic composite membrane (CCM-S) was synthesized through spraying-calcination method, which can be beneficial to the engineering application of scattered granular catalyst. BET and FESEM-EDX testing revealed that CCM-S possessed a porous character with high BET surface area of 22.4 m2/g and flat modified surface with extremely fine particle aggregation. The CCM-S calcined above 500 °C presented excellent anti-dissolution effect due to the formation of crystals. XPS indicated that the composite nanocatalyst possessed the variable valence states, which were conducive to exert the catalytic effect of Fenton-like reaction. Subsequently, the effects of experimental parameters including fabricate method, calcination temperature, H2O2 dosage, initial pH value, and CCM-S amount were further investigated considering the removal efficiency of Ni(II)-complex and COD after decomplexation and precipitation (pH = 10.5) treatment within 90 min. Under the optimal reaction condition, the residual Ni(II)-complex and Cu(II)-complex concentration from actual wastewater was all lower than 0.18 mg/L and 0.27 mg/L, respectively; meanwhile, the removal efficiency of COD was all higher than 50% in the mixed electroless plating effluent. Besides, the CCM-S could still maintain high catalytic activity after a six-cycle test, and the removal efficiency was slightly declined from 99.82% to 88.11%. These outcomes indicated that CCM-S/H2O2 system was provided with a potential applicability on treatment of real chelated metal wastewater.
Collapse
Affiliation(s)
- Xianhua Ji
- Jiangsu Jingyuan Environmental Protection Co., Ltd, Nantong, 226000, PR China; School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Huiyu Liang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sukai Hu
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Ke Xiao
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environmental Ecology, Beijing Normal University, Zhuhai, 519085, PR China.
| |
Collapse
|
15
|
Li X, Bai Y, Shi X, Chang S, Tian S, He M, Su N, Luo P, Pu W, Pan Z. A review of advanced oxidation process towards organic pollutants and its potential application in fracturing flowback fluid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45643-45676. [PMID: 36823463 DOI: 10.1007/s11356-023-25191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Fracturing flowback fluid (FFF) including various kinds of organic pollutants that do harms to people and new treatments are urgently needed. Advanced oxidation processes (AOPs) are suitable methods in consideration with molecular weight, removal cost and efficiency. Here, we summarize the recent studies about AOP treatments towards organic pollutants and discuss the application prospects in treatment of FFF. Immobilization and loading methods of catalysts, evaluation method of degradation of FFF, and continuous treatment process flow are discussed in this review. In conclusion, further studies are urgently needed in aspects of catalyst loading methods, macromolecule organic evaluation methods, industrial process, and pathways of macromolecule organics' decomposition.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Yang Bai
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xian Shi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Chang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shuting Tian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Meiming He
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Na Su
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Pingya Luo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wanfen Pu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China.
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Zhicheng Pan
- National Postdoctoral Research Station, Haitian Water Group Co., Ltd, Chengdu, 610041, China
| |
Collapse
|
16
|
Tang F, Wang Y, Li J, Sun S, Su Y, Chen H, Cui W, Zhao C, Liu Q. Pollution characteristics of groundwater in an agricultural hormone-contaminated site and implementation of Fenton oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35670-35682. [PMID: 36538219 DOI: 10.1007/s11356-022-24734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The groundwater polluted by an agricultural hormone site was taken as the research object, and a total of 7 groundwater samples were collected at different locations in the plant. The main pollutants in the research area were determined to be extractable petroleum hydrocarbons (C10-C40); 1,2-dichloroethane; 1,1,2-trichloroethane; carbon tetrachloride; vinyl chloride, and chloroform; the maximum content of these pollutants can reach 271 mg/L, 1.68 × 107 µg/L, 1.56 × 104 µg/L, 9.53 × 104 µg/L, 6.58 × 104 µg/L, and 4.81 × 104 µg/L, respectively. Aiming at the problems of groundwater pollution in this area, two sets of oxidation experiments have been carried out. The addition of NaHSO3 modified Fenton oxidation system was used in this contaminated water, which enhanced (2.2 ~ 46.7%) chemical oxygen demand (COD) removal rate. The highest removal rate of extractable petroleum hydrocarbons (C10-C40) can reach 99%. And the degradation rate of chlorinated hydrocarbon pollutants can reach 99% to 100%, which almost achieved the purpose of complete removal. In the NaHSO3 modified Fenton oxidation system, the addition of NaHSO3 accelerates the cycle of Fe3+/Fe2+ and ensures the continuous existence of Fe2+ in the reaction system, thereby producing more ·OH and further oxidizing and degrading organic pollutants. Our work has provided important insights for this economically important treatment of this type water body and laid the foundation for the engineering of this method.
