1
|
Gao L, Wu J, Liu HB, Zhao Q, Wang J. Metal-mediated chitosan@mesoporous silica-based ultrasensitive fluorescent probe for the ratiometic and colorimetric detection of tetracycline antibiotics. Int J Biol Macromol 2025; 304:140779. [PMID: 39924023 DOI: 10.1016/j.ijbiomac.2025.140779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Naphthalimide-functionalized chitosan and mesoporous SBA-15 silica were integrated by forming CS-HNB@SBA nanocomposites. SBA-15 served as a solid matrix that enabled good water dispersibility and reusability. To achieve distinction between tetracycline (TET) and oxytetracycline (OTC), CS-HNB@SBA and rhodamine derivative-modified SBA-15 constructed a fluorescent ensemble. To improve determination accuracy and sensitivity, multiple recognition sites (Eu3+ and Zn2+) were incorporated to build metal-mediated sensing systems. When tetracycline antibiotics (TCs) were present, blue emission of naphthalimide at 389 nm was quenched based on Förster resonance energy transfer, whereas characteristic peak of Eu3+ at 619 nm (or TCsZn2+ at 527 nm) was enhanced through antenna effect (or chelation of TCs and Zn2+) based on "CS-HNB@SBA-metal ion-TCs" ternary complex. Fluorescent color displayed obvious changes from blue to red (or green), showing a huge potential for visual determination. Ultra-low detection limits of TET (or OTC) were 0.048 (or 0.064 nM) and 0.072 nM (or 0.042 nM), respectively, by using CS-HNB@SBA/Zn2+ and CS-HNB@SBA/Eu3+, respectively, due to their amplified and synergistic fluorescence signals. This work enriches the strategy for constructing ultrasensitive fluorescent probes by taking advantage of cooperative effect of multiple recognition sites, and offers insights into efficient ensemble platforms for structurally similar analytes.
Collapse
Affiliation(s)
- Lina Gao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Junfei Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
2
|
Etcheverry M, Zanini GP. Kinetic study of paraquat adsorption on alginate beads loaded with montmorillonite using shrinking core model. Int J Biol Macromol 2024; 281:136515. [PMID: 39406329 DOI: 10.1016/j.ijbiomac.2024.136515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent contact time for safe water disposal. The adsorption kinetics of Paraquat (PQ) at three initial concentrations (C0 = 19, 38, and 50 ppm) were studied using alginate-montmorillonite (Alg-Mt) beads with varying clay contents and a 30-min gelation time. The beads were characterized by elemental analysis, TG/DTG, FTIR, XRD, SEM, and EDX. The Shrinking Core Model (SCM) was applied to the experimental data to determine if the diffusion of PQ within the beads depended on clay content. The effective diffusion coefficient (Dp) in the adsorbent increased from 7 × 10-12 to 1 × 10-10 m2 s-1 with increasing clay content, suggesting that diffusion into the interior depended on interaction with the mineral. This investigation also demonstrated that the synthesis of beads at different gelation times does not impact either the adsorption capacity or the adsorption rate of the herbicide on the materials. These results indicate that diffusion depends solely on the interaction of the cationic herbicide with the clay encapsulated within the bead hydrogel.
Collapse
Affiliation(s)
- Mariana Etcheverry
- Instituto de Química del Sur (INQUISUR), CONICET - Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina.
| | - Graciela P Zanini
- Instituto de Química del Sur (INQUISUR), CONICET - Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina.
