1
|
Lei L, Zhang R, Bi RX, Peng ZH, Liu X, Shi TY, Zhang L, Liang RP, Qiu JD. Calcium phytate cross-linked polysaccharide hydrogels for selective removal of U(VI) from tailings wastewater. WATER RESEARCH 2025; 278:123343. [PMID: 40043575 DOI: 10.1016/j.watres.2025.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025]
Abstract
Efficient uranium capture from rare earth tailings wastewater holds great importance for human health and sustainable development. Herein, we present a simple and eco-friendly approach to form a single network hydrogel through electrostatic interaction between chitosan and sodium alginate. Subsequently, calcium phytate is introduced as a natural crosslinking agent to generate a secondary cross-linked network, leading to a composite hydrogel (CS-SA/PCa) with a doubly enhanced network structure for efficient adsorption of uranium from wastewater. The established multistage porous structure enables the rapid diffusion of uranyl ions, and the abundant phosphate groups serving as adsorption sites can offer high affinity for U(VI). Most importantly, CS-SA/PCa is formed through physical cross-linking of sustainable biopolymers, avoiding the use of toxic chemical agents. In addition, CS-SA/PCa exhibited significantly better mechanical properties than those of single-network physical hydrogels crosslinked by electrostatic interactions, which overcame the weak mechanical properties of physical hydrogels. It provides a new method for the manufacture of environmentally friendly, low-cost and robust physical hydrogels based on natural polymers.
Collapse
Affiliation(s)
- Lan Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Rui-Xiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Zhi-Hai Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Tie-Ying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China; Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, PR China.
| |
Collapse
|
2
|
Guo X, He Y, Zhou Y, Lai Y, Li M, Huang G, Chen B, Wang M. In situ purification of ammonium nitrogen wastewater in rare earth mine by native bacteria isolating fromoriginal mining area. BIORESOURCE TECHNOLOGY 2025; 418:131942. [PMID: 39643056 DOI: 10.1016/j.biortech.2024.131942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ammonium sulfate ((NH4)2SO4) leaching method to extract rare earth elements (REEs) of mine has produced a large amount of NH4+-N-enriched wastewater derived from ore body, leading to many serious environmental pollution problems. This study was the first time to establish an in-situ treatment for real REEs wastewater outside and inside the ore body by an isolated indigenous microorganism. The results stated that Citrobacter sp. X-9 achieved the highest NH4+-N removal efficiency among the isolated six microbial strains. Moreover, the microbe to treat the REEs wastewater outside ore body gave the greatest NH4+-N removal efficiency under the optimized conditions in the Erlenmeyer flask (250-mL) and bioreactor (10-L). Furthermore, compared to the others' modes, the in-situ treatment by cyclic mode with Citrobacter sp. X-9 possessed superior performance in NH4+-N removal efficiency for wastewater inside of ore body, showing that the established in-situ treatment was the potential approach for REEs wastewater purification.
