1
|
Xu L, Yu C, Xie W, Liang X, Zhan J, Dai H, Skuza L, Xu J, Jing Y, Zhang Q, Shi C, Tao Y, Wei S. Effects of polyethylene microplastics on cadmium accumulation in Solanum nigrum L.: A study involving microbial communities and metabolomics profiles. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137621. [PMID: 39978192 DOI: 10.1016/j.jhazmat.2025.137621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Combined pollution with heavy metals and microplastics (MPs) is widespread in farmland soil, and MPs can affect the efficiency and capacity of cadmium (Cd) uptake by hyperaccumulators. However, there is a significant knowledge gap regarding the response of hyperaccumulators under such conditions. This study utilized Solanum nigrum L. (S. nigrum), a well-known Cd hyperaccumulator, to investigate the combined effects of polyethylene microplastics (PE-MPs) and Cd contamination on Cd accumulation in S. nigrum, and to systematically explore the underlying mechanisms. The results demonstrated that high doses of PE-MPs significantly inhibited S. nigrum growth and reduced Cd concentration and accumulation in plants. Meanwhile, the decrement of bioavailable Cd content and the formation of C-H and -COO in rhizosphere soil were observed with the presence of PE-MPs. The simultaneous exposure of PE-MPs and Cd caused the significant increase in the proportions of Proteobacteria and Acidobacteriota, indicating that certain PE-degrading microorganisms may play a pivotal role in aforementioned processes. More importantly, the relative abundance of the genera Pseudolabrys, DEV008, and Flavobacterium was significantly elevated, likely contributing to the response of S. nigrum to combined toxicity. Co-exposure caused a significant downregulation of biosynthetic processes, involving carbohydrates and adenosine. Additionally, the biosynthesis of ABC transporters, phenylpropanoids, flavonoids, and organic acids was also significantly affected. The findings provide a comprehensive understanding of the soil-plants ecosystem under combined pollution and provide valuable information for advancing phytoremediation strategies.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chufei Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Xiaosa Liang
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jie Zhan
- Liaoning vocational college of medicine, Shenyang 110101, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin 71-415, Poland
| | - Jingru Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yunqing Jing
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qingjian Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yinglu Tao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
2
|
Zhang C, Li XY, Guan DX, Gao JL, Yang Q, Chen XL, Ma LQ. Manganese oxide application reduces cadmium bioavailability in rice rhizosphere: Insights from desorption kinetics and high-resolution imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126110. [PMID: 40127810 DOI: 10.1016/j.envpol.2025.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Cadmium (Cd) contamination in paddy soils threatens global food safety. While manganese (Mn)-based materials show promise in reducing soil Cd bioavailability, their efficacy requires further evaluation. Traditional ex situ sampling methods often overlook metal desorption kinetics and rhizosphere biochemical heterogeneity, potentially misinterpreting Mn's regulatory influence on Cd dynamics. This study employed in situ monitoring tools, including diffusive gradients in thin-films (DGT) measurements, DIFS (DGT-induced fluxes in soils) modeling, and high-resolution DGT and planar optode (PO) imaging, to assess the impact of two Mn oxides (MnO2 and Mn2O3) on Cd bioavailability in rice rhizosphere. Application of MnO2 and Mn2O3 reduced bioavailable Cd by 28.9 % and 15.3 %, respectively, attributed to elevated soil Mn and Fe levels fostering Cd immobilization. DGT-DIFS results revealed that Mn oxide application prolonged Cd replenishment time and reduced its desorption rate from soil solids. PO imaging identified pH heterogeneity in rice rhizosphere, confirming that Mn oxides mediated Cd bioavailability reduction by increasing pH. High-resolution DGT imaging revealed distinct spatial distribution patterns of Cd, Mn, and Fe fluxes, demonstrating Mn's inhibitory effects on Cd bioavailability. These findings highlight the potential of Mn oxides to mitigate Cd uptake by rice, offering a promising strategy for managing Cd-contaminated soils.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xing-Yue Li
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jia-Lu Gao
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Lei Chen
- Engineering Technology Innovation Center for Ecological Evaluation and Restoration of Farmland of Plain District in Ministry of Natural Resources, Zhejiang Institute of Geosciences, Hangzhou, 311203, China