| |
Collapse
|
3
|
Wan H, Zhou Y, Shi S, Zhang B, Xu Q, Lu J. Sulfur Fluoride Exchange Enabled Polysufate Adsorbents: Flexible Group Embedded in Polymer Backbone Regulation Strategy for Organic Solvent Removal from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50045-50053. [PMID: 39279184 DOI: 10.1021/acsami.4c11576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Removal of organic solvents (such as chloroform, toluene, etc.) in trace amounts using adsorbents from water is a challenge due to their low removal efficiencies and poor selectivities. Herein, four polysulfates (P1-P4) with different flexible group embedded backbones were synthesized via a sulfur fluoride exchange (SuFEx) reaction, and their swelling behaviors in organic solvents were investigated. P1 with a flexible ethyl group on its backbone can selectively swell in aprotic organic solvents with medium and high polarities about 30-fold its original weight, which is much higher than that of P4 with rigid benzene on its backbone. Moreover, molecular dynamic (MD) simulation results showed that the swelling mechanism could be put down to the electrostatic and van der Waals forces between the polysulfates and organic solvents. Surprisingly, the polysulfates can be used to remove chloroform and toluene from water with removal efficiencies of up to 99.26 and 99.42%, respectively. Furthermore, the polysulfates also exhibited high selectivities and anti-interference performances toward chloroform in the presence of other pollutants and different acid/base environments. Our work provides a strategy to construct adsorbents with high efficiencies for removal of low concentrations of organic solvents from water.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Youzhen Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shuai Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bing Zhang
- School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Rahmatpour A, Shoghinia B, Alizadeh AH. A self-assembling hydrogel nanocomposite based on xanthan gum modified with SiO 2 NPs and HPAM for improved adsorption of crystal violet cationic dye from aqueous solution. Carbohydr Polym 2024; 330:121819. [PMID: 38368101 DOI: 10.1016/j.carbpol.2024.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
This paper presents the rational design and novel synthesis of multifunctional nanocomposite hydrogel derived from xanthan gum (XG) modified with silica nanoparticles and partially hydrolyzed polyacrylamide (HPAM) via H-bonding interactions (self-assembly) through the "green" gelation process in water. Different techniques have been employed to characterize HPAM/SiO2@XG, including FT-IR, FE-SEM, XRD, TEM, BET, and TG/DTG as well as swelling kinetics. Crystal violet (CV)'s adsorption performance was investigated using batch experiments by varying various variables involving adsorbent composition, pH, adsorbent quantity, contact time, CV concentration, ionic strength, and temperature. A well-fitting Langmuir isotherm was found for the adsorption data at 30 °C and pH 7.0, yielding 342.19 mg CV/g as the equilibrium state's maximum adsorption (qm). CV adsorption data agreed better with the pseudo-second-order model than other kinetic models. Furthermore, the HPAM/SiO2@XG nanocomposite hydrogel showed a significant increase in adsorption capacity over the SiO2@XG hydrogel precursor. According to thermodynamic analysis, CV adsorbs to HPAM/XG@SiO2 spontaneously and exothermically. Our results showed that the nanocomposite hydrogel's functional groups interact with CV predominantly through electrostatic interactions, coupled with H-bonding. Nanocomposite hydrogel has been regenerated using a five-cycle adsorption-desorption process, and the efficiency of CV removal has remained a satisfactory level of removal efficiency (94.5 % to 71.5 %).
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran.
| | - Bahareh Shoghinia
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| | - Amir Hossein Alizadeh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
5
|
Dhahir SA, Braihi AJ, Habeeb SA. Comparative Analysis of Hydrogel Adsorption/Desorption with and without Surfactants. Gels 2024; 10:251. [PMID: 38667670 PMCID: PMC11049081 DOI: 10.3390/gels10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In this particular study, a hydrogel known as SAP-1 was synthesized through the grafting of acrylic acid-co-acrylamide onto pullulan, resulting in the creation of Pul-g-Poly (acrylic acid-co-acrylamide). Additionally, a sponge hydrogel named SAP-2 was prepared by incorporating the surfactant sodium dodecyl benzene sulfonate (SDBS) into the hydrogel through free radical solution polymerization. To gain further insight into the composition and properties of the hydrogels, various techniques, such as Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance (1H NMR), atomic absorption spectroscopy, and field emission scanning electron microscopy (FE-SEM), were employed. Conversely, the absorption kinetics and the equilibrium capacities of the prepared hydrogels were investigated and analyzed. The outcomes of the investigation indicated that each of the synthesized hydrogels exhibited considerable efficacy as adsorbents for cadmium (II), copper (II), and nickel (II) ions. In particular, SAP-2 gel displayed a remarkable cadmium (II) ion absorption ability, with a rate of 190.72 mg/g. Following closely, SAP-1 gel demonstrated the ability to absorb cadmium (II) ions at a rate of 146.9 mg/g and copper (II) ions at a rate of 154 mg/g. Notably, SAP-2 hydrogel demonstrated the ability to repeat the adsorption-desorption cycles three times for cadmium (II) ions, resulting in absorption capacities of 190.72 mg/g, 100.43 mg/g, and 19.64 mg/g for the first, second, and third cycles, respectively. Thus, based on the abovementioned results, it can be concluded that all the synthesized hydrogels possess promising potential as suitable candidates for the adsorption and desorption of cadmium (II), copper (II), and nickel (II) ions.