Collapse
Affiliation(s)
- Xu Guo
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- School of Food and Biological Engineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Yulin Lai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ming Li
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment of China, Beijing 100006, China
| | - Guanglu Huang
- Longyan Rare Earth Development CO., LTD., Longyan 364000, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
3
|
Xiao M, Zhang H, Wu L, Wu Y, He X, Li B, Chen X, Yang L. Divergent responses of microalgal-bacterial granular sludge to two typical microplastics polystyrene and polybutylene succinate during the treatment of sulfamethoxazole-containing wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124286. [PMID: 39935060 DOI: 10.1016/j.jenvman.2025.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
This study evaluated the mechanisms by which biodegradable microplastics (polystyrene, PS MPs) and non-biodegradable microplastics (polybutylene succinate, PBS MPs), affect the performance of microalgal-bacterial granular sludge in sulfamethoxazole (SMX)-containing wastewater. Macroscopically, microalgal-bacterial granular sludge adapted to PS MPs more significantly and rapidly than PBS MPs. PS MPs slightly inhibited the removal of chemical oxygen demand (COD) and NH4+-N, with the average removal rate reduced by 4.54% and 3.65%, respectively. Nonetheless, PBS MPs facilitated the degradation of SMX with the main pathway being the breakage of N-S bonds. At the microscopic level, the inhibition of Proteobacteria and Cyanobacteria abundance by PS MPs emerged as a significant factor affecting the performance of granular sludge. Conversely, the enrichment of Desulfobacterota promoted by PBS MPs favorably impacted the removal and degradation of pollutants. Overall, PBS MPs showed better environmental compatibility and lower ecotoxicity for microalgal-bacterial granular sludge treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Meixing Xiao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Huiyin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yaxin Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaoguo Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
4
|
Labara Tirado J, Herdean A, Ralph PJ. The need for smart microalgal bioprospecting. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:7. [PMID: 39815030 PMCID: PMC11735771 DOI: 10.1007/s13659-024-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new properties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selective sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscoveries. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. in ACS Appl Bio Mater 4:5080-5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 19:3810-3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
Collapse
Affiliation(s)
- Joan Labara Tirado
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Andrei Herdean
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Liu Y, Liu Z, Xiong Z, Geng Y, Cui D, Pavlostathis SG, Chen H, Luo Q, Qiu G, Dong Q, Yang L, Shao P, Shi H, Luo X, Luo S. Synergistic optimization of baffles and aeration to improve the Light/Dark cycle of microalgae photobioreactor for enhanced nitrogen removal performance: Computational fluid dynamics and experimental verification. BIORESOURCE TECHNOLOGY 2024; 410:131293. [PMID: 39153688 DOI: 10.1016/j.biortech.2024.131293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge. In this study, the computational fluid dynamics is employed for simulating the optimization of the number and length of the internal baffles, as well as the aeration rate of PBR, which in turn leads to the optimal growth of microalgae and efficient nitrogen removal. After optimization, the Light/Dark cycle of the reactor B is shortened by 51.6 %, and the biomass increases from 0.06 g/L to 3.94 g/L. In addition, the removal rate of NH4+-N increased by 106.0 % to 1.56 mg L-1 h-1. This work provides a feasible method for optimizing the design and operational parameters of PBR aiming the engineering application.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhuochao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States
| | | | | | - Genping Qiu
- ECO-ADVANCE CO., LED, Ganzhou 341000, PR China
| | | | - Liming Yang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
6
|
Vo PHN, Kuzhiumparambil U, Kim M, Hinkley C, Pernice M, Nghiem LD, Ralph PJ. Biomining using microalgae to recover rare earth elements (REEs) from bauxite. BIORESOURCE TECHNOLOGY 2024; 406:131077. [PMID: 38971386 DOI: 10.1016/j.biortech.2024.131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Biomining using microalgae has emerged as a sustainable option to extract rare earth elements (REEs). This study aims to (i) explore the capability of REEs recovery from bauxite by microalgae, (ii) assess the change of biochemical function affected by bauxite, and (iii) investigate the effects of operating conditions (i.e., aeration rate, pH, hydraulic retention time) to REEs recovery. The results showed that increasing bauxite in microalgae culture increases REEs recovery in biomass and production of biochemical compounds (e.g., pigments and Ca-Mg ATPase enzyme) up to 10 %. The optimum pulp ratio of bauxite in the microalgae culture ranges from 0.2 % to 0.6 %. Chlorella vulgaris was the most promising, with two times higher in REEs recovery in biomass than the other species. REEs accumulated in microalgae biomass decreased with increasing pH in the culture. This study establishes a platform to make the scaling up of REEs biomining by microalgae plausible.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | | | - Mikael Kim
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Cora Hinkley
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
8
|
Geng Y, Xiong Z, Yang L, Lian CA, Pavlostathis SG, Qiu Z, Chen H, Luo Q, Liu Y, Liu Z, Shao P, Zou JP, Jiang H, Luo S, Yu K, Luo X. Bidirectional Enhancement of Nitrogen Removal by Indigenous Synergetic Microalgal-Bacterial Consortia in Harsh Low-C/N Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5394-5404. [PMID: 38463002 DOI: 10.1021/acs.est.3c10322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.
