1
|
Wang Q, Hui L, Zhang Y, Guo W, Zhu C, Zhao M, Yang Q, Qu Y, Zhang Z. Nanocellulose composites with enhanced mechanical and flame-retardant properties based on grafting of inorganic organic/multilayer core-shell matter - MSNs-TMSB/DA/TOCNF. Carbohydr Polym 2025; 359:123576. [PMID: 40306782 DOI: 10.1016/j.carbpol.2025.123576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Flame retardant materials are essential for safety, yet their development is often hindered by trade-offs between efficiency, aging resistance, and mechanical properties. Traditional organic flame retardants are inefficient and degrade over time, while inorganic alternatives, despite their effectiveness, are difficult to integrate into composites. Here we showed the synthesis of a novel inorganic silica-based flame retardant, PDA@MSNs-TMSB, which chemically modified nanocellulose fibrils, enhancing flame retardancy, aging resistance, and toughness without compromising integrity. The results showed that, compared to pure TOCNF, the modified nanocellulose materials (TOCNF-PDA@MSNs-TMSB) exhibited a higher limiting oxygen index (46.5 %), reaching the UL-94 V-0 level (GB) rating with self-extinguishing behavior and no flame propagation. In contrast, pure TOCNF had a limiting oxygen index of only 22 % and burned rapidly upon ignition which did not achieve the UL-94 V-0 level rating. The toughness of the modified TOCNF-PDA@MSNs-TMSB was superior to that of pure TOCNF, representing a 37.5 % increase. Combining powerful tenacity, high flame retardancy, and better aging resistance, the flame retardant nanocellulose material from renewable resource shows great potential for flame retardant applications and emits no toxic byproducts post-combustion.
Collapse
Affiliation(s)
- Qingshuo Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yiyi Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Guo
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chengfeng Zhu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingyue Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Yang
- Shandong Longde Composite Material Technology Co., Ltd., Linqu 262600, China
| | - Yu Qu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zitong Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Yu H, Lu J, Yan J, Bai T, Niu Z, Ye B, Cheng W, Wang D, Huan S, Han G. Selective Emission Fabric for Indoor and Outdoor Passive Radiative Cooling in Personal Thermal Management. NANO-MICRO LETTERS 2025; 17:192. [PMID: 40102320 PMCID: PMC11920469 DOI: 10.1007/s40820-025-01713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Radiative cooling fabric creates a thermally comfortable environment without energy input, providing a sustainable approach to personal thermal management. However, most currently reported fabrics mainly focus on outdoor cooling, ignoring to achieve simultaneous cooling both indoors and outdoors, thereby weakening the overall cooling performance. Herein, a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling. The fabric achieves 94% reflectance performance in the sunlight band (0.3-2.5 µm) and 6% in the mid-infrared band (2.5-25 µm), effectively minimizing heat absorption and radiation release obstruction. It also demonstrates 81% radiative emission performance in the atmospheric window band (8-13 µm) and 25% radiative transmission performance in the mid-infrared band (2.5-25 μm), providing 60 and 26 W m-2 net cooling power outdoors and indoors. In practical applications, the fabric achieves excellent indoor and outdoor human cooling, with temperatures 1.4-5.5 °C lower than typical polydimethylsiloxane film. This work proposes a novel design for the advanced radiative cooling fabric, offering significant potential to realize sustainable personal thermal management.