| | - Lena Q Ma
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Lin K, Li B, Guan DX, Wu Z, Li X, Ji W, Liu W, Yu T, Yang Z. Enrichment Mechanisms of Cadmium in Natural Manganese-Rich Nodules from Karst Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7256-7267. [PMID: 40192124 DOI: 10.1021/acs.est.4c11918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Natural manganese (Mn)-rich nodules effectively sequester cadmium (Cd) in soils and influence on the geochemical cycling of soil Cd, yet microscale understanding of their enrichment mechanisms remains limited. From a regional survey of 1448 rhizosphere soil-rice sample pairs in karst areas of Guangxi, China, we identified and characterized Mn-rich nodules from representative sites to investigate their role in Cd sequestration. Using chemical extractions combined with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and X-ray photoelectron spectroscopy (XPS), we revealed that Mn oxides serve as primary Cd carriers in Mn-rich nodules, accounting for approximately 63.6% of total Cd, dominating Cd enrichment through binding mechanisms of Cd-O and Cd-OH bonds characteristic of inner-sphere surface complexation and structural incorporation. The stability of these chemical interactions was confirmed by pH-dependent experiments, showing <5.0% of total Cd release even at pH = 3.0. The high Mn(III) mass ratios (36.0%-40.0%) in nodules facilitated stable inner-sphere complexation, resulting in increased Cd retention. These study findings reveal the exceptional Cd sequestration capacity of natural Mn-rich nodules, and provide insights for the high concentrations and low availabilities of soil Cd in karst, which can aid in developing strategies for managing Cd-polluted karst soils.
Collapse
Affiliation(s)
- Kun Lin
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiliang Wu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xuezhen Li
- Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
| | - Wenbing Ji
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, China
| | - Wei Liu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, China
| |
Collapse
|
4
|
Tan C, Luan H, He Q, Zheng Y, Lin Z, Wang L. Mapping soil cadmium content using multi-spectral satellite images and multiple-residual-stacking model: Incorporating information from homologous pollution and spectrally active materials. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136755. [PMID: 39667148 DOI: 10.1016/j.jhazmat.2024.136755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Soil cadmium (Cd) contamination significantly threatens ecosystems and human health. Traditional geochemical investigation, although accurate, is impractical for wide-area and frequent monitoring applications. Multi-spectral satellite images combined with the homologous pollution information (HPI) and the spectral and content information of soil organic matter (SOMSCI) is an unconventional and promising approach for large-scale, dynamic soil heavy metal (SHM) monitoring. Based on a novel Multiple-Residual-Stacked (MRS) machine-learning framework, the study estimated the soil Cd content in Yueyang City, China, during the past decade (2014-2023) using Landsat 8 images. Within it, three feature construction methods and four models were employed. The experimental results indicate that the XGB-MRS model incorporating HPI and SOMSCI significantly improved the estimation performance (RPD exceeded 90 %, R2, RMSE, and MAE exceeded 40 %). Moreover, against 243 ground samples during 2016-2022, the average overall estimation accuracy exceeded 80 %, validating the model's robustness and practicality. Furthermore, the descending order of contribution in the modelling is environmental auxiliary variables (55 %), HPI and SOMSCI (26 %), and spectral information (19 %). The fertilizer usage has direct (up to 2 years) and delayed (3-5 years) effects on soil Cd accumulation. Overall, our study provides a scalable framework for monitoring global SHM pollution using open-source multi-spectral satellite data.
Collapse
Affiliation(s)
- Chao Tan
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China.
| | - Haijun Luan
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China; Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Provincial Center of Natural Resources Affairs, 410004 Changsha, China.
| | - Qiuhua He
- Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Provincial Center of Natural Resources Affairs, 410004 Changsha, China.
| | - Yaling Zheng
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China.
| | - Zhenhong Lin
- School of Computer and Information Engineering, Xiamen University of Technology, 361024 Xiamen, China.
| | - Lanhui Wang
- Department of Physical Geography and Ecosystem Science, Lund University, 22228 Lund, Sweden.