Collapse
Affiliation(s)
- Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Chun-Ang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Houxing Chen
- ECO-ADVANCE CO., LED, Ganzhou, Jiangxi 341000, P. R. China
| | - Qingchun Luo
- ECO-ADVANCE CO., LED, Ganzhou, Jiangxi 341000, P. R. China
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Hualin Jiang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- School of Life Science, Jinggangshan University, Ji'an 343009, P. R. China
| |
Collapse
|
9
|
Song X, Kong F, Liu BF, Song Q, Ren NQ, Ren HY. Combined transcriptomic and metabolomic analyses of temperature response of microalgae using waste activated sludge extracts for promising biodiesel production. WATER RESEARCH 2024; 251:121120. [PMID: 38237459 DOI: 10.1016/j.watres.2024.121120] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Waste activated sludge (WAS) as one of the major pollutants with a significant annual production, has garnered significant attention regarding its treatment and utilization. If improperly discharged, it not only caused environmental pollution but also led to the wastage of valuable resources. In this study, the microalgae growth and lipid accumulation using waste activated sludge extracts (WASE) under different temperature conditions were investigated. The highest lipid content (59.13%) and lipid productivity (80.41 mg L-1 d-1) were obtained at cultivation temperatures of 10 and 25 °C, respectively. It was found that microalgae can effectively utilize TN/TP/NH4+-N and other nutrients of WASE. The highest utilization rates of TP, TN and NH4+-N were achieved at a cultivation temperature of 10 °C, reaching 84.97, 77.49 and 92.32%, respectively. The algal fatty acids had carbon chains predominantly ranging from C14 to C18, making them suitable for biodiesel production. Additionally, a comprehensive analysis of transcriptomics and metabolomics revealed up-regulation of genes associated with triglyceride assembly, the antioxidant system of algal cells, and cellular autophagy, as well as the accumulation of metabolites related to the tricarboxylic acid (TCA) cycle and lipids. This study offers novel insights into the microscopic mechanisms of microalgae culture using WASE and approaches for the resource utilization of sludge.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| |
Collapse
|
10
|
Song X, Liu BF, Kong F, Song Q, Ren NQ, Ren HY. New insights into rare earth element-induced microalgae lipid accumulation: Implication for biodiesel production and adsorption mechanism. WATER RESEARCH 2024; 251:121134. [PMID: 38244297 DOI: 10.1016/j.watres.2024.121134] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
A coupling technology for lipid production and adsorption of rare earth elements (REEs) using microalgae was studied in this work. The microalgae cell growth, lipid production, biochemical parameters and lipid profiles were investigated under different REEs (Ce3+, Gd3+and La3+). The results showed that the maximum lipid production was achieved at different concentrations of REEs, with lipid productivities of 300.44, 386.84 and 292.19 mg L-1 d-1 under treatment conditions of 100 μg L-1 Ce3+, 250 μg L-1 Gd3+ and 1 mg L-1 La3+, respectively. Moreover, the adsorption efficiency of Ce3+, Gd3+ and La3+exceeded 96.58 %, 93.06 % and 91.3 % at concentrations of 25-1000 μg L-1, 100-500 μg L-1 and 0.25-1 mg L-1, respectively. In addition, algal cells were able to adsorb 66.2 % of 100 μg L-1 Ce3+, 48.4 % of 250 μg L-1 Gd3+ and 59.9 % of 1 mg L-1 La3+. The combination of extracellular polysaccharide and algal cell wall could adsorb 25.2 % of 100 μg L-1 Ce3+, 44.5 % of 250 μg L-1 Gd3+ and 30.5 % of 1 mg L-1 La3+, respectively. These findings indicated that microalgae predominantly adsorbed REEs through the intracellular pathway. This study elucidates the mechanism of effective lipid accumulation and adsorption of REEs by microalgae under REEs stress conditions. It establishes a theoretical foundation for the efficient microalgae lipid production and REEs recovery from wastewater or waste residues containing REEs.