Collapse
Affiliation(s)
- Haijiao Yu
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Jiqing Lu
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Jie Yan
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Tian Bai
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Zhaoxuan Niu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, People's Republic of China
| | - Bin Ye
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
| | - Wanli Cheng
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Dong Wang
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| | - Guangping Han
- Key Laboratory of Bio-Based Material Science and Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
| |
Collapse
|
3
|
Yang X, Chen X, Su X, Cavaco-Paulo A, Wang H, Su J. Anti-biofouling membrane coated with polyvinyl alcohol/sodium carboxymethylcellulose/tannic acid hydrogel for efficient dye/salt separation. Int J Biol Macromol 2024; 282:136671. [PMID: 39423977 DOI: 10.1016/j.ijbiomac.2024.136671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Biofouling is the most severe challenge for separation membranes. In this study, a metal-organic framework (MOF)-based mixed-matrix membranes (MMMs) with polyvinyl alcohol (PVA)/sodium carboxymethylcellulose (CMC)/tannic acid (TA) hydrogel coating exhibited a comprehensive anti-biofouling property and high efficient for dye/salt separation. For the hydrogel layer, ethanol inhibited the cross-linking of the hydrogen bond between the PVA, CMC and TA, forming a uniform "hydrogel paint" applied to the membrane surface using the coating method. Subsequently, the hydrogen bond was re-established by evaporating the ethanol. The hydrogel coating could form a dense hydrated layer, endowing the membrane with excellent anti-fouling properties, including oil, proteins, and bacteria. For the MOF-based MMMs layer, the skeleton structure of polyvinylidene fluoride anchored the bimetallic MOF crystals to mitigate the phenomenon of "trade-off". The hydrogel-coated MOF-based MMMs showed excellent properties, such as the water permeability was ∼200 Lm-2 h-1, the rejection for Reactive Blue 19 was 100 %, the rejection for NaCl was 10.9 %, and it showed excellent stability for long-term service. Furthermore, the hydrogel-coated MOF-based MMMs presented a significant inhibitory effect on surface bacteria growth. In brief, this paper provided a new insight into preparing hydrogel-coated MOF-based MMMs, which had potential applications in separating dye/salt.
Collapse
Affiliation(s)
- Xue Yang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xinyi Chen
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaolei Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Souare M, Dong C, Xing T, Zhang J, Hu X. Efficient Separation of Oil/Water by a Biodegradable and Superhydrophobic Composite Based on Loofah and Rice Straw. MEMBRANES 2024; 14:243. [PMID: 39590629 PMCID: PMC11596540 DOI: 10.3390/membranes14110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Membrane filtration is one of the preferred choices for petroleum wastewater disposal due to its simplicity and low energy consumption. In this paper, a biodegradable superhydrophobic membrane based on loofah and rice straw (LF-RS) was prepared and modified with dodecyltriethoxysilane to improve its stability, morphology, and performance. The membrane showed an efficiency of 99.06% for oil/water separation with an average water flux of 2057.37 Lm-2h-1 and a tensile strength of 11.19 MPa. The tensile strength of the LF-RS membrane was 322.47% higher than that of the PVDF membrane and 126.58% higher than that of the commercially available nitrocellulose membrane. Through molecular simulations, we showed a 96.3% reduction in interaction energy between water and membrane post-modification, which is beneficial for increasing the contact angle and separation performance. This study provides an option for the large-scale, cost-effective fabrication of eco-friendly membranes for pollutant removal.
Collapse
Affiliation(s)
- Mamadou Souare
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
| | - Changqing Dong
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Tong Xing
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
- Datang Environment Industry Group Co., Ltd., Beijing 100080, China
| | - Junjiao Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;
| | - Xiaoying Hu
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
| |
Collapse
|
5
|
Liu J, Yao H, Zhang X, Chai X, Fu J. Electrospun PVDF/PVP Fibrous Membrane with Photocatalytic and Superhydrophilic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23169-23177. [PMID: 39446625 DOI: 10.1021/acs.langmuir.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Membrane separation technology is used to treat environmental wastewater, but during the treatment process, the occurrence of membrane fouling greatly affects the treatment efficiency. To address this phenomenon, improve membrane antipollution capabilities, and treat organic wastewater, photocatalysis and membrane separation technology have been coupled, forming a suitable and promising treatment method. Here, we propose a simple strategy to prepare a polyvinylidene fluoride/polyvinyl pyrrolidone nitrogen-doped titanium dioxide fibrous membrane (PVDF/PVP N-doped TiO2 fibrous membrane). The experimental results showed that PVDF and PVP mixed spinning made the fibrous membrane have a unique microstructure, and the superhydrophobic PVDF fibrous membrane was changed into superhydrophilic. In addition, electrospraying technology was used to attach TiO2 nanoparticles (NPs) to the fiber, and nitrogen (N) was doped in this process to improve the photocatalytic activity of the fibrous membrane. Finally, methyl blue solution was used as the target organic pollutant. Under the irradiation of a xenon lamp, 90.05% of methyl blue was removed within 90 min, indicating that the membrane had good photocatalytic performance. In a water contact angle test, the PVDF/PVP N-doped TiO2 fibrous membrane showed superhydrophilicity. The design of a fibrous membrane with high photocatalytic activity and superhydrophilicity properties has great potential for practical application in the purification of industrial wastewater.
