1
|
Gao Q, Gan J, Wang P, Huang Y, Zhang D, Yu W. Bio-inspired hierarchical bamboo-based air filters for efficient removal of particulate matter and toxic gases. EXPLORATION (BEIJING, CHINA) 2025; 5:20240012. [PMID: 40040832 PMCID: PMC11875449 DOI: 10.1002/exp.20240012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 03/06/2025]
Abstract
Air pollution is caused by the perilous accumulation of particulate matter (PM) and harmful gas molecules of different sizes. There is an urgent need to develop highly efficient air filtration systems capable of removing particles with a wide size distribution. However, the efficiency of current air filters is compromised by controlling their hierarchical pore size. Inspired by the graded filtration mechanisms in the human respiratory system, microporous ZIF-67 is in situ synthesized on a 3D interconnected network of bamboo cellulose fibers (BCFs) to fabricate a multiscale porous filter with a comprehensive pore size distribution. The macropores between the BCFs, mesopores formed by the BCF microfibers, and micropores within the ZIF-67 synergistically facilitate the removal of particulates of different sizes. The filtration capabilities of PM2.5 and PM0.3 could reach 99.3% and 98.6%, respectively, whereas the adsorption of formaldehyde is 88.7% within 30 min. In addition, the filter exhibits excellent antibacterial properties (99.9%), biodegradability (80.1% degradation after 14 days), thermal stability, and skin-friendly properties (0 irritation). This study may inspire the research of using natural features of renewable resources to design high-performance air-filtration materials for various applications.
Collapse
Affiliation(s)
- Qi Gao
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Jian Gan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
| | - Pixiang Wang
- Center for Materials and Manufacturing SciencesDepartment of Chemistry and PhysicsTroy UniversityTroyUSA
| | - Yuxiang Huang
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| | - Daihui Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
- Institute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjingChina
| | - Wenji Yu
- Research Institute of Wood IndustryChinese Academy of ForestryBeijingChina
| |
Collapse
|
2
|
Lei Y, Wang S, Jiang Y, Li Z, Liu N, Xu Y, Yu J, Cui M, Li Y, Zhao L. A robust triphenylamine-based monolithic polymer network for selective sieving of CO 2 and PM from flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174463. [PMID: 38964385 DOI: 10.1016/j.scitotenv.2024.174463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.
Collapse
Affiliation(s)
- Yang Lei
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Shaozhen Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Jiang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuan Xu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiao Yu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Mengjiao Cui
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Li Zhao
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
3
|
Li J, He X, Ke L, Wang C, Chen Y, Zhu G, Shao J, Zhang Y, Zhang M, Gao J, Xu H. Hierarchically Nano-Decorated Poly(lactic acid) Nanofibers for Humidity-Resistant Respiratory Healthcare and High-Accuracy Disease Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52476-52486. [PMID: 39297301 DOI: 10.1021/acsami.4c11843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The application of biodegradable and eco-friendly poly(lactic acid) (PLA) nanofibrous membranes (NFMs) toward respiratory healthcare has long been thwarted by the poor electroactivity and low surface activity of PLA. Herein, we unravel a microwave-assisted route to fabricate rod-like ZnO nanodielectrics, which were decorated with dopamine (ZnO@PDA) and anchored at the PLA nanofibers via an electrospinning-electrospray approach. The PLA/ZnO@PDA NFMs featured a substantially elevated specific surface area (up to 20.7 m2/g), increased dielectric constant (nearly 1.8) and a surface potential as high as 9.5 kV, resulting in superior air filtering performance (99.45% for PM0.3, 94.1 Pa, 32 L/min) compared with the pure PLA counterpart (90.04%, 169.0 Pa, 32 L/min). The notably increased electroactivity endowed the PLA/ZnO@PDA NFMs with significant improvements in triboelectric properties (output voltage of 11.5 V at 10 N, 0.5 Hz), laying down the cornerstone for self-powered monitoring of personal respiration. More importantly, a deep learning-assisted diagnostic system was developed based on respiration-driven signal patterns, enabling intelligent and real-time disease diagnosis with 100% accuracy for the protective membranes. The proposed hierarchical nanodecoration strategy opens up new possibilities for engendering eco-friendly nanofibers with an exceptional combination of efficient respiratory healthcare and intelligent diagnosis.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuyang Chen
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, 100012 Beijing, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
4
|
Zhu G, Wang C, Yang T, Gao N, Zhang Y, Zhu J, He X, Shao J, Li S, Zhang M, Zhang S, Gao J, Xu H. Bio-inspired gradient poly(lactic acid) nanofibers for active capturing of PM 0.3 and real-time respiratory monitoring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134781. [PMID: 38824775 DOI: 10.1016/j.jhazmat.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m2/g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM0.3 filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Na Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, 100012 Beijing, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China.