| |
Collapse
|
5
|
Kanwal F, Riaz A, Khan A, Ali S, Zhang G. Manganese enhances cadmium tolerance in barley through mediating chloroplast integrity, antioxidant system, and HvNRAMP expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135777. [PMID: 39276745 DOI: 10.1016/j.jhazmat.2024.135777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses risks to crop production and food safety worldwide. This study evaluated whether manganese (Mn) addition could mitigate Cd toxicity and reduce Cd accumulation in barley seedlings. Hydroponically grown seedlings of Cd-tolerant (WSBZ) and Cd-sensitive (Dong17) barley cultivars were treated with 0.1 μM and 1 μM Cd as well as 0.2 mM Mn alone and in a combination with 0.1 or 1.0 μM Cd for 21 days. Cd exposure caused the dramatic alteration of growth and physiological parameters by disrupting chloroplast, and increased Cd accumulation in both genotypes. However, Mn addition markedly alleviated the negative impacts of all examined parameters caused by Cd stress. Cd addition enhanced expression of anti-oxidative enzyme related genes, including HvSOD, HvCAT, HvAPX, HvPOD in the two barley genotypes exposed to Cd stress. The expression analysis showed nearly all HvNRAMPs genes are dramatically up regulated by both Mn and Cd, with WSBZ having higher expression than Dong 17. Notably, HvNRAMP1 showed the highest expression due to Mn addition, highlighting its crucial role in Mn uptake and transportation in barley. Moreover, Cd stress and Mn addition increased and suppressed the expression of HvYSL5, HvHMA2 and HvHMA3, respectively. Conversely, the expression of HvYSL2, HvIRT1 and HvMTP8 was upregulated by both Mn and Cd treatments, with a further increase observed in the combined Cd and Mn treatments. It may be concluded that sufficient Mn supply is quite important for reducing Cd uptake and accumulation in plants.
Collapse
Affiliation(s)
- Farah Kanwal
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China.
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Brisbane 4072, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Saint Lucia, Brisbane 4072, Australia
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China; Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Limmer MA, Seyfferth AL. Controlling exposure to As and Cd from rice via irrigation management. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:339. [PMID: 39073464 PMCID: PMC11286649 DOI: 10.1007/s10653-024-02116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Irrigation management controls biogeochemical cycles in rice production. Under flooded paddy conditions, arsenic becomes plant-available as iron-reducing conditions ensue, while oxic conditions lead to increased plant availability of Cd in acidic soils. Because Cd enters rice through Mn transporters, we hypothesized that irrigation resulting in intermediate redox could simultaneously limit both As and Cd in rice grain due to As retention in soil and Mn competition for Cd uptake. In a 2 year field study, we used 6 irrigation managements that varied in extent and frequency of inundation, and we observed strong effects of irrigation management on porewater chemistry, soil redox potentials, plant As and Cd concentrations, plant nutrient concentrations, and methane emissions. Plant As decreased with drier irrigation management, but in the grain this effect was stronger for organic As than for inorganic As. Grain organic As, but not inorganic As, was strongly and positively correlated with cumulative methane emissions. Conversely, plant Cd increased under more aerobic irrigation management and grain Cd was negatively correlated with porewater Mn. A hazard index approach showed that in the tested soil with low levels of As and Cd (5.4 and 0.072 mg/kg, respectively), irrigation management could not simultaneously decrease grain As and Cd. Many soil properties, such as reducible As, available Cd, soil pH, available S, and soil organic matter should be considered when attempting to optimize irrigation management when the goal is decreasing the risk of As and Cd in rice grain.
Collapse
Affiliation(s)
- Matt A Limmer
- Department of Plant and Soil Science, University of Delaware, Newark, DE, USA
| | - Angelia L Seyfferth
- Department of Plant and Soil Science, University of Delaware, Newark, DE, USA.