Collapse
Affiliation(s)
- Jianxin Liu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Hengzhe Yao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaolei Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Xuedi Chai
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junlin Fu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
6
|
Yang X, Chen X, Su X, Cavaco-Paulo A, Wang H, Su J. Polydopamine bridging encapsulated laccase on MOF-based mixed-matrix membrane for selective dye/salt separation. Int J Biol Macromol 2024; 274:133387. [PMID: 38914384 DOI: 10.1016/j.ijbiomac.2024.133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Mixed-matrix membranes (MMMs) exhibit significant potential for dye/salt separation. However, overcoming the "trade-off" between permeability and selectivity, as well as membrane fouling, remains a formidable task. In this work, a biocatalytic membrane was prepared using polydopamine (PDA) as a "bridge" connecting the metal-organic framework (MOF)-based MMM and immobilized laccase. The MOF-based MMM featured an interconnected MOF anchoring on the polyvinylidene fluoride (PVDF) skeleton structure, effectively mitigating the "trade-off" phenomenon and enabling efficient separation of dyes and salts. Enzyme-MOF was in situ grown on the MOF-based MMM via coordination reactions between PDA and metal ion, effectively degrading the adhesion of organic pollutants and fouling, ensuring the long-term stable operation of the membrane. The Lac-MOF@PDA MMM exhibited excellent water permeability of 142.4 L·m-2·h-1, 100 % rejection for dye, and less than 10 % rejection for NaCl. Furthermore, the separation mechanism of Lac-MOF@PDA MMM was systematically investigated, and the results suggested a synergistic combination of rejection, adsorption and catalysis processes. This biocatalytic membrane with multiple sieving and biological catalysis is expected to pave a promising way for efficient wastewater treatment applications.
Collapse
Affiliation(s)
- Xue Yang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - XinYi Chen
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaolei Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Artur Cavaco-Paulo
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China
| | - Jing Su
- Jiangsu Engineering Technology Research Centre of Functional Textiles, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Yu J, Chen M, Hu N, Wang W, Lei L, Fan H, Müller‐Buschbaum P, Zhong Q. Long-Lasting Hydrogen Evolution and Efficient Dew Harvest Realized via Electrospinning Polyvinylidene Fluoride Membrane on Hybrid Hydrogels. SMALL SCIENCE 2024; 4:2400046. [PMID: 40212115 PMCID: PMC11935092 DOI: 10.1002/smsc.202400046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Indexed: 04/13/2025] Open
Abstract
Long-lasting hydrogen evolution and efficient dew harvest is realized via electrospinning a polyvinylidene fluoride (PVDF) membrane on hybrid hydrogels embedded with photocatalytic g-C3N4/Pt nanosheets. Due to the hindrance of water evaporation by the hydrophobic PVDF membrane, the drying process of the hybrid hydrogels significantly slows down. Hence, the g-C3N4/Pt nanosheets can continue working on photocatalytic splitting of the water molecules in the hydrogels. When the thickness of the PVDF membrane is 48 μm, the hydrogen evolution rate can reach 2,543 μmol h-1 g-1, which is 38% more than that of the hybrid hydrogel without covering. Therefore, the hybrid hydrogels covered with PVDF membrane are able to work with high efficiency for 12 h, sufficient for hydrogen evolution during the daytime. In addition, the hydrophobic PVDF membrane and hydrophilic hydrogels construct a Janus structure and induce a fast transport of water molecules from the hydrophobic to hydrophilic side. It is beneficial for the rapid collection of dew in the morning. Based on the long-lasting hydrogen evolution and efficient dew harvest, the present hybrid hydrogels covered with PVDF membrane are very suitable for the environment rich in solar resource and lack of water supply, such as desert or prairie.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province & Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of EducationZhejiang Sci‐Tech University928 Second AvenueHangzhou310018China