| |
Collapse
|
5
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
6
|
Zhao L, Wang S, Li Z, Jiang Y, Liu X, Ouyang H, Xiong Z, Guo Y, Li Y, Lei Y. Ultra-stable hollow nanotube conjugated microporous polymer incorporating fluorenyl moieties for Co-capture of PM and CO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133826. [PMID: 38377916 DOI: 10.1016/j.jhazmat.2024.133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Conjugated microporous polymers have a highly delocalized π-π conjugated porous skeleton connected by covalent bonds, which can combine their excellent stability with high adsorption, in order to be applied to the study of co-capture of harmful particulate matter (PM) and carbon dioxide (CO2) under high temperature and high humidity conditions. In this paper, fluorene-based coupled conjugated microporous polymers (D-CMPs) with functionalized hollow nanotubes and abundant microporous structures were proposed. Through mechanism exploration and molecular electrostatic potential (MESP) calculation, the capture efficiency, adsorption capacity and selectivity of PM and CO2 in the waste gas stream of carbon-based combustion were analyzed. The results indicate that D-CMPs, with their rigid carbon-based π-conjugated framework, exhibit excellent tolerance under prolonged high-humidity conditions, with a capture efficiency exceeding 99.87% for PM0.3 and exceeding 99.99% for PM2.5. Meanwhile, based on its chemical/thermal stability, it can realize the recycling of adsorption-regeneration. On this basis, the "slip effect" induced by the open three-dimensional hierarchical porous structure of D-CMPs significantly enhances airflow dispersion and improves gas throughput (with a minimal permeation resistance of only 15 Pa). At a pressure of 1 bar and a temperature of 273.15 K, D-CMP-2 exhibited a CO2 adsorption capacity of up to 2.69 mmol g-1. The fitting results of three isothermal adsorption models demonstrate that D-CMPs exhibit an outstanding equilibrium selectivity towards CO2. Therefore, prior to the widespread adoption of low-carbon and clean energy technologies, porous solid materials exhibiting excellent structural stability, equilibrium selectivity, environmental tolerance, and high adsorption capacity emerge as optimal candidates for the treatment of industrial waste gases.
Collapse
Affiliation(s)
- Li Zhao
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shaozhen Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Jiang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xinrui Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hang Ouyang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhengshao Xiong
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yu Guo
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Lei
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Yang L, Niu C, Cao X, Wang Y, Zhu Z, Sun H, Liang W, Li J, Li A. Mechanically robust conjugated microporous polymer membranes prepared using polyvinylpyrrolidone (PVP) electrospun nanofibers as a template for efficient PM capture. J Colloid Interface Sci 2023; 637:305-316. [PMID: 36706726 DOI: 10.1016/j.jcis.2023.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Air pollution has become a challenging environmental problem worldwide due to rapid industrial development and excessive emissions of vehicle exhaust. Herein, we report a preparation of conjugated microporous polymer membranes (CMPM) with a hierarchical porous structure by electrospun polyvinylpyrrolidone (PVP) nanofibers as a template for effective removal of PM from airborne and vehicle exhaust. CMP membranes have hierarchical holes, where the macropores are from electrospun nanofiber membranes and the mesopores are from polymer synthesis. Taking advantage of its inherent physicochemical and thermal stability and hierarchical hole characteristics, the CMPM-based filter can work continuously for up to 36 h and still maintains a high removal efficiency (>99.56%), and also has a high filtration efficiency in the treatment of vehicle exhausts, with 95.18% for PM0.3, 98% for PM0.5 and >99% for PM2.5-10.0. The superior mechanical properties of CMPM allow the filter to be cleaned and reused. After three cycles, the filtration effectiveness of CMPM is still 94.83% for respirable particulate matter. Under high humidity (RH ≥ 95%) conditions, the CMPM-based filter showed higher than 95.37% filtration of PM0.3-10, and the oil adsorption rate could be maintained at 284% at high speed, proving the great potential of CMPM to clean air in complex situations.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Cheng Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Xiaoyin Cao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yunjia Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
8
|