| |
Collapse
|
8
|
Kanwal F, Riaz A, Ali S, Zhang G. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171005. [PMID: 38378068 DOI: 10.1016/j.scitotenv.2024.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Cadmium (Cd), a toxic heavy metal, poses significant threats to both crop production and human health worldwide. Manganese (Mn), an essential micronutrient, plays a crucial role in plant growth and development. NRAMPs (Natural Resistance-Associated Macrophage Proteins) function as common transporters for both Cd and Mn. Deep understanding of the regulatory mechanisms governing NRAMP-mediated Cd and Mn transport is imperative for developing the crop varieties with high tolerance and low accumulation of Cd. This review reported the advance in studies on the fundamental properties and classification of NRAMPs in plants, and structural characteristics, expression patterns, and diverse functions of NRAMP genes across different plant species. We highlighted the pivotal role of NRAMPs in Cd/Mn uptake and transport in plants as a common transporter. Finally, we also comprehensively discussed over the strategies for reducing Cd uptake and accumulation in plants through using antagonism of Mn over Cd and altering the expression of NRAMP genes.
Collapse
Affiliation(s)
- Farah Kanwal
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Brisbane 4072, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Saint Lucia, Brisbane 4072, Australia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China; Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China.
| |
Collapse
|
9
|
Tang S, Zhang L, Tong Z, Wu Z, Wang H, Zhan P, Shao L, Qing Y, Wu Y, Liu J. Encapsulated lignin-based slow-release manganese fertilizer with reduced cadmium accumulation in rice (Oryza sativa L.). Int J Biol Macromol 2024; 262:130019. [PMID: 38331077 DOI: 10.1016/j.ijbiomac.2024.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
As an essential trace element for plant growth and development, manganese plays a crucial role in the uptake of the heavy metal cadmium by rice (Oryza sativa L.). In this study, we developed a novel slow-release manganese fertilizer named Mn@LNS-EL. Initially, lignin nanoparticles were derived from sodium lignosulfonate, and a one-step emulsification strategy was employed to prepare a water-in-oil-in-water (W/O/W) Pickering double emulsions. These double emulsions served as the template for interfacial polymerization of lignin nanoparticles and epichlorohydrin, resulting in the formation of microcapsule wall materials. Subsequently, manganese fertilizer (MnSO4) was successfully encapsulated within the microcapsules. Hydroponic experiments were conducted to investigate the effects of Mn@LNS-EL on rice growth and the cadmium and manganese contents in the roots and shoots of rice under cadmium stress conditions. The results revealed that the treatment with Mn@LNS-EL markedly alleviated the inhibitory effects of cadmium on rice growth, leading to notably lower cadmium levels in the rice roots and shoots compared to the specimens treated without manganese fertilizer. Specifically, there was a reduction of 37.9 % in the root cadmium content and a 17.1 % decrease in the shoot cadmium content. In conclusion, this study presents an innovative approach for the high-value utilization of lignin through effective encapsulation and slow-release mechanisms of trace-element fertilizers while offering a promising strategy for efficiently remediating cadmium pollution in rice.
Collapse
Affiliation(s)
- Shifeng Tang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL 32611, United States.
| | - Zhaohui Tong
- School of Chemical & Biomolecular Engineering, Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL 32611, United States
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hui Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yougen Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
Wang H, Liu M, Zhang Y, Jiang Q, Wang Q, Gu Y, Song X, Li Y, Ye Y, Wang F, Chen X, Wang Z. Foliar spraying of Zn/Si affects Cd accumulation in paddy grains by regulating the remobilization and transport of Cd in vegetative organs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108351. [PMID: 38217926 DOI: 10.1016/j.plaphy.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
The reduction of cadmium (Cd) accumulation in rice grains through biofortification of essential nutrients like zinc (Zn) and silicon (Si) is an area of study that has gained significant attention. However, there is limited understanding of the mechanism of Zn/Si interaction on Cd accumulation and remobilization in rice plants. This work used a pot experiment to examine the effects of Zn and Si applied singly or in combination on the physiological metabolism of Cd in different rice organs under Cd stress. The results revealed that: Zn/Si application led to a significant decrease in root Cd concentration and reduce the value of Tf Soil-Root in filling stage. The content of phytochelatin (PCs, particularly PC2) and glutathione (GSH) in roots, top and basal nodes were increased with Zn/Si treatment application. Furthermore, Zn/Si treatment promoted the distribution of Cd in cell wall during Cd stress. These findings suggest that Zn/Si application facilitates the compartmentalization of Cd within subcellular structures and enhances PCs production in vegetative organs, thereby reducing Cd remobilization. Zn/Si treatment upregulated the metabolism of amino acid components involved in osmotic regulation, secondary metabolite synthesis, and plant chelating peptide synthesis in vegetative organs. Additionally, it significantly decreased the accumulation of Cd in globulin, albumin, and glutelin, resulting in an average reduction of 50.87% in Cd concentration in milled rice. These results indicate that Zn/Si nutrition plays a crucial role in mitigating heavy metal stress and improving the nutritional quality of rice by regulating protein composition and coordinating amino acid metabolism balance.