Collapse
Affiliation(s)
| | | | - Salih Abbas Habeeb
- Polymer and Petrochemical Engineering Department, College of Engineering Materials, University of Babylon, Babylon 51002, Iraq
| |
Collapse
|
6
|
Rahmatpour A, Hesarsorkh AHA. Chitosan and silica nanoparticles-modified xanthan gum-derived bio-nanocomposite hydrogel film for efficient uptake of methyl orange acidic dye. Carbohydr Polym 2024; 328:121721. [PMID: 38220324 DOI: 10.1016/j.carbpol.2023.121721] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
In this contribution, a bio-nanocomposite hydrogel film (CS/XG.SiO2) of chitosan/silica NPs-modified xanthan gum was prepared via a facile solution casting blending approach and utilized to capture the anionic methyl orange (MO) from aqueous solution. A Taguchi standard method was used to optimize the hydrogel nanocomposite synthesis reaction conditions after comprehensive characterization using various techniques. Under various operating parameters, the hydrogel biofilm was tested for its effectiveness in adsorbing MO dye in a batch process. In agreement with Langmuir isotherm, the CS/XG.SiO2 biofilm was capable of adsorbing MO at a maximum capacity of 294 mg/g at pH 5.30, contact time 45 min, temperature 25 °C, and concentration (C0) 50 mg/L. Pseudo-second-order model and adsorption kinetics data well matched. The thermodynamic data indicate that adsorption occurred spontaneously and exothermically. The main mechanisms driving the adsorption are electrostatic interactions and hydrogen bonding between the CS/XG.SiO2 nanocomposite and the dye. Furthermore, the biofilm is regenerative, allowing for up to five reuses while maintaining a 75 % dye removal efficiency. This study highlights that the CS/XG.SiO2 hydrogel nanocomposite is an inexpensive, reusable, and eco-friendly bio-adsorbent that is capable of anionic dye adsorption.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh Hesarsorkh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
7
|
Wang Q, Qiao J, Xiong Y, Dong F, Xiong Y. A novel ZIF-8@IL-MXene/poly (N-isopropylacrylamide) nanocomposite hydrogel toward multifunctional adsorption. ENVIRONMENTAL RESEARCH 2024; 242:117568. [PMID: 37979930 DOI: 10.1016/j.envres.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/20/2023]
Abstract
Phenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater. Ionic liquid (IL) was grafted onto MXene surfaces using a one-step method, and then incorporated into NIPAM monomer solutions to obtain the IL-MXene/PNIPAM composite hydrogel via in-situ polymerization. ZIF-8@IL-MXene/PNIPAM nanocomposite hydrogels were obtained by in-situ growth of ZIF-8 on the pore walls of composite hydrogels. As-prepared nanocomposite hydrogel showed excellent mechanical properties and can withstand ten repeated compressions without any damage, the specific surface area increased by 100 times, and the maximum adsorption capacities for p-nitrophenol (4-NP), crystal violet (CV), and copper ion (Cu2+) were 198.40, 325.03, and 285.65 mg g-1, respectively, at room temperature. The VPTTs of all hydrogels ranged from 33 to 35 °C, so the desorption process can be achieved in deionized water at 35-40 °C, and its adsorption capacities after five adsorption-desorption cycles decreased to 79%, 91%, and 29% for 4-NP, CV, and Cu2+, respectively. The adsorption data fitting results follow pseudo-second-order kinetics and Freundlich models, which is based on multiple interactions between the functional groups contained in hydrogels and adsorbent molecules. The hydrogel is the first to realize the high-efficiency adsorption of phenols, dyes and metal ions in industrial wastewater simultaneously, and the preparation process of hydrogels is environmentally friendly. Also, giving hydrogel multifunctional adsorption is beneficial to promote the development of multifunctional adsorption materials.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Qiao
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yukun Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Soares VR, Silva EC, Gomes CG, Vieira MA, Fajardo AR. Fluorescent composite beads: An advanced tool for environmental monitoring and harmful pollutants removal from water. CHEMOSPHERE 2024; 350:140911. [PMID: 38145844 DOI: 10.1016/j.chemosphere.2023.140911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
The quality and safety of water sources have been significantly impacted by various pollutants, including trace elements. To address this concern, this study utilized composite beads made of alginate and carbon quantum dots (CDs) for detecting and removing As(III) and Se(IV) ions in tap water. Fluorescent CDs were hydrothermally synthesized and incorporated into an alginate-Ca2+ matrix through a straightforward procedure. Characterization analyses revealed distinct properties of the composite beads, containing varying amounts of CDs, compared to the pristine beads. Optimal adsorption parameters (30 mg of adsorbent, 10 mg/L of initial pollutant concentration, 35 °C, and 180 min of contact time) for the beads containing 30 w/w-% of CDs (Alg@CDs30) were determined through a fractional factorial design. These composite beads exhibited the highest adsorption capacity for both metals, achieving a removal rate of 94.5% for As(III) and 98.0% for Se(IV) in tap water. Kinetic and isothermal analyses indicated that the adsorption of both metals on Alg@CDs30 involves a combination of chemisorption and diffusion processes. Recycling experiments demonstrated that the composite beads could be reused up to 20 times without a noticeable loss of adsorption efficiency. Regarding the sensing property, our experiments revealed a significant reduction in the fluorescence emission intensity of Alg@CDs30 upon interaction with As(III) and Se(IV), confirming its ability to detect both ions in tap water, with limits of detection (LOD) of 2.6 ± 0.5 μg/L for As(III) and 1.1 ± 0.2 μg/L for Se(IV). The alginate-Ca2+ matrix s contributed to the stability of the CDs' fluorescence. These results confirm the potential of Alg@CDs beads as effective tools for the simultaneous monitoring and removal of hazardous metal ions from real water samples.