| | - Mengmeng Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province & Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of EducationZhejiang Sci‐Tech University928 Second AvenueHangzhou310018China
| | - Neng Hu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province & Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of EducationZhejiang Sci‐Tech University928 Second AvenueHangzhou310018China
| | - Weijia Wang
- State Key Laboratory of Solidification ProcessingSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Lin Lei
- State Key Laboratory of Solidification ProcessingSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Huiqing Fan
- State Key Laboratory of Solidification ProcessingSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Peter Müller‐Buschbaum
- TUM School of Natural SciencesDepartment of PhysicsChair for Functional MaterialsTechnical University of MunichJames‐Franck‐Str. 185748GarchingGermany
| | - Qi Zhong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province & Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of EducationZhejiang Sci‐Tech University928 Second AvenueHangzhou310018China
- TUM School of Natural SciencesDepartment of PhysicsChair for Functional MaterialsTechnical University of MunichJames‐Franck‐Str. 185748GarchingGermany
| |
Collapse
|
8
|
Yan X, Wang T, Yang H, Chen Y, Wang N, Sui Y, Gao G. Robust nanoparticles growth in the interior of porous sponges for efficient dye adsorption and emulsion separation. CHEMOSPHERE 2024; 357:142100. [PMID: 38657697 DOI: 10.1016/j.chemosphere.2024.142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Emulsified oils and dye contaminants already pose a huge threat to global ecosystems and human health. It is a significant research topic to develop efficient, rapid, versatile methods for emulsion separation and dye adsorption. The membrane material modified with common methods only modified the outer surface of the membrane, while the interior is hardly fully decorated. In this investigation, a solvent exchange method was used to in situ grow nanoparticles in the interior of a porous sponge. These nanoparticles were obtained with polyethyleneimine, gallic acid, and tannic acid via Michael addition and Schiff base reaction. The prepared nanoparticle-coated sponges provided efficient separation of dyes, emulsions, and complex contaminants. The separation efficiency of the dye reached 99.49%, and the separation efficiency of the emulsion was as high as 99.87% with a flux of 11140.3 L m-2 h-1. Furthermore, the maximum adsorption capacity reached 486.8 mg g-1 for cationic dyes and 182.1 mg g-1 for anionic dyes. More importantly, the nanoparticles were highly robust on the surface of the porous sponge, and the modified sponge could have long-term applications in hazardous environments. Overall, it is envisioned that the nanoparticles-modified porous sponge exhibited considerable potential for emulsion and dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Yan
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Tianyu Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Hongkun Yang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Chen
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ning Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Sui
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Guanghui Gao
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China.
