1
|
Wang J, Wang H, Qi X, Zhi G, Wang J. Cobalt metal replaces Co-ZIF-8 mesoporous material for effective adsorption of arsenic from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32935-32949. [PMID: 38671264 DOI: 10.1007/s11356-024-33419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The high cost and low adsorption capacity of primary metal-organic frameworks (ZIF-8) limit their application in heavy metal removal. In this paper, Co/Zn bimetallic MOF materials were synthesized with excellent adsorption performance for As5+. The adsorption reached equilibrium after 180 min and the maximum adsorption was 250.088 mg/g. In addition, Co-ZIF-8 showed strong selective adsorption of As5+. The adsorption process model of Co-ZIF-8 fits well with the pseudo-second-order kinetic model (R2=0.997) and Langmuir isotherm model (R2=0.994), and it is demonstrated that the adsorption behavior of the adsorbent is a single layer of chemical adsorption. In addition, when the adsorbent enters the arsenic-containing solution, the surface of Co-ZIF-8 is hydrolyzed to produce a large number of Co-OH active sites, and As5+ arrives at the surface of Co-ZIF-8 by electrostatic adsorption and combines with the active sites to generate the arsenic-containing complex As-O-Co. After four cycles, Co-ZIF-8 showed 80% adsorption of As5+. This study not only provides a new method to capture As5+ in water by preparing MOF with partial replacement of the central metal, but also has great significance for the harmless disposal of polluted water.
Collapse
Affiliation(s)
- Junfeng Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Heng Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xianjin Qi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Gang Zhi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianhua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
2
|
Ding WQ, Labiadh L, Xu L, Li XY, Chen C, Fu ML, Yuan B. Current advances in the detection and removal of organic arsenic by metal-organic frameworks. CHEMOSPHERE 2023; 339:139687. [PMID: 37541439 DOI: 10.1016/j.chemosphere.2023.139687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Arsenic (As) is a highly toxic heavy metal and has been widely concerned for its hazardous environmental impact. Aromatic organic arsenic (AOCs) has been frequently used as an animal supplement to enhance feed utilization and prevent dysentery. The majority of organic arsenic could be discharged from the body and evolve as highly toxic inorganic arsenic that is hazardous to the environment and human health via biological conversion, photodegradation, and photo-oxidation. Current environmental issues necessitate the development and application of multifunctional porous materials in environmental remediation. Compared to the conventional adsorbent, such as activated carbon and zeolite, metal-organic frameworks (MOFs) exhibit a number of advantages, including simple synthesis, wide variety, simple modulation of pore size, large specific surface area, excellent chemical stability, and easy modification. In recent years, numerous scientists have investigated MOFs related materials involved with organic arsenic. These studies can be divided into three categories: detection of organic arsenic by MOFs, adsorption to remove organic arsenic by MOFs, and catalytic removal of organic arsenic by MOFs. Here, we conduct a critical analysis of current research findings and knowledge pertaining to the structural characteristics, application methods, removal properties, interaction mechanisms, and spectral analysis of MOFs. We summarized the application of MOFs in organic arsenic detection, adsorption, and catalytic degradation. Other arsenic removal technologies and conventional substances are also being investigated. This review will provide relevant scientific researchers with references.
Collapse
Affiliation(s)
- Wen-Qing Ding
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Lazhar Labiadh
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Lei Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiao-Ying Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Chen Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| |
Collapse
|
3
|
Yang T, An L, Zeng G, Mai J, Li Y, Lian J, Zhang H, Li J, Cheng X, Jia J, Liu M, Ma J. Enhanced hydroxyl radical generation for micropollutant degradation in the In 2O 3/Vis-LED process through the addition of periodate. WATER RESEARCH 2023; 243:120401. [PMID: 37536249 DOI: 10.1016/j.watres.2023.120401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Periodate (PI) as an oxidant has been extensively studied for organic foulants removal in advanced oxidation processes. Here PI was introduced into In2O3/Vis-LED process to enhance the formation of ·OH for promoting the degradation of organic foulants. Results showed that the addition of PI would significantly promote the removal of sulfamethoxazole (SMX) in the In2O3/Vis-LED process (from 9.26% to 100%), and ·OH was proved to be the dominant species in the system. Besides, the process exhibited non-selectivity in the removal of different organic foulants. Comparatively, various oxidants (e.g., peroxymonosulfate, peroxydisulfate, and hydrogen peroxide) did not markedly promote the removal of SMX in the In2O3/Vis-LED process. Electrochemical analyses demonstrated that PI could effectively receive photoelectrons, thus inhibiting the recombination of photogenerated electron-hole (e-/h+) pairs. The holes then oxidized the adsorbed H2O to generate ·OH, and the PI converted to iodate at the same time. Additionally, the removal rate of SMX reduced from 100% to 17.2% as Vis-LED wavelengths increased from 440 to 560 nm, because of the low energy of photons produced at longer wavelengths. Notably, the species of PI do not affect its ability to accept electrons, resulting in the degradation efficiency of SMX irrespective of pH (4.0-10.0). The coexistence of inorganic cations and anions (such as Cl-, CO32-/HCO3-, SO42-, Ca2+, and Mg2+) also had an insignificant effect on SMX degradation. Furthermore, the process also showed excellent degradation potential in real water. The proposed strategy provides a new insight for visible light-catalyzed activation of PI and guidance to explore green catalytic processes for high-efficiency removal of various organic foulants.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Yuying Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| | - Jinchuan Lian
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai 519087, P R China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Minchao Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong Province 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Yang T, An L, Zeng G, Jiang M, Li J, Liu C, Jia J, Ma J. Efficient removal of p-arsanilic acid and arsenite by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. WATER RESEARCH 2023; 241:120091. [PMID: 37262947 DOI: 10.1016/j.watres.2023.120091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
The widespread occurrence of p-arsanilic acid (p-ASA) in natural environments poses big threats to the biosphere due to the generation of toxic inorganic arsenic (i.e., As(III) and As(V), especially As(III) with higher toxicity and mobility). Oxidation of p-ASA or As(III) to As(V) followed by precipitation of total arsenic using Fe-based advanced oxidation processes demonstrated to be a promising approach for the treatment of arsenic contamination. This study for the first time investigated the efficiency and inherent mechanism of p-ASA and As(III) oxidation by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. p-ASA was rapidly degraded by the Fe(II)/PAA process within 20 s at neutral to acidic pHs under different conditions, while it was insignificantly degraded by PAA oxidation alone. Lines of evidence suggested that hydroxyl radicals and organic radicals generated from the homolytic OO bond cleavage of PAA contributed to the degradation of p-ASA in the Fe(II)/PAA process. p-ASA was mainly oxidized to As (V), NH4+, and p-aminophenol by the Fe(II)/PAA process, wherein the aniline group and its para position were the most vulnerable sites. As(III) of concern was likely generated as an intermediate during p-ASA oxidation and it could be readily oxidized to As(V) by the Fe(II)/PAA process as well as PAA alone. The in-depth investigation demonstrated that PAA alone was effective in the oxidation of As(III) under varied conditions with a stoichiometric molar ratio of 1:1. Efficient removal (> 80%) of total arsenic during p-ASA oxidation by Fe(II)/PAA process or during As(III) oxidation by PAA process with additional Fe(III) in synthetic or real waters were observed, mainly due to the adsorptive interactions of amorphous ferric (oxy)hydroxide precipitates. This study systematically investigates the oxidation of p-ASA and As(III) by the Fe(II)/PAA and PAA processes, which is instructive for the future development of arsenic remediation technology.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Maoju Jiang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Changyu Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Wang C, Ren G, Tan Q, Che G, Luo J, Li M, Zhou Q, Guo DY, Pan Q. Detection of organic arsenic based on acid-base stable coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122812. [PMID: 37167746 DOI: 10.1016/j.saa.2023.122812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Organic arsenic, usually found in animal feed and livestock farm wastewater, is a carcinogenic and life-threatening substance. Hence, for the rapid and sensitive detection of organic arsenic, the development of new fluorescent sensors is quite essential. Here, an acid-base stable coordination polymer (HNU-62) was constructed by the introduction of hydrophobic fluorescence ligand, which can be used as a highly selective sensor for the detection of roxarsone (ROX) in water. The limit of detection (LOD) of HNU-62 for ROX was 4.5 × 10-6 M. Furthermore, HNU-62 also exhibits good anti-interference and recyclability, which can be used in detecting ROX in real samples of pig feed. This work provides an alternative approach for the construction of water-stable coordination polymer-based fluorescence sensors.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China.