Collapse
Affiliation(s)
- Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Jing Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Wu Cui
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Huangdao District, No. 66 Changjiang West Road, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| |
Collapse
|
17
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023; 62:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Since the insight to fuse Fenton chemistry and nanomedicine into cancer therapy, great signs of progress have been made in the field of chemodynamic therapy (CDT). However, the exact mechanism of CDT is obscured by the unique tumor chemical environment and inevitable nanoparticle-cell interactions, thus impeding further development. In this Scientific Perspective, the significance of CDT is clarified, the complex mechanism is deconstructed into primitive chemical and biological interactions, and the mechanism research directions based on the chemical kinetics and biological signaling pathways are discussed in detail. Moreover, beneficial outlooks are presented to enlighten the evolution of next-generation CDT. Hopefully, this Scientific Perspective can inspire new ideas and advances for CDT and provide a reference for breaking down the interdisciplinary barriers in the field of nanomedicine.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
18
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202210415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
19
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Rando G, Sfameni S, Plutino MR. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2022; 9:gels9010009. [PMID: 36661777 PMCID: PMC9857570 DOI: 10.3390/gels9010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Water quality and disposability are among the main challenges that governments and societies will outside during the next years due to their close relationship to population growth and urbanization and their direct influence on the environment and socio-economic development. Potable water suitable for human consumption is a key resource that, unfortunately, is strongly limited by anthropogenic pollution and climate change. In this regard, new groups of compounds, referred to as emerging contaminants, represent a risk to human health and living species; they have already been identified in water bodies as a result of increased industrialization. Pesticides, cosmetics, personal care products, pharmaceuticals, organic dyes, and other man-made chemicals indispensable for modern society are among the emerging pollutants of difficult remediation by traditional methods of wastewater treatment. However, the majority of the currently used waste management and remediation techniques require significant amounts of energy and chemicals, which can themselves be sources of secondary pollution. Therefore, this review reported newly advanced, efficient, and sustainable techniques and approaches for water purification. In particular, new advancements in sustainable membrane-based filtration technologies are discussed, together with their modification through a rational safe-by-design to modulate their hydrophilicity, porosity, surface characteristics, and adsorption performances. Thus, their preparation by the use of biopolymer-based gels is described, as well as their blending with functional cross-linkers or nanofillers or by advanced and innovative approaches, such as electrospinning.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
21
|
Li G, Zhang L, Xu P, Jiang S, Bi Q, Xue J. Hydrothermal synthesis of a 3-D SnO2 nanoflower electrode with C and N co-doped interlayer for the degradation of real cyanide wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Li T, He S, Kou L, Peng J, Liu H, Zou W, Cao Z, Wang T. Highly efficient Cu-EDTA decomplexation by Ag/AgCl modified MIL-53(Fe) under Xe lamp: Z-scheme configuration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Zhou H, Yang J, Xu J, Han B, Zhu X, Jiang C, Wang Y. Synergistic effect of visible-light-driven FeOOH@Bi2MoO6 for removal of ciprofloxacin over a wide pH range: Efficient separation of photogenerated carriers and fast Fe(III)/Fe(II) cycling. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Gong C, Zhai J, Wang X, Zhu W, Yang D, Luo Y, Gao X. Synergistic improving photo-Fenton and photo-catalytic degradation of carbamazepine over FeS 2/Fe 2O 3/organic acid with H 2O 2in-situ generation. CHEMOSPHERE 2022; 307:136199. [PMID: 36030937 DOI: 10.1016/j.chemosphere.2022.136199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Herein, a heterogeneous photo-Fenton and photo-catalytic system was constructed using oxide pyrite (FeS2/Fe2O3) mineral and organic acids including tartaric acid (TA), ascorbic acid (AA), and citric acid (CA). In the proposed system, FeS2/Fe2O3 can be successfully activated through irradiation to generate photogenerated carriers, which generated H2O2in-situ through the reduction reactions between e- and O2. The addition of organic acids enhanced the dissolution of iron from FeS2/Fe2O3. Based on the iron and in-situ generated H2O2, •OH was produced through a photo-Fenton reaction. Furthermore, h+, e-, and •O2-, which were generated through the photo-catalytic activation of FeS2/Fe2O3, also played a certain role in the degradation of carbamazepine (CBZ). Therefore, the synergistic photo-Fenton and photo-catalytic reaction improved the degradation of CBZ, with the degradation efficiencies of 86%, 62%, and 68% in FeS2/Fe2O3/TA, FeS2/Fe2O3/AA, and FeS2/Fe2O3/CA systems, respectively. This investigation provides an innovative strategy for the removal of organic pollutants using natural minerals.