| |
Collapse
|
9
|
Qing Q, Chen SY, Hu SZ, Li L, Huang T, Zhang N, Wang Y. Highly Efficient Photocatalytic Degradation of Organic Pollutants Using a Polyvinylidene Fluoride/Polyvinylpyrrolidone-Cuprous Oxide Composite Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1447-1460. [PMID: 38175822 DOI: 10.1021/acs.langmuir.3c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Enhancing the efficiency of photocatalysts in the removal of organic pollutants is of vital importance in wastewater treatment. In this work, a set of composite membranes that can be used for efficient removal of the organic dyes, such as methyl orange (MO), methylene blue (MB), and Congo red (CR), were prepared through coblending/electrospinning techniques using polyvinylidene fluoride (PVDF) as the substrate, polyvinylpyrrolidone (PVP) as the dispersing agent and wettability regulator, and cuprous oxide (Cu2O) as the photocatalyst. The results showed that Cu2O particles were well encapsulated in the electrospun PVDF/PVP fibers, and the composite membranes exhibited apparently enhanced hydrophilicity. Furthermore, compared with the pure Cu2O particles, the composite membranes not only showed a higher photocatalytic degradation ratio for MO (93.6%) but also showed a much higher degradation rate (62.4 mg/(mg·h)) in comparison with the other reported Cu2O-based composite photocatalytic materials in the literature. In addition, the membrane sample also had excellent recycling stability, and the retention rate of its removal ability maintained 92.1% after 5 times of recycling. Furthermore, the composite membranes also showed high removal ability toward MB and CR, with photocatalytic degradation ratios of 81.4 and 76.1%, respectively. This work indicates that the prepared PVDF/PVP-Cu2O composite membranes possess promising application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Qing Qing
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shang-Yu Chen
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shao-Zhong Hu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Ostadi M, Kamelian FS, Mohammadi T. Superhydrophilic micro/nano hierarchical functionalized-CuO/PVDF nanocomposite membranes with ultra-low fouling/biofouling performance for acetate wastewater treatment: MBR application. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
12
|
Hao M, Zhang T, Hu X, Chen Z, Yang B, Wang X, Liu Y, Wang R, Liu Y. Facile, green and scalable preparation of low-cost PET-PVDF felts for oil absorption and oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130804. [PMID: 36724629 DOI: 10.1016/j.jhazmat.2023.130804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/26/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
3D felt materials with pore structures have the advantages of high absorption performance and recyclability in oily wastewater treatment and chemical leakage. However, most of them were fabricated using either toxic organic solvents or complicated procedures. Herein, we report a facile, green, and scalable route for the fabrication of 3D composite felts with large pore structures by sequentially stirring and heating polyethylene terephthalate (PET) fibers and polyvinylidene fluoride (PVDF). The resulting PET-PVDF felt exhibits high oil absorption capacity to a variety of oil and organic solvents with a maximum saturated absorption capacity of 32 g/g. Additionally, it can be used to separate oil/water mixtures with a separation efficiency of 99.9% and separation flux of 89570 L m-2 h-1. Moreover, this felt shows excellent mechanical durability and chemical stability under acid, base, salt solution, and other harsh environments. The current study provides a promising approach for large-scale industrial oily wastewater separation.
Collapse
Affiliation(s)
- Ming Hao
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China; School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Tianyi Zhang
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Xiaodong Hu
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China; School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Zhijun Chen
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China; School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Bo Yang
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Xiaoxiao Wang
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Yanbo Liu
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China; School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Run Wang
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Yong Liu
- School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
13
|
Chen C, Li Z, Hu Y, Huang Q, Li X, Qing Y, Wu Y. Rosin acid and SiO 2 modified cotton fabric to prepare fluorine-free durable superhydrophobic coating for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129797. [PMID: 36027752 DOI: 10.1016/j.jhazmat.2022.129797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Currently, fluorides and long-chain aliphatic compounds are the most frequent low surface energy chemicals utilized in the preparation of superhydrophobic coatings, but associated environmental risks and instability restrict their potential application in oil-water separation. This research described a superhydrophobic coating based on rosin acid and SiO2 modified cotton fabric to overcome this challenge. By means of spray impregnation and UV-assisted click reaction, sulfhydryl modified rosin acid (RA), Octavinyl-POSS, and SiO2 were grafted onto the surface of cotton fabric to obtain RA-SiO2 superhydrophobic coating with rough surfaces such as lotus leaf and low surface energy. The RA-SiO2 superhydrophobic coating had favorable self-cleaning ability, and also adsorbed various light and heavy oils to achieve efficient separation of oil-water mixtures. The separation efficiency was 96.3% and the permeate flux was 6110.84 (L⋅m-2⋅h-1) after 10 repetitions. The RA-SiO2 superhydrophobic coating was found to be effective in separating oil-in-water and oil-in-water emulsions, and the separation mechanism was elaborated. In addition, it could effectively separate emulsions even after mechanical abrasion and chemical immersion, and had excellent stability. The fluorine-free and environmentally friendly low-cost superhydrophobic coating based on rosin acid is expected to play a significant potential in oil-water separation applications due to its excellent separation performance.