| | - Qinyue Tan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China
| | - Guang Che
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Jian Luo
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd, Xiamen, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
6
|
Ma XY, Xie QQ, Hadiya A, Xamsiya N, Zhao ZX. Preparation of magnetic composites and their dimethyl arsonic acid adsorption performances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59554-59566. [PMID: 37010680 DOI: 10.1007/s11356-023-26770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Dimethyl arsonic acid, the most common organic arsenic pollutant, is widely present in the environment and seriously threatens the safety of drinking water. Syntheses of magnetite, magnetic bentonite, and magnetic ferrihydrite via hydrothermal methods, and the magnetic composites were examined using XRD, BET, VSM, and SEM. SEM images revealed that many monodispersible pellets were attached to the surface of magnetic bentonite. The magnetic ferrihydrite contained abundant pores and had a rich pore structure, which expanded the specific surface area of the original magnetite. The specific surface areas of the magnetic bentonite and magnetic ferrihydrite were 65.17 and 220.30 m2·g-1, respectively. The adsorption kinetics and adsorption isotherms of dimethyl arsonic acid on magnetic composites were studied. The adsorption of dimethyl arsonic acid on the magnetic composites conformed to the pseudo-second-order model and Freundlich isothermal adsorption model. By comparing the isotherms of the adsorption of dimethyl arsonic acid by the magnetic composites at pH values of 3, 7, and 11, respectively, it was found that the adsorption of dimethyl arsonic acid was the greatest at neutral pH of 7. The adsorption mechanism was analyzed via zeta potential determination, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The zeta potential results revealed that magnetic bentonite electrostatic activity occurred with dimethyl arsonic acid, and the magnetic ferrihydrite indicated a coordination complex with dimethyl arsonic acid. The XPS results revealed that the Fe-O bonds on the surfaces of the magnetic ferrihydrite had coordination complexation effects on the As-O of the dimethyl arsonic acid.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi, 830054, China
| | - Qing-Qing Xie
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi, 830054, China
| | - Ablat Hadiya
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi, 830054, China
| | - Nurmamat Xamsiya
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi, 830054, China
| | - Zhi-Xi Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Urumqi, 830054, China.
| |
Collapse
|
7
|
Cao Y, Yao J, Knudsen TŠ, Pang W, Zhu J, Liu B, Li H, Li M, Su J. Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H 2O 2. CHEMOSPHERE 2023; 312:137169. [PMID: 36402353 DOI: 10.1016/j.chemosphere.2022.137169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6-8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.
Collapse
Affiliation(s)
- Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Junjie Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jianchao Su
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
8
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
9
|
Zarić NM, Braeuer S, Goessler W. Arsenic speciation analysis in honey bees for environmental monitoring. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128614. [PMID: 35338933 DOI: 10.1016/j.jhazmat.2022.128614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Arsenic can be toxic to living organisms, depending not only on the concentration, but also its chemical form. The aim of this study was to determine arsenic concentrations and perform arsenic speciation analysis for the first time in honeybees, to evaluate their potential as biomonitors. Highest arsenic concentrations were determined in the vicinity of coal fired thermal power plants (367 µg kg-1), followed by an urban region (213 µg kg-1), with much lower concentrations in an industrial city (28.8 µg kg-1) and rural areas (41 µg kg-1). Until now, honey bees have never been used to study different arsenic species in the environment. For this reason, four extraction procedures were tested: water, hot water at 90 °C, 20% methanol, and 1% formic acid. Water at 90 °C was able to extract more than 90% of the total arsenic from honey bee samples. Inorganic arsenic (the sum of arsenite and arsenate) accounted for 95% of arsenic species in bees from three locations, except the industrial city, where it represented only 80% of arsenic species, while 15% was present as DMA.
Collapse
Affiliation(s)
- Nenad M Zarić
- University of Graz, Institute of Chemistry, Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria; University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Simone Braeuer
- University of Graz, Institute of Chemistry, Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria; Ghent University, Department of Chemistry, Atomic & Mass Spectrometry Research Unit, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Walter Goessler
- University of Graz, Institute of Chemistry, Analytical Chemistry for Health and Environment, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
10
|
Xie X, Li J, Luo L, Liao W, Luo S. Phenylarsonics in concentrated animal feeding operations: Fate, associated risk, and treatment approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128394. [PMID: 35158239 DOI: 10.1016/j.jhazmat.2022.128394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phenylarsonics are present as additives in animal feed in some countries. As only a small fraction of these additives is metabolized in animals, they mostly end up in the environment. A comprehensive investigation of the fate of these additives is crucial for evaluating their risks. This review aims to provide a clear understanding of the transformation mechanism of phenylarsonics in vivo and in vitro and to evaluate their fate and associated risks. Degradation of phenylarsonics releases toxic As species (mainly as inorganic arsenic (iAs)). Trivalent phenylarsonics are the metabolites or biotic degradation intermediates of phenylarsonics. The cleavage of As groups from trivalent phenylarsonics catalyzed by C-As lyase or other unknown pathways generates arsenite (As(III)). As(III) can be further oxidized to arsenate (As(V)) and methylated to methyl-arsenic species. The half-lives associated with abiotic degradation of phenylarsonics ranged from a few minutes to tens of hours, while those associated with biotic degradation ranged from several days to hundreds of days. Abiotic degradation resulted in a higher yield of iAs than biotic degradation. The use of phenylarsonics led to elevated total As and iAs levels in animal products and environmental matrices, resulting in As exposure risk to humans. The oxidation of phenylarsonics to As(V) facilitated the sorptive removal of As, which provides a general approach for treating these compounds. This review provides solid evidence that the use of phenylarsonics has adverse effects on both human health and environmental safety, and therefore, supports their withdrawal from the global market.
Collapse
Affiliation(s)
- Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|