Collapse
Affiliation(s)
- Victória R Soares
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Charlie G Gomes
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - Mariana A Vieira
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas-RS, Brazil.
| |
Collapse
|
9
|
Chen G, Vahidifar A, Yu S, Mekonnen TH. Sulfur Free Crosslinking of EPDM Composites via Silane Grafting and Silica Incorporation. Macromol Rapid Commun 2024; 45:e2300563. [PMID: 37985954 DOI: 10.1002/marc.202300563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Indexed: 11/22/2023]
Abstract
This study aims at evaluating and developing an environmental-friendly and sulfur-free cured ethylene propylene diene monomer (EPDM) composites. Silane grafted EPDM (SiEPDM) composites incorporated with silica is prepared via a solvent-free, one-step reactive mixing process. The silane grafting and silica filler bonding are characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The mechanical properties of the developed composites are examined. The fracture morphology is observed using an environmental scanning electron microscopy. The rheology and thermomechanical properties are evaluated by using a rotational rheometer and dynamic mechanical analyzer. Notably, a robust bonding between silica and the grafted silane is established, yielding a crosslinking network within the composite structure. This phenomenon is substantiated by the observed gel efficiency and rheology behavior. Consequently, a pronounced augmentation of up to 75% in tensile strength and 29% in tear strength are observed in the optimized SiEPDM-silica composites, distinguishing them from their EPDM-silica counterparts. The introduction of paraffin oil contributes to enhanced processability; however, it is concomitant with a reduction in gel efficiency and associated mechanical properties. Furthermore, subsequent UV weathering test unveils that the SiEPDM-silica composites exhibit the highest levels of residual tensile strength and modulus, indicative of their exceptional UV stability.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Ali Vahidifar
- Compound Technology Centre, Airboss Rubber Solutions, AirBoss of America Corp., Kitchener, ON, N2G 4X8, Canada
| | - Steven Yu
- Compound Technology Centre, Airboss Rubber Solutions, AirBoss of America Corp., Kitchener, ON, N2G 4X8, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
10
|
Elhamrouni IA, Ishak MY, Johari WLW, Halimoon N. A novel characterization of alginate-attapulgite-calcium carbonate (AAC) gel adsorption in bacterial biodegradation of used engine oil (UEO). BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Izeddin Abdalla Elhamrouni
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli, Libya
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Yusoff Ishak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| | - Normala Halimoon
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
11
|
Silva EC, Soares VR, Fajardo AR. Removal of pharmaceuticals from aqueous medium by alginate/polypyrrole/ZnFe 2O 4 beads via magnetic field enhanced adsorption. CHEMOSPHERE 2023; 316:137734. [PMID: 36608886 DOI: 10.1016/j.chemosphere.2022.137734] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The physicochemical and structural characteristics of the magnetic materials can be modulable due to exposition to a magnetic field, which allows, for example, to enhance its adsorption performance. In this sense, this study describes the preparation of magnetic beads of alginate/polypyrrole/ZnFe2O4 (Alg/PPy/ZnFe2O4) and investigates the effect of an external magnetic field (EMF) on their adsorption performance towards two overconsumed drugs, acetaminophen (ACT) and ibuprofen (IBU). Characterization analyses confirmed the composite formation and magnetic nature of Alg/PPy/ZnFe2O4. Conversely to the pristine beads (Alg/PPy), the presence of an EMF altered the swelling and pHPZC behavior of the magnetic beads, indicating that these properties are affected by this external stimulus. Batch experiments revealed that the amount of ACT and IBU adsorbed by Alg/PPy/ZnFe2O4 in 60-70 min is appreciably high (106.7 ad 108.2 mg/g). The presence of an EMF modulated the structure of Alg/PPy/ZnFe2O4 beads enhancing their adsorption capacity towards ACT and IBU by 14% and 12% compared to Alg/PPy. Kinetic analysis revealed that the adsorption of both drugs on Alg/PPy/ZnFe2O4 followed a pseudo-second-order. Besides, the adsorption mechanism was fitted by the Freundlich isotherm. Reuse experiments showed that the magnetic beads keep a high adsorption capacity for both drugs even after ten consecutive reuse cycles. The results presented here suggest that magnetic-responsive materials like Alg/PPy/ZnFe2O4 are prominent and modulable tools for improving the treatment of water/wastewater containing this class of contaminants.