Collapse
Affiliation(s)
- Chao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, PR China.
| | - Jinli Zhai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, PR China
| | - Xi Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, PR China
| | - Wenjie Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, PR China
| | - Daoli Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, PR China
| | - Xiaoya Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, PR China.
| |
Collapse
|
25
|
Muzenda C, Nkwachukwu OV, Arotiba OA. Synthetic Ilmenite (FeTiO 3) Nanoparticles as a Heterogeneous Electro-Fenton Catalyst for the Degradation of Tetracycline in Wastewater. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluchi V. Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Omotayo A. Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
26
|
Ultrasonic Activated Biochar and Its Removal of Harmful Substances in Environment. Microorganisms 2022; 10:microorganisms10081593. [PMID: 36014011 PMCID: PMC9412848 DOI: 10.3390/microorganisms10081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Biochar has been widely used in the fields of environment and energy, and green preparation can make biochar-based materials more environmentally friendly. Particularly, in the low-temperature pyrolysis of biochar, labile C with low biological toxicity is the main influencing factor of bacteria in soil. Therefore, it is worth studying to develop the fabrication technology of low-temperature pyrolysis biochar with rich pore structure. The mechanical effect of ultrasonic cavitation is considered to be an effective strategy for the preparation of biochar. However, the sonochemical effects on biochar remain to be studied. In this review, ultrasonic modification and ultrasonic-chemical modification on biochar has been reviewed. Metal oxide/biochar composites can also be obtained by an ultrasonic-chemical method. It is worth mentioning that there have been some reports on the regeneration of biochar by ultrasound. In addition to ultrasonic preparation of biochar, ultrasound can also trigger the sonocatalytic performance and promote the adsorption ability of biochar for the removal of harmful substances. The catalytic mechanism of ultrasound/biochar needs to be further investigated. For application, biochar prepared by ultrasound has been used for the removal of heavy metals in water, the adsorption of carbon dioxide, and soil remediation.
Collapse
|
27
|
Maqsood Q, Hussain N, Mumtaz M, Bilal M, Iqbal HMN. Novel strategies and advancement in reducing heavy metals from the contaminated environment. Arch Microbiol 2022; 204:478. [PMID: 35831495 DOI: 10.1007/s00203-022-03087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
The most contemporary ecological issues are the dumping of unprocessed factories' effluent. As a result, there is an increasing demand for creative, practical, environmentally acceptable, and inexpensive methodologies to remediate inorganic metals (Hg, Cr, Pb, and Cd) liquidated into the atmosphere, protecting ecosystems. Latest innovations in biological metals have driven natural treatment as a viable substitute for traditional approaches in this area. To eliminate pesticide remains from soil/water sites, technologies such as oxidation, burning, adsorption, and microbial degradation have been established. Bioremediation is a more cost-effective and ecologically responsible means of removing heavy metals than conventional alternatives. As a result, microorganisms have emerged as a necessary component of methyl breakdown and detoxification via metabolic reactions and hereditary characteristics. The utmost operative variant for confiscating substantial metals commencing contaminated soil was A. niger, which had a maximum bioaccumulation efficiency of 98% (Cd) and 43% (Cr). Biosensor bacteria are both environmentally sustainable and cost-effective. As a result, microbes have a range of metal absorption processes that allow them to have higher metal biosorption capabilities. Additionally, the biosorption potential of bacterium, fungus, biofilm, and algae, inherently handled microorganisms that immobilized microbial cells for the elimination of heavy metals, was reviewed in this study. Furthermore, we discuss some of the challenges and opportunities associated with producing effective heavy metal removal techniques, such as those that employ different types of nanoparticles.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
28
|
Li L, Guo Q, Lv B, Zheng M, Zhan W, Liu Y, Xu W, Wang R, Zeng H, Mao B. Surface modified silver/magnetite nanocomposite activating hydrogen peroxide for efficient degradation of chlorophenols. J Colloid Interface Sci 2022; 617:246-256. [DOI: 10.1016/j.jcis.2022.02.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/25/2023]
|
29
|
Tang W, Ma N, Fei C, Wang Y. Regulation of Hydroxyl Radicals Generated by Fe−N−C in Heterogeneous Electro‐Fenton Reaction for Degradation of Organic Pollutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wujian Tang
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Nannan Ma
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Chuanqi Fei
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Yinling Wang
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| |
Collapse
|
30
|
Shi W, Cao Y, Chai X, Zhao Q, Geng Y, Liu D, Tian S. Potential health risks of the interaction of microplastics and lung surfactant. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128109. [PMID: 35236033 DOI: 10.1016/j.jhazmat.2021.128109] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as pollutants of environmental concern, are correlated with increased risk of various respiratory diseases. Nevertheless, whether or not MPs have adverse influences on the interfacial properties of lung surfactant (LS), and its effect on the generation of reactive oxygen species are poorly understood. In the present study, natural LS extracted from porcine lungs was used to investigate the interaction with polystyrene as a representative MPs. The results showed that the phase behavior, surface tension, and membrane structure of the LS were altered in the presence of polystyrene. Adsorption experiments demonstrated that in the mixed system of polystyrene and LS (the main active ingredients are phospholipids and proteins), adsorption of phospholipid components by polystyrene was notably higher than that of proteins. Moreover, polystyrene can accelerate the conversion between ascorbic acid and deoxyascorbic acid, thereby producing hydrogen peroxide (HOOH) in simulated lung fluid (containing LS) and further giving rise to an increase in the content of hydroxyl radicals (•OH). This work provides new insight into the potential hazard of MPs in human respiratory system, which is helpful for deeply understanding the unfavorable physicochemical effects of MPs exposure and the role of inhaled MPs on lung health.