Collapse
Affiliation(s)
- Huicong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Mingsong Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Ying Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Qin Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Qingping Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Yuqin Gu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Xinping Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Yang Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuxiu Ye
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China; Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, PR China
| | - Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China; Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, PR China
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China; Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, PR China
| | - Zunxin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China; Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, PR China.
| |
Collapse
|
11
|
Li X, Nie D, Chen X, Yang J, Li J, Yang Y, Liao Z, Mao X. Efficient and safe use of a slow-release Mn material for three sequential crops of rice in Cd-contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166952. [PMID: 37696407 DOI: 10.1016/j.scitotenv.2023.166952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Traditional passivators reduce the effectiveness of Cd by ion exchange, chemisorption, and complexation in soil. However, traditional passivators have defects such as easy aging and poor durability, which not only reduce the treatment efficiency but also increase the risk of primary soil environmental pollution. For this reason, considering that Mn and Cd have physiological antagonism in rice, sepiolite-supported manganese ferrite (SMF) was prepared in this study to improve passivation persistence. The passivation mechanism, effect and duration of SMF were explored. The results showed that SMF has a dense and small pore structure and that the surface is rough, which provides abundant adsorption sites for Cd2+ adsorption. When the SMF adsorbs Cd2+, ions or functional groups in the material, such as MnOOH*, will exchange with Cd2+ to form Cd(OH)2 and other internal complexes. Indoor pure soil cultivation experiments showed that 0.1 % SMF can reduce the effective Cd content of soil by 41.32 %, demonstrating the efficiency of SMF. The three-crop rice experiments in pots showed that SMF could increase soil pH and continuously increase the content of available Mn in soil. Increasing the content of available Mn reduces the ability of rice to absorb Cd. In addition, the three-cropping rice experiments also indicated that the passivation effect of SMF materials on Cd-contaminated paddy fields was long-lasting and stable and that SMF is a more efficient and safe Cd passivation agent.
Collapse
Affiliation(s)
- Xuesong Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Henry Fork School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Datao Nie
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xian Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Junying Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jihong Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhongwen Liao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyun Mao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525099, China.
| |
Collapse
|
12
|
Darma A, Yang J, Feng Y, Xia X, Zandi P, Sani A, Bloem E, Ibrahim S. The impact of maize straw incorporation on arsenic and cadmium availability, transformation and microbial communities in alkaline-contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118390. [PMID: 37364492 DOI: 10.1016/j.jenvman.2023.118390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Increasing evidence of the uncertainty of crop straw returning in heavy metal-contaminated soil is a significant concern. The present study investigated the influence of 1 and 2% maize straws (MS) amendment on As and Cd bioavailability in two different alkaline soils (A-industrial and B-irrigation) after 56 days of ageing. Adding MS to the two soils decreased the pH by 1.28 (A soil) and 1.13 (B soil) and increased the concentration of dissolved organic carbon (DOC) by 54.40 mg/kg (A soil) and 100.00 mg/kg (B soil) during the study period. After 56 days of ageing, the overall NaHCO3-As and DTPA-Cd increased by 40% and 33% (A) and 39% and 41% (B) soils, respectively. The MS additions increased the alteration of As and Cd exchangeable and residual fractions, whereas advanced solid-state 13C nuclear magnetic resonance (NMR) revealed that alkyl C and alkyl O-C-O in A soil and alkyl C, Methoxy C/N-alkyl, and alkyl O-C-O in B soil significantly contributed to the As and Cd mobilisation. Collectively, 16 S rRNA analyses revealed Acidobacteria, Firmicutes, Chloroflexi, Actinobacteria and Bacillus promoted the As and Cd mobilisation following the MS addition, while principle component analysis (PCA) demonstrated that bacterial proliferation significantly influenced MS decomposition, resulting in As and Cd mobilisation in the two soils. Overall, the study highlights the implications of applying MS to As- and Cd-contaminated alkaline soil and offers the framework for conditions to be considered during As- and Cd-remediation efforts, especially when MS is the sole remediation component.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China).
| | - Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, PR China
| | - Ali Sani
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano, Nigeria
| | - Elke Bloem
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science , Bundesallee 69, 38116, Braunschweig, Germany
| | - Sani Ibrahim
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano, Nigeria
| |
Collapse
|
13
|
Huang G, Huang Y, Ding X, Ding M, Wang P, Wang Z, Jiang Y, Zou L, Zhang W, Li Z. Effects of high manganese-cultivated seedlings on cadmium uptake by various rice (Oryza sativa L.) genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115440. [PMID: 37688861 DOI: 10.1016/j.ecoenv.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Cadmium (Cd) contamination in paddy soil threatens rice growth and food safety, enriching manganese (Mn) in rice seedlings is expected to reduce Cd uptake by rice. The effects of 250 μM Mn-treated seedlings on reducing Cd uptake of four rice genotypes (WYJ21, ZJY1578, HHZ, and HLYSM) planted in 0.61 mg kg-1 Cd-contaminated soil, were studied through the hydroponic and pot experiments. The results showed that the ZJY1578 seedling had the highest Mn level (459 μg plant-1), followed by WYJ21 (309 μg plant-1), and less Mn accumulated in the other genotypes. The relative expression of OsNramp5 (natural resistance-associated macrophage protein) was reduced by 42.7 % in ZJY1578 but increased by 23.3 % in HLYSM. The expressions of OsIRT1 (iron-regulated transporter-like protein) were reduced by 24.0-56.0 % in the four genotypes, with the highest reduction in ZJY1578. Consequently, a greater reduction of Cd occurred in ZJY1578 than that in the other genotypes, i.e., the root and shoot Cd at the tillering were reduced by 27.8 % and 48.5 %, respectively. At the mature stage, total Cd amount and distribution in the shoot and brown rice were also greatly reduced in ZJY1578, but the inhibitory effects were weakened compared to the tillering stage. This study found various responses of Cd uptake and transporters to Mn-treated seedlings among rice genotypes, thus resulting in various Cd reductions. In the future, the microscopic transport processes of Cd within rice should be explored to deeply explain the genotypic variation.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yunpei Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xinya Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Zhongfu Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Yinghui Jiang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wendong Zhang
- Agricultural and Rural Grain Bureau of Yujiang District, Yingtan 335200, China
| | - Zhenling Li
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
14
|
Qin Y, Li Z, Sun J, Xu M, Gu M, Wei Y, Lei J. Manganese (II) sulfate affects the formation of iron-manganese oxides in soil and the uptake of cadmium and arsenic by rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115360. [PMID: 37597287 DOI: 10.1016/j.ecoenv.2023.115360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Rice (Oryza sativa L.) consumption represents a major route of human exposure to cadmium (Cd) and arsenic (As), especially in Asia. This study investigated the effects of adding MnSO4 (0, 200, 400, and 800 mg kg-1-1) on the formation of soil Fe/Mn oxides and Cd and As uptake in rice. The application of MnSO4 reduced soil pH, increased Eh, increased the contents of Fe/Mn oxides in the soil, and decreased the total Fe and Mn2+ contents in the porewater. It also led to lower contents of available Cd and As, higher levels of Cd and As bound to Fe/Mn oxides, and higher abundances of Thiobacillus and Syntrophobacter. Furthermore, Mn application increased the Fe and Mn contents in the root Fe/Mn plaque and decreased the grain Cd and As contents. Therefore, Mn application may modify the microbial community and porewater composition in soil, resulting in higher levels of Fe/Mn oxides in soil and Fe/Mn plaque at the root surface and in a lower accumulation of Cd and As in rice grains. Thus, Mn application can be a promising strategy for Cd and As stabilization in soils.