Tan P, Jiang Y, Gong D, Shi Y, Shi X, Wu P, Tan L. Synthetic polyurethane nanofibrous membrane with sustained rechargeability for integrated air cleaning. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Wang Y, Li X, Dong X, Zhang F, Lang X. Triazine-based two dimensional porous materials for visible light-mediated oxidation of sulfides to sulfoxides with O 2. J Colloid Interface Sci 2022; 616:846-857. [PMID: 35257934 DOI: 10.1016/j.jcis.2022.02.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023]
Abstract
Recently, triazine-based two dimensional (2D) porous materials have received increasing attention in photocatalysis. Herein, CTF-1, a covalent triazine framework, was adopted as the blueprint for designing a 2D bespoke photocatalyst. The thiazolo[5,4-d]thiazole (TzTz) linkage was inserted into the framework of CTF-1, affording TzTz-TA, which belongs to conjugated microporous polymers (CMPs). Rather than the direct insertion via the challenging CH activation, TzTz-TA was assembled from 2,4,6-tris(4-formylphenyl)-1,3,5-triazine and dithiooxamide, in which TzTz was formed in situ by a process of catalyst-free solvothermal condensation. Both CTF-1 and TzTz-TA had similar energy gaps (Eg), photocurrents, and charge carrier lifetimes, in line with the similar molecular underpinnings. However, the reduction potential of TzTz-TA is less negative than that of CTF-1 due to the insertion of TzTz linkage, in a more appropriate position for activating O2 to superoxide (O2•-). In return, blue light-mediated oxidation of sulfides to sulfoxides with O2 over TzTz-TA was accomplished with significantly superior conversions to those over CTF-1. Intriguingly, extensive sulfides could be oxidized to corresponding sulfoxides with outstanding recycling stability of TzTz-TA. Notably, attendance of an induction period was observed during TzTz-TA photocatalysis. This work highlights the vast potential of designing triazine-based porous materials to meet the tailor-made demands, such as the oxidative transformation of organic molecules with O2.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Rius-Ayra O, Biserova-Tahchieva A, Sansa-López V, Llorca-Isern N. Superhydrophobic 304 Stainless Steel Mesh for the Removal of High-Density Polyethylene Microplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5943-5953. [PMID: 35465677 PMCID: PMC9097532 DOI: 10.1021/acs.langmuir.2c00803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Indexed: 05/31/2023]
Abstract
Microplastics are a global issue that affects the environment, economy, as well as human health. Herein, we present a superhydrophobic 304 stainless steel mesh obtained by chemical etching followed by a liquid-phase deposition of lauric acid that can be used for microplastic removal. Field emission scanning electron microscopy (FE-SEM) and high-resolution X-ray photoelectron spectroscopy (HR-XPS), among other techniques, were used to identify the hierarchical structure and chemical composition of the surface. They revealed that iron laurate decreased the surface free energy. The 304 stainless steel mesh was superhydrophobic (169°) and superoleophilic (0°). Taking advantage of these wetting properties, we showed an innovative use of these superhydrophobic surfaces in the removal of microplastics. Additionally, we analyzed the removal efficiency from a surface and colloidal point of view that allowed us to explain and clarify why microplastics can also be removed by their wetting properties. The loss of a double electrostatic cloud between the microplastics and the predominance of van der Waals interactions in the organic phase promote the removal of these persistent pollutants from water.
Collapse
Affiliation(s)
- Oriol Rius-Ayra
- CPCM Departament de Ciència
dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Alisiya Biserova-Tahchieva
- CPCM Departament de Ciència
dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Victor Sansa-López
- CPCM Departament de Ciència
dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Núria Llorca-Isern
- CPCM Departament de Ciència
dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Tian Z, Ye X, Zhou P, Zhu Z, Li J, Sun H, Liang W, Liu Y, Li A. Bifunctional conjugated microporous polymer based filters for highly efficient PM and gaseous iodine capture. Polym Chem 2022. [DOI: 10.1039/d2py00529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-linked conjugated microporous polymers (CMPs) based air filters obtained by a one-step cross-coupling reaction for effective capture of particulate matter and gaseous iodine from dusty air.
Collapse
Affiliation(s)
- Zhuoyue Tian
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Xingyun Ye
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Peilei Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Yin Liu
- Gansu Research Institute of chemical Industry Co., Ltd., Guchengping Road 1, Lanzhou 730050, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|