Collapse
Affiliation(s)
- Chaoqi Chen
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Zhaoshuang Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China.
| | - Yinchun Hu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Qin Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha 410004, China
| |
Collapse
|
14
|
Zaman H, Shah AUHA, Ali N, Zhou C, Khan A, Ali F, Tian CT, Bilal M. Magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composites nanomaterials with hydrophilic wettability for efficient oil-water separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115690. [PMID: 35834853 DOI: 10.1016/j.jenvman.2022.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Due to the environmental and production problems of emulsion, it is important to efficiently separate oil-water emulsion to meet the refinery requirement and clean up oil spills. Synthesis of a universal demulsifier is not an easy task because the physical properties of crude oil vary, which makes its characterization and demulsification procedure difficult. To overcome this problem, hydrophilic and magnetically recoverable poly (methyl methacrylate-acrylic acid)/iron oxide magnetic composite nanoparticles ((P(MMA-AA)/Fe3O4 NPs) were developed as an efficient and economical demulsifier via soap-free emulsion polymerization. To characterize the magnetic composite NPs for their appropriate surface morphology and magnetic domain, TEM, FTIR, VSM, and TGA analyses were carried out. The newly synthesized NPs displayed good hydrophilic properties as they migrated quickly to the aqueous emulsion phase, which was also reassured by their water contact angle of 75°. They exhibit strong magnetic characteristics (20 amu/g) in the oil-water emulsion, makings the hydrophilic wettability capable and attractive to the external magnet. Experimental results revealed that the prepared magnetic composite NPs separated 99% of the water from stable emulsion in 30 min and could be recycled 8 times through magnetic separation. The recycled magnetic composite NPs maintain their hydrophilic wettability and efficiency in separating oil-water emulsion, making them economical and commercially viable. The migration of magnetic composite NPs to the aqueous phase in the stable emulsion with a strong magnetic domain explains the coalescence of emulsified water droplets and their quick separation from the stable emulsions through the external magnet.
Collapse
Affiliation(s)
- Hira Zaman
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Anwar Ul Haq Ali Shah
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Cao Zhou
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, KPK, Pakistan
| | - Chen Tian Tian
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Centre for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
15
|
Zhou C, Chen Q, Chen Q, Yin H, Wang S, Hu C. Preparation of TiO2 Superhydrophobic Composite Coating and Studies on Corrosion Resistance. Front Chem 2022; 10:943055. [PMID: 35873046 PMCID: PMC9304710 DOI: 10.3389/fchem.2022.943055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The superhydrophobic coatings with excellent performance are prepared on the brass substrate to improve its application limitations in real production. In this article, the superhydrophobicity was obtained by the modification of TiO2 nanoparticles, and the FAS/STA-TiO2 superhydrophobic coating of the composite structure was obtained by modification of 1, 1, 2H, 2H-perfluoroquine trimethyl silane (FAS). By using scanning electron microscopes (SEMs), X-ray spectrometers (EDSs), and Fourier transform infrared (FTIR) spectrometers, the surface morphology, chemical composition, and functional group structure of the samples were analyzed in turn. Experiments show that the water contact angle of the FAS-modified STA-TiO2 coating reaches 161.3°, and the sliding angle is close to 1.2°. Based on the chalk dust containment, it has enabled noticeable self-cleaning properties. The composite superhydrophobic coating also presents enhanced adhesive strength compared with the single coating by the tape peeling experiment. Moreover, the composite coating has a corrosion current density as low as 8.41 × 10-7 A/cm2, and the largest |Z| in low frequency in a 3.5% NaCl solution to achieve better protection of the brass substrate. It is also not difficult to see that FAS/STA-TiO2 coating can not only improve the corrosion resistance of brass substrates but also be applied to other metal substrates.