Collapse
Affiliation(s)
- Yan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
| | - Zhiming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
| | - Jing Sun
- Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550081, China
| | - Meihua Xu
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530010, China
| | - Minghua Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China.
| | - Jing Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China.
| |
Collapse
|
15
|
Liu Y, Cui W, Li W, Xu S, Sun Y, Xu G, Wang F. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130102. [PMID: 36206709 DOI: 10.1016/j.jhazmat.2022.130102] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Both microplastics (MPs) and cadmium (Cd) are common contaminants in soil-rice systems, but their combined effects remain unknown. Thereby, we explored the effects of three MPs, i.e., polyethylene terephthalate (PET), polylactic acid (PLA), and polyester (PES), on Cd accumulation in rice and the community diversity and structure of arbuscular mycorrhizal fungi (AMF) in soil spiked with or without Cd. Results showed that 2% PLA decreased shoot biomass (-28%), but PET had a weaker inhibitive effect. Overall, Cd alone did not significantly change shoot and root biomass and increased root biomass in combination with 0.2% PES. MPs generally increased soil Cd availability but decreased Cd accumulation in rice tissues. Both MPs and Cd improved the bioavailability and uptake of Fe and Mn in rice roots. MPs altered the diversity and community composition of AMF, depending on their type and dose and co-existing Cd. Overall, 2% PLA caused the most distinct changes in soil properties, plant growth and Cd accumulation, and AMF communities, but showed no synergistic interactions with Cd. In conclusion, MPs can mediate rice performance and Cd accumulation via altering soil properties, nutrient uptake, and root mycorrhizal communities, and biodegradable PLA MPs thought environment-friendly can exhibit higher phytotoxicity than conventional MPs.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| |
Collapse
|
16
|
Determination of Soil Cadmium Safety Thresholds for Food Production in a Rice-Crayfish Coculture System. Foods 2022; 11:foods11233828. [PMID: 36496637 PMCID: PMC9740835 DOI: 10.3390/foods11233828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Previous studies have mainly focused on cadmium (Cd) contamination in conventional rice monocultures, and no research on rice-crayfish coculture has been reported. In this study, a Cd-contaminated (0−30 mg kg−1) rice-crayfish co-culture system was established by adding exogenous Cd. The results showed that the Cd concentration in each tissue of rice and each organ of crayfish increased with increasing soil Cd concentration. Specifically, the Cd concentration in each rice tissue was as follows: root > stem > leaf ≈ panicle > grain > brown rice, and the jointing and heading stages were critical periods for the rapid enrichment of Cd in the aboveground tissues of rice. The Cd concentration in each organ of crayfish was as follows: hepatopancreas > gut > gill ≈ exoskeleton > abdominal muscle. Cd was gradually enriched in the abdominal muscle after 30 days of coculture between crayfish and rice. Pearson’s correlation analysis showed that the soil’s total Cd concentration, available Cd concentration, and water Cd concentration were positively correlated with Cd content in various tissues of rice and various organs of crayfish, whereas EC and TDS in water were markedly related to rice stems, leaves, stalks, and small crayfish. According to the maximum limit of Cd in grain (0.2 mg kg−1) and crustacean aquatic products (0.5 mg kg−1) in China, the safe threshold of soil Cd for rice and crayfish under the rice-crayfish coculture system is 3.67 and 14.62 mg kg−1, respectively. Therefore, when the soil Cd concentration in the rice-crayfish coculture system exceeds 3.67 mg kg−1, the safety risk to humans through the consumption of food from this coculture system will increase. This study provides a theoretical basis for safe food production in a rice-crayfish coculture system using the established Cd pollution model.