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Vo PHN, Danaee S, Hai HTN, Huy LN, Nguyen TAH, Nguyen HTM, Kuzhiumparambil U, Kim M, Nghiem LD, Ralph PJ. Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168210. [PMID: 37924876 DOI: 10.1016/j.scitotenv.2023.168210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand. Depending on specific mining sites, its geological conditions, and sociodemographic backgrounds, mining waste has been identified as a source of REEs in various concentrations and abundance. Yttrium, cerium, and neodymium are the most common REEs in mining waste streams (50 to 300 μg/L). Biomining has emerged as a viable option for REEs recovery due to its reduced environmental impact, along with reduced capital investment compared to traditional recovery methods. This paper aims to review (i) the characteristics of mining waste as a low-grade REEs resource, (ii) the key operating principles of biomining technologies for REEs recovery, (iii) the effects of operating conditions and matrix on REEs recovery, and (iv) the sustainability of REEs recovery through biomining technologies. Six types of biomining will be examined in this review: bioleaching, bioweathering, biosorption, bioaccumulation, bioprecipitation and bioflotation. Based on a SWOT analyses and techno-economic assessments (TEA), biomining technologies have been found to be effective and efficient in recovering REEs from low-grade sources. Through TEA, coal ash has been shown to return the highest profit amongst mining waste streams.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Soroosh Danaee
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology, Klongluang, Pathumthani, Thailand
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland 4102, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
12
|
Samarska A, Wiche O. Phytoextraction Options. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 190:181-232. [PMID: 39217584 DOI: 10.1007/10_2024_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.
Collapse
Affiliation(s)
- Alla Samarska
- Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany
| | - Oliver Wiche
- Applied Geoecology Group, Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau, Germany.
| |
Collapse
|
13
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
14
|
Censi P, Sirota I, Zuddas P, Lensky NG, Crouvi O, Cangemi M, Piazzese D. Rare earths release from dissolving atmospheric dust and their accumulation into crystallising halite: The Dead Sea example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162682. [PMID: 36894097 DOI: 10.1016/j.scitotenv.2023.162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The industrial extraction of Y and lanthanides (hereafter defined as Rare Earth Elements, REE) often requires the achievement of leaching procedures removing these metals from primary rocks and their transfer in aqueous leachates or incorporated in newly forming soluble solids. These procedures are the most dangerous to the environment in relation to the composition of leachates. Hence, the recognition of natural settings where these processes currently occur, represents a worthy challenge for learning how to carry out similar industrial procedures under natural and more eco-friendly conditions. Accordingly, the REE distribution was studied in the brine of Dead Sea, a terminal evaporating basin where brines dissolve atmospheric fallout particles and crystallise halite. Our results indicate that the shale-like fractionation of shale-normalised REE patterns in brines, inherited during the dissolution of atmospheric fallout, changes because of the halite crystallisation. This process leads to crystallising halite mainly enriched in elements from Sm to Ho (medium REE, MREE) and coexisting mother brines enriched in La and some other light REE (LREE). We suggest that the dissolution of atmospheric dust in brines corresponds to the REE extraction from primary silicate rocks, whereas halite crystallisation represents the REE transfer into a secondary more soluble deposit with reduced environmental health outcomes.