Collapse
Affiliation(s)
- Weimeng Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiaolong Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
31
|
Lin R, Li Y, Yong T, Cao W, Wu J, Shen Y. Synergistic effects of oxidation, coagulation and adsorption in the integrated fenton-based process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114460. [PMID: 35026715 DOI: 10.1016/j.jenvman.2022.114460] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fenton process is the most popular for wastewater treatment among all available advanced oxidation processes (AOPs). Numerous endeavors have been devoted to improving the oxidation efficiency of Fenton reaction in terms of promoting ·OH generation, accelerating iron redox cycle and extending applicable pH range. However, in addition to oxidation, coagulation and adsorption also simultaneously occur in the Fenton process, which play important role in the removal of pollutants. Rapid progress has revealed the synergistic effects of oxidation, coagulation and adsorption in the Fenton process, providing new ideas for the treatment of complex and refractory wastewater. Based on available studies, this review is the first to systematically summarize the research progress regarding the synergistic effects of oxidation, coagulation and adsorption in the integrated Fenton-based processes for wastewater treatment. The involved mechanism of the synergistic effects in different Fenton processes (homogeneous Fenton, heterogeneous Fenton and physical field-assistant Fenton coupling process) are critically reviewed. Furthermore, special attention has been paid to the representative applications of the synergistic effects in wastewater treatment (such as industrial organic wastewater, landfill leachate and heavy metal-organic complexes, etc.), particularly focusing on the operation parameters and removal performance. Finally, a conclusion of the review and subsequently, perspectives are given for possible research directions. We believe this review can provide useful information for researchers and end-users involved in the development and application of the Fenton process in wastewater treatment.
Collapse
Affiliation(s)
- Ruoyun Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Wenxing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Junsheng Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yafei Shen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| |
Collapse
|
32
|
Qiu S, Tang W, Yang S, Xie J, Yu D, Garcia-Rodriguez O, Qu J, Bai S, Deng F. A microbubble-assisted rotary tubular titanium cathode for boosting Fenton's reagents in the electro-Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127403. [PMID: 34879586 DOI: 10.1016/j.jhazmat.2021.127403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
To improve cathodic H2O2 accumulation and Fe3+ reduction synchronously in the electro-Fenton (EF) process, a microbubble-assisted rotary tubular titanium cathode (MRTTC) was designed for the first time. By utilizing this MRTTC, H2O2 accumulation improved by 4.05-fold, along with a 200% enhancement in iron reduction compared to the conventional EF process. This promotion is mainly attributed to a considerably higher oxygen mass transfer, which reduces the thickness of the adhered diffusion layer. The oxygen mass transfer coefficient (KLa) also improved from 0.0073 s-1 to 0.012 s-1 at a rotational speed of 300 rpm. In addition, the microbubble-assisted cathode further improved the KLa to 0.047 s-1. The synergistic effect between the rotating and microbubble-assisted cathodes further intensified H2O2 accumulation in MRTTC. Apart from H2O2 promotion, the iron reduction rate was elevated because the newly formed O2-• provided an additional reduction pathway for Fe3+ reduction in addition to the cathodic path. The effectiveness of MRTTC was confirmed by treating a benchmark organic pollutant, sulfamerazine (SMR), where approximately 100% SMR decay was obtained in 3 h. The results show that MRTTC is a novel and promising design in EF for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Shan Qiu
- State Key Laboratory of Urban Water Resources Centre, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Shilin Yang
- State Key Laboratory of Urban Water Resources Centre, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinyu Xie
- State Key Laboratory of Urban Water Resources Centre, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Difei Yu
- State Key Laboratory of Urban Water Resources Centre, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Orlando Garcia-Rodriguez
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore, 117576, Singapore
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resources Centre, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resources Centre, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
