1
|
Abonyi HN, Peter IE, Onwuka AM, Achile PA, Obi CB, Akunne MO, Ejikeme PM, Amos S, Akunne TC, Attama AA, Akah PA. Nanotoxicology: developments and new insights. Nanomedicine (Lond) 2025; 20:225-241. [PMID: 39723590 PMCID: PMC11731054 DOI: 10.1080/17435889.2024.2443385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
The use of nanoparticles (NPs) in treatment of diseases have increased exponentially recently, giving rise to the science of nanomedicine. The safety of these NPs in humans has also led to the science of nanotoxicology. Due to a dearth of both readily available models and precise bio-dispersion characterization techniques, nanotoxicological research has obviously been constrained. However, the ensuing years were notable for the emergence of improved synthesis methods and characterization tools. Major advances have been made in linking certain physical variables, paralleling improvements in characterization size, shape, or coating factors to the resulting physiological reactions. Although significant progress has been a contribution to the development of nanotoxicology, however, it faces numerous difficulties and technical constraints distinct from those of conventional toxicological assessment as it attempts to improve the therapeutic effects of medicines. Determining thorough characterization standards, standardizing dosimetry, assessing the kinetics of ions dissolving and enhancing the accuracy of in vitro-in vivo correlation efficiency, also defining restrictions on exposure protection are some of the most important and pressing concerns. This article will explore the past advancement and potential prospects of nanotoxicology, standard models, emphasizing significant findings from earlier studies and examining current challenges, giving insight on the way forward.
Collapse
Affiliation(s)
- Henry N. Abonyi
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, State University of Medical and Applied Sciences, Igbo-Eno, Nigeria
| | - Ikechukwu E. Peter
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Akachukwu M. Onwuka
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Paul A. Achile
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics University of Nigeria Nsukka, Nsukka, Nigeria
| | - Chinonso B. Obi
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Maureen O. Akunne
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria
| | - Paul M. Ejikeme
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Samson Amos
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - Theophine C. Akunne
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- School of Pharmacy, Cedarville University, Cedarville, OH, USA
| | - Anthony A. Attama
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics University of Nigeria Nsukka, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutics and Pharmaceutical Technology, State University of Medical and Applied Sciences, Igbo-Eno, Nigeria
| | - Peter A. Akah
- Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Deng Y, Jiang M, Wang M, Ren K, Luo X, Luo Y, Chen Q, Lu CA, Huang CZ, Liu Q. Synergistic Mitochondrial Genotoxicity of Carbon Dots and Arsenate in Earthworms Eisenia fetida across Generations: The Critical Role of Binding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39258979 DOI: 10.1021/acs.est.4c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The escalating utilization of carbon dots (CDs) in agriculture raises ecological concerns. However, their combined toxicity with arsenic remains poorly understood. Herein, we investigated the combined mitochondrial genotoxicity of CDs and arsenate at environmentally relevant concentrations across successive earthworm generations. Iron-doped CDs (CDs-Fe) strongly bound to arsenate and arsenite, while nitrogen-doped CDs (CDs-N) exhibited weaker binding. Both CDs enhanced arsenate bioaccumulation without affecting its biotransformation, with most arsenate being reduced to arsenite. CDs-Fe generated significantly more reactive oxygen species than did CDs-N, causing stronger mitochondrial DNA (mtDNA) damage. Arsenate further exacerbated the oxidative mtDNA damage induced by CDs-N, as evidenced by increased reactive oxygen species, elevated 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) levels, and a higher correlation between 8-OHdG and mtDNA damage. This was due to arsenic inhibiting the antioxidant enzyme catalase. This exacerbation was negligible with CDs-Fe because their strong binding with arsenic prevented catalase inhibition. Maternal mitochondrial DNA damage was inherited by filial earthworms, which experienced significant weight loss in coexposure groups coupled with mtDNA toxicity. This study reveals the synergistic genotoxicity of CDs and arsenate, suggesting that CDs could disrupt the arsenic biogeochemical cycle, increase arsenate risk to terrestrial animals, and influence ecosystem stability and health through multigenerational impacts.
Collapse
Affiliation(s)
- Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Min Jiang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mao Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kewei Ren
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xia Luo
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yan Luo
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Qing Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhong X, Zhang G, Huang J, Chen L, Shi Y, Wang D, Zheng Q, Su H, Li X, Wang C, Zhang J, Guo L. Effects of Intestinal Microbiota on the Biological Transformation of Arsenic in Zebrafish: Contribution and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2247-2259. [PMID: 38179619 DOI: 10.1021/acs.est.3c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Mutalik C, Nivedita, Sneka C, Krisnawati DI, Yougbaré S, Hsu CC, Kuo TR. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int J Mol Sci 2024; 25:1926. [PMID: 38339204 PMCID: PMC10856345 DOI: 10.3390/ijms25031926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nivedita
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Chandrasekaran Sneka
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, East Java, Indonesia;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (N.); (C.S.)
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Hou Y, Liu X, Qin Y, Hou Y, Hou J, Wu Q, Xu W. Zebrafish as model organisms for toxicological evaluations in the field of food science. Compr Rev Food Sci Food Saf 2023; 22:3481-3505. [PMID: 37458294 DOI: 10.1111/1541-4337.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yanlin Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|