Collapse
Affiliation(s)
- P Censi
- Department of Earth and Marine Science (DISTEM), University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | - I Sirota
- Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem 9371234, Israel; Institute of Earth Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - P Zuddas
- Sorbonne Université, CNRS, METIS, F75005 Paris, France
| | - N G Lensky
- Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem 9371234, Israel; Institute of Earth Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - O Crouvi
- Geological Survey of Israel, 32 Yesha'yahu Leibowitz, Jerusalem 9371234, Israel
| | - M Cangemi
- Department of Earth and Marine Science (DISTEM), University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - D Piazzese
- Department of Earth and Marine Science (DISTEM), University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
| |
Collapse
|
15
|
Liu Y, Liu Z, Cui D, Yang L, Wang H, Pavlostathis SG, Geng Y, Xiong Z, Shao P, Luo X, Luo S. Buffered loofah supported Microalgae-Bacteria symbiotic (MBS) system for enhanced nitrogen removal from rare earth element tailings (REEs) wastewater: Performance and functional gene analysis. CHEMOSPHERE 2023; 323:138265. [PMID: 36858117 DOI: 10.1016/j.chemosphere.2023.138265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/04/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Rare earth element tailings (REEs) wastewater, which has the characteristics of high ammonia nitrogen (NH4+-N) and low COD. It can cause eutrophication and biotoxicity in water which is produced in high volumes, requiring treatment before final disposal. Microalgae-Bacteria symbiotic (MBS) system can be applied in REEs wastewater, but its low extent of nitrogen removal and instability limit its application. By adding biodegradable carrier as both carbon source and carrier, the system can be stabilized and the efficiency can be improved. In this work, the extent of NH4+-N removal reached 100% within 24 h in a MBS system after adding loofah under optimal conditions, and the removal rate reached 127.6 mg NH4+-N·L-1·d-1. In addition, the carbon release from loofah in 3 d reached 408.7 mg/L, which could be used as a carbon source to support denitrification. During 90 d of operation of the MBS system loaded with loofah, the effluent NH4+-N was less than 15 mg/L. At phylum level, Proteobacteria were dominant which accounted for 78.2%. Functional gene analysis showed that enhancement of microalgae assimilation was the main factor affecting NH4+-N removal. This work expands our understanding of the enhanced role of carbon-based carriers in the denitrification of REEs wastewater.
Collapse
Affiliation(s)
- Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Haiyu Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, United States
| | - Yanni Geng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, Shenzhen, 518055, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China.
| | - Shenglian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| |
Collapse
|
16
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
17
|
Liu Z, Cui D, Liu Y, Wang H, Yang L, Chen H, Qiu G, Xiong Z, Shao P, Luo X. Enhanced ammonia nitrogen removal from actual rare earth element tailings (REEs) wastewater by microalgae-bacteria symbiosis system (MBS): Ratio optimization of microalgae to bacteria and mechanism analysis. BIORESOURCE TECHNOLOGY 2023; 367:128304. [PMID: 36370947 DOI: 10.1016/j.biortech.2022.128304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-bacteria symbiosis system (MBS) appear to be a promising way for treating the rare earth elements (REEs) wastewater due to the natural symbiotic interactions between microalgae and bacteria. Herein, we investigated the effect of different inoculation ratios of microalgae and bacteria including 3:1 (MB_1), 1:1 (MB_2) and 1:3 (MB_3) on NH4+-N removal from REEs wastewater and analyzed the corresponding biological mechanism. The NH4+-N removal rate with MB_3 reached 17.69 ± 0.45 mg NH4+-N/L d-1, which was 2.58 times higher than that in single microalgae system. The results were further verified in continuous feeding photobioreactors and kept stable for 100 days. Metagenomic analysis revealed that the abundance of genes related to microalgae assimilation increased by 14 %-50 % in answer to photosynthesis and NH4+-N absorption, while that related to nitrification apparently dropped, indicating that MBS was a sustainable method capable of enhancing NH4+-N removal from REEs wastewater.