Collapse
Affiliation(s)
- Chaogang Zhou
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, China
| | - Qiya Chen
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, China
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Qinggong Chen
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, China
| | - Huawei Yin
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Shuhuan Wang
- College of Metallurgy and Energy, North China University of Science and Technology, Tangshan, China
| | - Chuanbo Hu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Chuanbo Hu,
| |
Collapse
|
16
|
Sun DX, Liao XL, Zhang N, Huang T, Lei YZ, Xu XL, Wang Y. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Dong T, Tian N, Xu B, Huang X, Chi S, Liu Y, Lou CW, Lin JH. Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128290. [PMID: 35066226 DOI: 10.1016/j.jhazmat.2022.128290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Superhydrophobic aerogels are attractive candidates in controlling oil spills. The major challenges for existing aerogels are the construction of mechanical endurance as well as accessible of building materials. Herein, a newfangled biomass superhydrophobic aerogel (M-PCF/CS) with both superior compressibility and oil caption speed is fabricated by assembling poplar catkin fiber (PCF) hollowed-out shell of 330 nm and chitosan (CS) into tubular-lamellar interweaved neurons-like structure. The resultant aerogels (porosity ~ 96.12%), with flexuous PCF as the elastic buffer and second-pore capillaries, exhibit large longitudinal and transverse compressibility, endurable fatigue tolerance, fast oil sorption rate with a capacity of 28.8-78.1 g/g at 5-25 s. In parallel, the aerogels are tolerant of NaCl, UV radiation, and organic solvents without superhydrophobic variation and a case of oil spill remediation via pump-supported experiment shows that the aerogels facilely achieve continuous oil recycling from seawater by 23052-43956 L·m-2·h-1. Furthermore, the resultant M-PCF/CS, with assistance of an oscillator, can be applied to separate oil/water emulsions with efficiency of 98.07-99.11%. The successful fabrication of this material provides a new design strategy for the construction of mechanically robust aerogels for speedy and economical cleanup of oil pollutants from water.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P.R. China.
| | - Na Tian
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, PR China
| | - Bing Xu
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, PR China
| | - Xiaohua Huang
- Bestee Material (Qingdao) Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Shan Chi
- Bestee Material (Qingdao) Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Yanming Liu
- Bestee Material (Qingdao) Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, PR China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan; Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, PR China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407802, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan; Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
18
|
Super-hydrophobic/super-oleophilic carbon nanofiber-embedded resorcinol-formaldehyde composite membrane for effective separation of water-in-oil emulsion. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Robust antifouling NH2-MIL-88B coated quartz fibrous membrane for efficient gravity-driven oil-water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Fabrication of Superhydrophobic Ni-Co-BN Nanocomposite Coatings by Two-Step Jet Electrodeposition. CRYSTALS 2021. [DOI: 10.3390/cryst11070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stability of hydrophobic surface has an important influence on the application of superhydrophobic function. The destruction of hydrophobic micro-nano structures on the material surface is the main factor leading to the loss of superhydrophobic property. In order to improve the corrosion resistance of superhydrophobic surface, Ni-Co-BN nanocomposite coatings with superhydrophobic property were prepared on 45 steel by two-step jet electrodeposition. The surface morphology, water contact angle, and corrosion resistance of the samples were measured and characterized by scanning electron microscope, surface contact angle measuring instrument, and electrochemical workstation. The results of electrochemical analysis show that the superhydrophobic property improved the corrosion resistance of Ni-Co-BN nanocomposite coating. The enhanced corrosion resistance is of great significance to the integrity of the microstructure and the durability of the superhydrophobic function.
Collapse
|