33
|
Sun Y, Gu Y, Zhang P. Adsorption properties and recognition mechanisms of a novel surface imprinted polymer for selective removal of Cu(II)-citrate complexes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127735. [PMID: 34823959 DOI: 10.1016/j.jhazmat.2021.127735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Cu(II)-citrate (Cu(II)-CA) complex, as one of the components in plating solutions, increases the difficulty of Cu(II) treatment due to its stable structure and high mobility. In this work, a novel surface imprinted polymer (Cu-CA-SIP) for selective removal of Cu(II)-CA complex from aqueous solution is synthesized by using polyethyleneimine (PEI) grafted onto chloromethylated polystyrene (CMP) microspheres. Cu(II)-CA anions are successfully imprinted with the molar ration of 1:1 by Cu-CA-SIP at initial pH 4.0. Nearly 100% removal rate can be achieved even at low Cu(II)-CA concentration (0.5 mmol/L), and the maximum Cu(II) uptake of Cu-CA-SIP reaches 1.38 mmol/g at 303 K. In Cu(II)/Fe(III)-CA, Cu(II)/Ni(II)-CA, Cu(II)/Zn(II)-CA and Cu(II)/Cd(II)-CA systems, the relative selectivity coefficients of Cu-CA-SIP for Cu(II)-CA are 9.66, 2.32, 1.40 and 44.55, respectively. Moreover, Cu-CA-SIP can be retrieved with negligible loss of adsorption capacity after six times of reuse. The Cu-CA-SIP column can effectively treat the actual electroplating wastewater within 114 BV, and can still reach 104 BV after three dynamic cycles. Therefore, an innovative imprinted material is designed for the first time on the basis of coordination-configuration recognition mechanism for the treatment of electroplating wastewater, providing a new insight in developing surface imprinted polymer in environmental remediation.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Pengyu Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
34
|
Liu J, Peng C, Shi X. Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118565. [PMID: 34822943 DOI: 10.1016/j.envpol.2021.118565] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Fe-based catalysts as low-cost, high-efficiency, and non-toxic materials display superior catalytic performances in activating hydrogen peroxide, persulfate (PS), peracetic acid (PAA), percarbonate (PC), and ozone to degrade organic contaminants in aqueous solutions. They mainly include ferrous salts, zero-valent iron, iron-metal composites, iron sulfides, iron oxyhydroxides, iron oxides, and supported iron-based catalysts, which have been widely applied in advanced oxidation processes (AOPs). However, there is lack of a comprehensive review systematically reporting their synthesis, characterization, and applications. It is imperative to evaluate the catalytic performances of various Fe-based catalysts in diverse AOPs systems and reveal the activation mechanisms of different oxidants by Fe-based catalysts. This work detailedly summarizes the synthesis methods and characterization technologies of Fe-based catalysts. This paper critically evaluates the catalytic performances of Fe-based catalysts in diverse AOPs systems. The effects of solution pH, reaction temperature, coexisting ions, oxidant concentration, catalyst dosage, and external energy on the degradation of organic contaminants in the Fe-based catalyst/oxidant systems and the stability of Fe-based catalysts are also discussed. The activation mechanisms of various oxidants and the degradation pathways of organic contaminants in the Fe-based catalyst/oxidant systems are revealed by a series of novel detection methods and characterization technologies. Future research prospects on the potential preparation means of Fe-based catalysts, practical applications, assistive technologies, and impact in AOPs are proposed.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Changsheng Peng
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
35
|
Li Y, Pang J, Bu XH. Multi-functional metal-organic frameworks for detection and removal of water pollutions. Chem Commun (Camb) 2022; 58:7890-7908. [DOI: 10.1039/d2cc02738k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water pollutions have caused serious threats to the aquatic environment and human health, it is of great significance to monitor and control their contents in water. Compared with the traditional...
Collapse
|
36
|
Tong J, Zhu Z, He M, Zhou P, Jiang Y, Wang Z. Electrochemical degradation kinetics of cleaning wastewater containing ethylene diamine tetraacetic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS. Simultaneous photocatalytic reduction of hexavalent chromium and oxidation of p-cresol over AgO decorated on fibrous silica zirconia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117490. [PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
Collapse
Affiliation(s)
- F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|