Collapse
Affiliation(s)
- Zhuochao Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Yuanqi Liu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Haiyu Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | | | - Genping Qiu
- ECO-ADVANCE CO., LED, Jiangxi 341000, PR China
| | - Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
18
|
Xiong Z, Lai L, Ding Y, Yang L, Geng Y, Pavlostathis SG, Shao P, Zhang Y, Luo X. Corncob biocarriers with available carbon release for Chlamydopodium sp. microalgae towards enhanced nitrogen removal from low C/N rare earth element tailings (REEs) wastewater. CHEMOSPHERE 2022; 307:135673. [PMID: 35842037 DOI: 10.1016/j.chemosphere.2022.135673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Low nitrogen (N) removal efficiency limits the potential of microalgae technology for the treatment of high nitrogen and low carbon rare earth tailings (REEs) wastewater. In this study, waste corncob was utilized as a biocarrier immobilizing Chlamydopodium sp. microalgae to realize high-efficient treatment of the REEs wastewater. In only 2.5 d, corncob-immobilized microalgae allowed the residual concentrations of N lower than the emission standards, and ammonia nitrogen (NH4+-N) removal rate is 83.3 mg L-1·d-1, total inorganic nitrogen (TIN) removal rate is 86.7 mg L-1·d-1, which was 18.5 times that of the previously-reported microalgae (4.68 mg L-1·d-1). Compared with other microalgae immobilization carriers, corncob possesses the ability to release available carbon sources for microalgae. Composition analysis and sugar verification experiments showed that the main content of TOC released by corncob was monosaccharide, and in a certain range, the removal rate of N was positively correlated with the TOC concentration. The utilization of biomass wastes with dual functions as biological carriers has great potential to improve the performance of microalgae, and is conducive to the development of engineering applications.
Collapse
Affiliation(s)
- Zhensheng Xiong
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ling Lai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yanyan Ding
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Yanni Geng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, United States
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yakun Zhang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
19
|
Sun Y, Lu T, Pan Y, Shi M, Ding D, Ma Z, Liu J, Yuan Y, Fei L, Sun Y. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100204. [PMID: 36157340 PMCID: PMC9500351 DOI: 10.1016/j.ese.2022.100204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 05/31/2023]
Abstract
Biotreatment of acidic rare earth mining wastewater via acidophilic living organisms is a promising approach owing to their high tolerance to high concentrations of rare earth elements (REEs); however, simultaneous removal of both REEs and ammonium is generally hindered since most acidophilic organisms are positively charged. Accordingly, immobilization of acidophilic Galdieria sulphuraria (G. sulphuraria) by calcium alginate to improve its affinity to positively charged REEs has been used for simultaneous bioremoval of REEs and ammonium. The results indicate that 97.19%, 96.19%, and 98.87% of La, Y, and Sm, respectively, are removed by G. sulphuraria beads (GS-BDs). The adsorption of REEs by calcium alginate beads (BDs) and GS-BDs is well fitted by both pseudo first-order (PFO) and pseudo second-order (PSO) kinetic models, implying that adsorption of REEs involves both physical adsorption caused by affinity of functional groups such as -COO- and -OH and chemical adsorption based on ion exchange of Ca2+ with REEs. Notably, GS-BDs exhibit high tolerance to La, Y, and Sm with maximum removal efficiencies of 97.9%, 96.6%, and 99.1%, respectively. Furthermore, the ammonium removal efficiency of GS-BDs is higher than that of free G. sulphuraria cells at an initial ammonium concentration of 100 mg L-1, while the efficiency decreases when initial concentration of ammonium is higher than 150 mg L-1. Last, small size of GS-BDs favors ammonium removal because of their lower mass transfer resistance. This study achieves simultaneous removal of REEs and ammonium from acidic mining drainage, providing a potential strategy for biotreatment of REE tailing wastewater.