Collapse
Affiliation(s)
- Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas, RS, Brazil
| | - Victória R Soares
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Song Y, Li H, Shan T, Yang P, Li S, Liu Z, Liu C, Shen C. MOF-implanted poly (acrylamide-co-acrylic acid)/chitosan organic hydrogel for uranium extraction from seawater. Carbohydr Polym 2023; 302:120377. [PMID: 36604055 DOI: 10.1016/j.carbpol.2022.120377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
In this study, a composite hydrogel with a low swelling ratio, excellent mechanical properties, and good U (VI) adsorption capacity was developed by incorporating a metal-organic framework (MOF) with a poly (acrylamide-co-acrylic acid)/chitosan (P(AM-co-AA)/CS) composite. The CS chain, which contains NH2, reduces the swelling ratio of the hydrogel to 4.17 after 5 h of immersion in water. The coordinate bond between the MOF and carboxyl group on the surface of P(AM-co-AA)/CS improves the mechanical properties and stability of P(AM-co-AA)/CS. The U(VI) adsorption capacity of P(AM-co-AA)/CS/MOF-808 is 159.56 mg g-1 at C0 = 99.47 mg L-1 and pH = 8.0. The adsorption process is well fitted by the Langmuir isotherm and pseudo-second-order model. The P(AM-co-AA)/CS/MOF-808 also exhibits good repeatability and stability after five adsorption-desorption cycles. The uranium adsorption capacity of the developed adsorbent after one month in natural seawater is 6.2 mg g-1, and the rate of uranium adsorption on the hydrogel is 0.21 mg g-1 day-1.
Collapse
Affiliation(s)
- Yucheng Song
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Hui Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Tianhang Shan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Zhong Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Qiang T, Nie J, Long Y, Wang W, Xie R, Wang R, Cong Y, Zhang Y. ZnCo 2O 4 composite catalyst accelerated removal of phenylic contaminants containing of Cr(VI) in dielectric barrier discharge reactor: Process and mechanism study. CHEMOSPHERE 2023; 314:137676. [PMID: 36584822 DOI: 10.1016/j.chemosphere.2022.137676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The degradation of phenylic contaminants (phenol, hydroquinone, nitrobenzene, p-nitrophenol) containing Cr(VI) has been investigated in a dielectric barrier discharge (DBD) system using a ZnCo2O4 composite catalyst. The ZnCo2O4 nanowires combined with multi-walled carbon nanotubes (MWNTs) on a sponge substrate in the discharge system can induce a decrease in the corona inception voltage and discharge becomes more stable resulting in an improvement in the energy utilization efficiency. With the synergistic degradation of phenylic species containing Cr(VI), the total elimination efficiency was further improved. The active substances (H2O2 and O3) were detected in the discharged solution, and some of them were consumed in the phenylic system. The effects of ·OH, O2·- and e- were also verified using free radical trapping experiments in which ·OH exhibited the main oxidation effect for the degradation of phenylic pollutants, and e-, H2O2 and H· affect the reduction of Cr(VI). The intermediate products were determined in order to analyze the degradation process of phenylic pollutants by the ZnCo2O4 composite catalyst in combination with the DBD system. The electron transfer process in the ZnCo2O4 composite catalyst during discharge was analyzed. Finally, the biotoxicity of the phenylic pollutants before and after degradation was compared.
Collapse
Affiliation(s)
- Tao Qiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jutao Nie
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yupei Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenbin Wang
- Huzhou South Taihu Environmental Protection & Technology Development Co., Ltd., Huzhou, 313000, China
| | - Ruizhang Xie
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Run Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Facile synthesis of Cu-based metal–organic framework/chitosan composite granules for toluene adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Performance evaluation of functionalized ordered mesoporous silica for VOCs adsorption by molecular dynamics simulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|
17
|
Shen B, Zhang Q, Zheng C, Huang Y, Zhang G, Fei P, Hu S. Construction of double-network hydrogel based on low methoxy pectin/polyvinyl alcohol and its structure and properties. Int J Biol Macromol 2022; 221:821-830. [PMID: 36089090 DOI: 10.1016/j.ijbiomac.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
In this study, an interpenetrating double-network hydrogel (LMP/AA/PVAH) was prepared based on low methoxy pectin (LMP), acrylic acid (AA) and polyvinyl alcohol (PVA). The first rigid network of chemical crosslinking was constructed via free radical polymerization of LMP and AA, and the second of ductile physical crosslinking network was constructed via cyclic freeze-thaw of PVA. The first cycle hardness and elasticity of the LMP/AA/PVAH significantly increased from 13.08 N and 0 to 24.28 N and 0.79, respectively, when the second network structure was constructed in the hydrogel by PVA. Besides, the PVA network might enhance the ductile and limit the swelling of hydrogel. In addition, the adsorption properties of LMP/AA/PVAH were evaluated by adsorption of methylene blue (MB). The adsorption behavior of MB by LMP/AA/PVAH conformed to the pseudo-second-order kinetic model. Besides, after 4 cycles of adsorption, there was no significant difference in adsorption capacity of LMP/AA/PVAH. The results showed that LMP/AA/PVAH had good reusability.