Collapse
|
17
|
Yang L, Xu M, Chen Y, Jing H, Zhang J, Yang W, Wu P. Dynamic Effect of Organic Fertilizer Application on Rice Growth, Soil Physicochemical Properties and Cd Activity Exposed to Excess Cd. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:643-650. [PMID: 35908112 DOI: 10.1007/s00128-022-03590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
To investigate the dynamic effects of organic fertilizer application on the agronomic traits of rice (Oryza sativa L.), soil physicochemical properties and soil Cd activity under excess cadmium (Cd) exposure, this study was conducted to simulate a paddy system under different organic fertilizer application rates using exogenous spiked Cd soil as the test soil and conducting a rice pot experiment. The obtained results showed that the application of organic fertilizer increased the number of rice tillers, rice plant height, total grain number and total grain weight at maturity in all treated soils, while it decreased the concentration of Cd in brown rice. The application of organic fertilizer increased the organic matter (OM), redox potential and electrical conductivity of all treated soils but decreased the pH and TCLP-extractable Cd of all treated soils. There was a significant or highly significant negative correlation (p < 0.05 or p < 0.01) between soil TCLP-extractable Cd and soil OM throughout the experimental period, implying that soil OM may be an important factor influencing the changes in Cd activity in soil. In addition, our experiment also examined in detail the dynamic change process of the abovementioned indicators throughout the experimental period and observed that the dynamic change process of soil Cd activity could be described as a trend of first decreasing and then gradually increasing throughout the rice reproductive period.
Collapse
Affiliation(s)
- Liyu Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Mengqi Xu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonglin Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Haonan Jing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jia Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Wentao Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 500025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 500025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
18
|
Huang G, Ding X, Liu Y, Ding M, Wang P, Zhang H, Nie M, Wang X. Liming and tillering application of manganese alleviates iron manganese plaque reduction and cadmium accumulation in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127897. [PMID: 34862109 DOI: 10.1016/j.jhazmat.2021.127897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The application time and soil pH are key to manganese (Mn) bioavailability, which may influence Mn effects on cadmium (Cd) accumulation in rice. Accordingly, this study investigated the effects of Mn application at different stages, alone or with basal liming, on Cd accumulation in rice through pot and field experiments. The results showed that basal Mn application maximally elevated soil dissolved Mn, and increasing Mn accumulation in rice by 140%-367% compared to the control. Additionally, basal or tillering applications had better effects on enhancing iron manganese plaque (IMP) and inhibiting CaCl2-extractable Cd than later applications. Therefore, basal and tillering Mn reduced brown rice Cd by 24.6% and 18.9% compared to the control, respectively. Liming reduced CaCl2-extractable Cd by 83.3% compared to the control but inhibited soil dissolved Mn (25.8%-76.6%) and IMP (28.9%-29.7%), resulting in only a 41.7% reduction in brown rice Cd. Liming combined with tillering Mn maximally reduced brown rice Cd by 67.4%, structural equation modeling revealed CaCl2-extractable Cd and manganese plaque played the greatest positive and negative roles, respectively. Therefore, basal liming and tillering application of Mn is most effective at reducing rice Cd through inhibition of Cd bioavailability and alleviation of IMP reduction.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Xinya Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Yu Liu
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Hua Zhang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Minghua Nie
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
19
|
Yang Y, Wang T, Li Y, Wang M, Chen W, Dai Y. Mitigating cadmium contamination of rice soils supporting tobacco-rice rotation in southern China: Win-win or lose-lose? JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128052. [PMID: 34915298 DOI: 10.1016/j.jhazmat.2021.128052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The present study evaluates the sustainability of tobacco-rice rotation by reducing the phytoavailability of cadmium (Cd) to rice by combining large-scale field sampling and regional investigations in southern China. The rotation involves frequent tillage and liberal application of nitrogen and phosphorus fertilizers, which increases yields but lowers soil pH. As a result, manganese is lost from soil and, at the same time, more soil Cd is taken up by rice and tobacco. The tendency to overcompensate for the Mn loss is influenced by soil properties, crop type, and economics of cultivation. Based on the scenario analysis, this tendency and the Cd uptake risks were estimated. Dietary intake of 83.3% of rice grain produced on the rotation fields would have adverse health effects on local male nonsmokers. Besides the rice, Cd in local tobacco leaf may lead to an increase in the kidney Cd levels of local male smokers (21.5 cigarettes per day) by 16.2-fold at age 50. Field trials and model estimations indicated that for a Cd concentration below 0.2 mg dry weight kg-1 in rice grain, the critical pH value in rice soils was ~ 6.0, and that for amorphous Mn oxide at pH 4.5-6.0 was 120 mg kg-1.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tianqi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanling Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yating Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|