Collapse
Affiliation(s)
- Yabo Sun
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, Anhui, 230601, PR China
| | - Tao Lu
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Yali Pan
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Menghan Shi
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Dan Ding
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Zhiwen Ma
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Jiuyi Liu
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Yupeng Yuan
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Ling Fei
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA, 70504, United States
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|
20
|
Zhou Y, He Y, Zhou Z, Xiao X, Wang M, Chen B. A newly isolated microalga Chlamydomonas sp. YC to efficiently remove ammonium nitrogen of rare earth elements wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115284. [PMID: 35584596 DOI: 10.1016/j.jenvman.2022.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to establish a practical approach to remove ammonium nitrogen of rare earth elements (REEs) wastewater by an indigenous photoautotrophic microalga. Firstly, a new microalgal strain was successfully isolated from REEs wastewater and identified as Chlamydomonas sp. (named Chlamydomonas sp. YC). The obtained results showed that microalga could completely remove the NH4+-N of 10% REEs wastewater after 10 days of cultivation; however, the highest NH4+-N removal rate was attained by microalga to treat undiluted REEs wastewater. Then, three cultivation modes including batch, semi-continuous and continuous cultivation methods were developed to evaluate the ability of NH4+-N removal rate by this microalga to treat diluted (10%) and undiluted REEs wastewater. It was found that, Chlamydomonas sp. YC exhibited superior performance towards NH4+-N removal rates (32.75-61.05 mg/(L·d)) by semi-continuous and continuous processes for the treatments of 10% and undiluted REEs wastewater in comparison to the results (19.50-30.38 mg/(L·d) by batch process. Interestingly, under the same treatment conditions, among the three cultivation modes, microalga exhibited the highest removal rates of NH4+-N in undiluted REEs wastewater by semi-continuous (61.05 mg/(L·d)) and continuous (57.10 mg/(L·d) processes. In term of the biochemical analysis, microalgal biomass obtained from the wastewater treatment had 35.40-44.40% carbohydrate and 4.97-6.03% lipid, which could be potential ingredients for sustainable biofuels production. And the highest carbohydrate and lipid productivities attained by Chlamydomonas sp. YC in the continuous mode were 226.36 mg/(L·d) and 32.98 mg/(L·d), respectively. Taken together, the established processes mediated with Chlamydomonas sp. YC via continuous cultivation was the great promising approaches to efficiently remove NH4+-N of REEs wastewater and produce valuable biomass for sustainable and renewable biofuels in a simultaneous manner.
Collapse
Affiliation(s)
- Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Zhihua Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
21
|
Zou Z, Yang H, Zhang S, Chi W, Wang X, Liu Z. Nitrogen removal performance and microbial community analysis of immobilized biological fillers in rare earth mine wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Wu H, Li A, Wang J, Li X, Cui M, Yang N, Liu Y, Zhang L, Wang X, Zhan G. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring. ENVIRONMENTAL RESEARCH 2022; 210:112985. [PMID: 35192804 DOI: 10.1016/j.envres.2022.112985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 μg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 μg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
23
|
Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. BIORESOURCE TECHNOLOGY 2022; 343:126154. [PMID: 34673196 DOI: 10.1016/j.biortech.2021.126154] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The pollution of the environment caused by dyes and heavy metals emitted by industries has become a worldwide problem. The development of efficient, environmentally acceptable, and cost-effective methods of wastewater treatment containing dyes and heavy metals is critical. Biologically based techniques for treating effluents are fascinating since they provide several benefits over standard treatment methods. This review assesses the most recent developments in the use of biological based techniques to remove dyes and heavy metals from wastewater. The remediation of dyes and heavy metals by diverse microorganisms such as algae, bacteria, fungi and enzymes are depicted in detail. Ongoing biological method's advances, scientific prospects, problems, and the future prognosis are all highlighted. This review is useful for gaining a better integrated view of biological based wastewater treatment and for speeding future research on the function of biological methods in water purification applications.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|