Collapse
Affiliation(s)
- Bihua Shen
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qiong Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Chenmin Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yufan Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Shirong Hu
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
18
|
Wang Q, Cui L, Xu J, Dong F, Xiong Y. Ionic liquid decorated MXene/Poly (N-isopropylacrylamide) composite hydrogel with high strength, chemical stability and strong adsorption. CHEMOSPHERE 2022; 303:135083. [PMID: 35618063 DOI: 10.1016/j.chemosphere.2022.135083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Organic phenolic pollutants in industrial wastewater cause severe environmental pollution and physiological damage. Poly (N-isopropylacrylamide) (PNIPAM) hydrogels generally have poor mechanical strength and are also intrinsically frangible, limiting their widespread applications in wastewater treatment. Combining them with 2-dimensional materials can also only improve the mechanical properties of hydrogels. Here, we report a high-strength, chemical stability and strong adsorption MXene/poly (N-isopropylacrylamide) (PNIPAM) thermosensitive composite hydrogel for efficient removal of phenolic pollutants from industrial wastewater. Ionic liquids (ILs) were grafted onto the surface of MXenes and introduced into NIPAM monomer solution to obtain composite hydrogels by in-situ polymerization for improved mechanical strength and adsorption capacity of the composite hydrogel. Compared with the MXene/PNIPAM composite hydrogel, the introduction of ILs simultaneously improves the mechanical and adsorption properties of the composite hydrogel. The ILs bind to the surface of MXene flakes through electrostatic interactions, which improved the thermal stability and oxidation resistance of MXenes while maintaining its good dispersion. Using 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) modified MXene (MXene-EMIMBF4) did not change significantly were observed after aging for 45 days. As-prepared composite hydrogels demonstrated excellent mechanical properties, reusability, and high adsorption capacity for p-Nitrophenol (4-NP). The MXene-EMIMBF4/PNIPAM hydrogel could recover after ten 95% strain compression cycles under the synergistic effect of chemical bonding and electrostatic attraction. Its maximum adsorption capacity for 4-NP was 200.29 mg g-1 at room temperature, and the adsorption capacity maintained at ∼90% of its initial value after five adsorption cycles, which was related to the introduction of EMIMBF4 to form a denser network structure. The adsorption data followed the pseudo-second-order kinetics and Freundlich models.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Lingfeng Cui
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Safarzadeh H, Peighambardoust SJ, Mousavi SH, Foroutan R, Mohammadi R, Peighambardoust SH. Adsorption ability evaluation of the poly(methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. ENVIRONMENTAL RESEARCH 2022; 212:113349. [PMID: 35490829 DOI: 10.1016/j.envres.2022.113349] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The performance of poly(methacrylic acid-co-acrylamide)/Cloisite 30B nanocomposite (poly(MAA-co-AAm)/Cl30B) hydrogel to adsorb methylene blue (MB) dye from aqueous solutions was investigated and the adsorption efficiency was improved by incorporating Cloisite 30B nanoclays in the adsorbent structure. The hydrogels were analyzed using FTIR, XRD, TGA, and SEM analysis. The effect of adsorbent dose, temperature, initial dye concentration, contact time, and pH on the efficiency of the adsorption process was investigated. Adsorption efficiencies of 98.57 and 97.65% were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively. Kinetic study revealed that the adsorption process followed pseudo-first-order kinetic model and α-parameter values of 6.558 and 1.113 mg/g.min were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively indicating a higher ability of nanocomposite hydrogel in adsorbing MB-dye. In addition, the results of the intra-particle diffusion model showed that various mechanisms such as intra-particle diffusion and liquid film penetration are important in the adsorption. The Gibbs free energy parameter of adsorption process showed negative values of -256.52 and -84.071 J/mol.K for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels indicating spontaneous nature of the adsorption. The results of enthalpy and entropy showed that the adsorption process was exothermic and random collisions were reduced during the adsorption. The equilibrium data for the adsorption process using poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels followed Freundlich and Langmuir isotherm models, respectively. The maximum adsorption capacity values of 32.83 and 21.92 mg/g were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively. Higher adsorption capacity of nanocomposite hydrogel was attributed to the presence of Cloisite 30B clay nanoparticles in its structure. In addition, results of RL, n, and E parameters showed that the adsorption process was performed optimally and physically.
Collapse
Affiliation(s)
- Hamid Safarzadeh
- Separation Processes & Nanotechnology Lab, Faculty of Caspian, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Seyed Hamed Mousavi
- Separation Processes & Nanotechnology Lab, Faculty of Caspian, College of Engineering, University of Tehran, Tehran, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
20
|
Rivas-Sanchez A, Cruz-Cruz A, Gallareta-Olivares G, González-González RB, Parra-Saldívar R, Iqbal HMN. Carbon-based nanocomposite materials with multifunctional attributes for environmental remediation of emerging pollutants. CHEMOSPHERE 2022; 303:135054. [PMID: 35613636 DOI: 10.1016/j.chemosphere.2022.135054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Carbon-based materials are among the most biosynthesized nanocomposites with excellent tunability and multifunctionality features, that other materials fail to demonstrate. Naturally occurring materials, such as alginate (Alg), can be combined and modified by linking the active moieties of various carbon-based materials of interest, such as graphene oxide (GO), carbon nanotubes (CNTs), and mesoporous silica nanocomposite (MSN), among others. Thus, several types of robust nanocomposites have been fabricated and deployed for environmental remediation of emerging pollutants, such as pharmaceutical compounds, toxic dyes, and other environmentally hazardous contaminants of emerging concern. Considering the above critiques and added features of carbon-based nanocomposites, herein, an effort has been made to spotlight the synergies of GO, CNTs, and MSN with Alg and their role in mitigating emerging pollutants. From the information presented in this work, it can be concluded that Alg is a material that has excellent potential. However, its use still requires further tests in different areas and other materials to carry out a holistic investigation that exploits its versatility for environmental remediation purposes.
Collapse
Affiliation(s)
- Andrea Rivas-Sanchez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Angelica Cruz-Cruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
21
|
Wang W, Huang Y, Han G, Liu B, Su S, Wang Y, Xue Y. Enhanced removal of P(V), Mo(VI) and W(VI) generated oxyanions using Fe-MOF as adsorbent from hydrometallurgical waste liquid: Exploring the influence of ionic polymerization. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128168. [PMID: 34974403 DOI: 10.1016/j.jhazmat.2021.128168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/15/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Environmentally hazardous P(V), Mo(VI) and W(VI) generated oxyanions exist widely in the waste liquid of nonferrous hydrometallurgy. In this work, Fe-MOF material was simply prepared via solvothermal synthesis and then used as an adsorbent to remove P(V), Mo(VI) and W(VI) oxyanions from hydrometallurgical waste liquid. Several important parameters, including solution pH, oxyanion concentration, contact time, adsorbent amount, temperature and coexistent heavy metal ions, were systematically investigated. The results demonstrate that adsorption process was almost pH-independent over a broad range of pH 3.0-10.0. The adsorption efficiency was strongly associated with the chemical species of oxyanions. The higher polymerisation degree of oxyanions was more favourable for removal efficiency. Additionally, the maximum removal efficiencies for P(V), Mo(VI) and W(VI) oxyanions under optimum conditions were approximately 100%. Furthermore, the adsorption kinetics and isotherms of oxyanions on the adsorbent separately belonged to the pseudo-second-order and Langmuir isotherm models. XPS analysis revealed that inner-sphere complexation played a dominant role in the adsorption removal process. Fe-MOFs with pH-independent properties, abundant binding sites and high stability are prospective adsorbents for treating waste liquids in the hydrometallurgical industry.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yanfang Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Guihong Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Bingbing Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Shengpeng Su
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yizhuang Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yubin Xue
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
22
|
Qamar SA, Qamar M, Basharat A, Bilal M, Cheng H, Iqbal HMN. Alginate-based nano-adsorbent materials - Bioinspired solution to mitigate hazardous environmental pollutants. CHEMOSPHERE 2022; 288:132618. [PMID: 34678347 DOI: 10.1016/j.chemosphere.2021.132618] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Population growth and industrialization is associated with the elevation of hazardous pollutants, including heavy metals, biomedical wastes, personal-care products, endocrine-disrupters, pharmaceutically active compounds, and colorants in the environment. The scientific focus has been devoted to developing novel adsorbents to mitigate hazardous pollutants by constructing hybrids of different polymers and nano-structured materials for improved workability and physicochemical attributes. Recently, much attention has been devoted to nanomaterials in environmental remediation, owning to their exceptional characteristics including novel electrical/chemical features, quantum size effects, tunable functionalization, high scalability, and surface-area-to-volume ratio. Target-specific designing of nanocomposites impart high functionality. The cost-effective and eco-friendly synthesis of bioadsorbent materials is increasing for the removal of hazardous pollutants. Due to biocompatible, biodegradable, and eco-friendly nature, sodium alginate has been widely reported for the preparation of bioadsorbent materials to remove different inorganic/organic pollutants. In this review, the potentialities of alginate-based nanocomposites have been described for environmental remediation purposes. Different nanomaterials, including silica, metallic oxide, graphene oxide, hybrid inorganic-organic, non-magnetic-magnetic, carbon nanorods, nanotubes, polymeric nanocarriers, and several other materials have been described in combination with alginate biopolymer for environmental remediation.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
23
|
Al-Gorair AS, Sayed A, Mahmoud GA. Engineered Superabsorbent Nanocomposite Reinforced with Cellulose Nanocrystals for Remediation of Basic Dyes: Isotherm, Kinetic, and Thermodynamic Studies. Polymers (Basel) 2022; 14:567. [PMID: 35160555 PMCID: PMC8839526 DOI: 10.3390/polym14030567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, cellulose nanocrystals (CNCs) were produced from pea peels by acid hydrolysis to be used with pectin and acrylic acid (AAc) to form Pectin-PAAc/CNC nanocomposite by γ-irradiation. The structure, morphology, and properties of the nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) techniques. The nanocomposite hydrogel was used for the removal of methylene blue dye (MB) from wastewater. The results revealed that the presence of CNCs in the polymeric matrix enhances the swelling and adsorption properties of Pectin-PAAc/CNC. The optimum adsorbate concentration is 70 mg/L. The kinetic experimental data were fit by pseudo-first-order (PFO), pseudo-second-order (PSO), and Avrami (Avr) kinetic models. It was found that the kinetic models fit the adsorption of MB well where the correlation coefficients of all kinetic models are higher than 0.97. The Avr kinetic model has the lowest ∆qe (normalized standard deviation) value, making it the most suitable one for describing the adsorption kinetics. The adsorption isotherm of MB by Pectin-PAAc follows the Brouers-Sotolongo model while that by Pectin-PAAc/CNC follows the Langmuir isotherm model. The negative values of ∆G confirmed the spontaneous nature of adsorption, and the positive value of ∆H indicated the endothermic nature of the adsorption.
Collapse
Affiliation(s)
- Arej S. Al-Gorair
- Chemistry Department, College of Science Princess, Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Asmaa Sayed
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11787, Egypt;
| | - Ghada A. Mahmoud
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, P.O. Box 29, Cairo 11787, Egypt;
| |
Collapse
|
24
|
Abdullah TA, Juzsakova T, Rasheed RT, Salman AD, Sebestyen V, Domokos E, Sluser B, Cretescu I. Polystyrene-Fe 3O 4-MWCNTs Nanocomposites for Toluene Removal from Water. MATERIALS 2021; 14:ma14195503. [PMID: 34639913 PMCID: PMC8509402 DOI: 10.3390/ma14195503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
In this research, multi-walled carbon nanotubes (MWCNTs) were functionalized by oxidation with strong acids HNO3, H2SO4, and H2O2. Then, magnetite/MWCNTs nanocomposites were prepared and polystyrene was added to prepare polystyrene/MWCNTs/magnetite (PS:MWCNTs:Fe) nanocomposites. The magnetic property of the prepared nano-adsorbent PS:MWCNTs:Fe was successfully checked. For characterization, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and BET surface area were used to determine the structure, morphology, chemical nature, functional groups, and surface area with pore volume of the prepared nano-adsorbents. The adsorption procedures were carried out for fresh MWCNTs, oxidized MWCNTs, MWCNTs-Fe, and PS:MWCNTs:Fe nanocomposites in batch experiments. Toluene standard was used to develop the calibration curve. The results of toluene adsorption experiments exhibited that the PS:MWCNTs:Fe nonabsorbent achieved the highest removal efficiency and adsorption capacity of toluene removal. The optimum parameters for toluene removal from water were found to be 60 min, 2 mg nano-sorbent dose, pH of 5, solution temperature of 35 °C at 50 mL volume, toluene concentration of 50 mg/L, and shaking speed of 240 rpm. The adsorption kinetic study of toluene followed the pseudo-second-order kinetics, with the best correlation (R2) value of 0.998, while the equilibrium adsorption study showed that the Langmuir isotherm was obeyed, which suggested that the adsorption is a monolayer and homogenous.
Collapse
Affiliation(s)
- Thamer Adnan Abdullah
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10001, Iraq;
| | - Tatjána Juzsakova
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Rashed Taleb Rasheed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad 10001, Iraq;
| | - Ali Dawood Salman
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Viktor Sebestyen
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Endre Domokos
- Sustainability Solutions Research Laboratory, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (T.A.A.); (T.J.); (A.D.S.); (V.S.); (E.D.)
| | - Brindusa Sluser
- Faculty Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
- Correspondence: (B.S.); (I.C.); Tel.: +40-741-914-342 (I.C.)
| | - Igor Cretescu
- Faculty Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Blvd. D. Mangeron, 700050 Iasi, Romania
- Correspondence: (B.S.); (I.C.); Tel.: +40-741-914-342 (I.C.)
| |
Collapse
|