1
|
Lou X, Hao Y, Zhou H, Song Z, Wang Y, Lu M. UiO-66 with missing cluster defects for high-efficient extraction and enrichment of benzoylurea insecticides. J Chromatogr A 2025; 1742:465656. [PMID: 39778283 DOI: 10.1016/j.chroma.2025.465656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
The creation of defects in crystalline structures can tune metal-organic frameworks (MOFs) properties, such as improving their adsorptive and catalytic performance with producing more porosity and active sites. In this work, the bimetallic UiO-66 containing Zn and Zr was prepared. And then UiO-66 with missing cluster defects (UiO-66-1/3) were obtained by acid washing to remove the Zn nodes. UiO-66-1/3 was used as sorbent of dispersive solid-phase extraction (dSPE) to extract and enrich (BUs). Combination with high-performance liquid chromatography-diode array detector (HPLC-DAD) was developed to detect trace BUs in soil samples. Adsorption equilibrium can be reached in 3 min. The method possesses high enrichment factor (202-325), low detection limit (0.005-0.04 ng·mL-1), and wide linear range (0.02-200 ng·mL-1). In addition, the recovery rate of UiO-66-1/3 as an adsorbent was still higher than 95% after reused for 16 times. This work provides a new material for the enrichment and detection of benzoylurea insecticides in the environment.
Collapse
Affiliation(s)
- Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yingge Hao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Huina Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zhen Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
2
|
Cheng Q, Yu Y, Wan Z, Zhou M, Tang W, Tan W, Liu M. Structure-based design and screening of hydrogel copolymer/Fe 3O 4 composite microspheres for magnetic solid phase extraction of bisphenol A from aqueous samples. Talanta 2025; 283:127178. [PMID: 39520927 DOI: 10.1016/j.talanta.2024.127178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
It is of great significance to monitor bisphenol A (BPA) in the environment because of its potential environmental and health risks. However, the detection of trace or ultratrace BPA in complicated environmental samples is challenging due to the relatively low affinity and poor selectivity of existing adsorbents used in sample pretreatment. Herein, we report a high-affinity, low environment-dependent and strong interference-resistant abiotic affinity ligand, a N-methacryloyl-l-lysine-NH2 (MLys)-based hydrogel copolymer (HP 17) screened from a small focused polymer library engineered by incorporating various combinations and ratios of candidate functional monomers. The selection of these monomers was guided by molecular mechanism between BPA and the ligand-binding pocket of its estrogen receptors. The BPA-HP17 binding is mainly a synergistic effect of π-cation and hydrophobic interactions. The screened HP 17 has high adsorption capacity (349.4 mg/g) for BPA under wide pH (3.0-10.0) and ionic strength (0-150 mM) range. To improve its practicability, a hydrogel copolymer/Fe3O4 composite microspheres (Fe3O4@HP 17) was synthesized and applied for magnetic solid phase extraction-high-performance liquid chromatography (MSPE-HPLC) analysis of BPA in tap water, lake water and industrial effluents. The method shows wide linear range (2.5⁓100 ng/mL), high sensitivity (detection limit of 0.22 ng/mL even without further concentration after desorption), high accuracies (92.6⁓103.0 %) and good precisions (0.57⁓4.53 %), indicating a great potential of this material and method in the detection of trace or ultratrace BPA in complex environmental water samples.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunli Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Meng Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
3
|
Zhu S, Song Z, Wang Y, Zhu J, Hao Y, Lou X, Lu M. Defective porous urchin-like ZnO/NiO microspheres-coated solid-phase microextraction fiber for analysis of trace polychlorinated biphenyls in milk. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136362. [PMID: 39486328 DOI: 10.1016/j.jhazmat.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Owing to the high lipophilicity of polychlorinated biphenyls (PCB), they easily accumulate in dairy products. Although usually present at very low levels, they pose a serious threat to human health. Therefore, developing a sensitive and reliable method for detecting PCB in dairy products is crucial. Herein, Herein, a metal-organic framework (MOF) material named with bimetallic nodes and double ligands was prepared as a precursor using a one-pot hydrothermal method. Defective porous urchin-like ZnO/NiO, derived from these MOF-based precursors (ZnNi-MOF-NH2) as a sacrificial template, was synthesized via pyrolysis to remove heat-sensitive ligands. To the best of our knowledge, this urchin-like nanostructured ZnO/NiO hybrid was utilized as a solid-phase microextraction (SPME) coating for the first time. Headspace SPME (HS-SPME) was developed for non-contact extraction of PCB in milk prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Under optimal conditions, the HS-SPME-GC-MS/MS method exhibited a wide linear range (0.01-1000 ng·L-1), low limits of detection (0.003-0.025 ng·L-1), and high enrichment factors (5714-9906). Additionally, the performance of the ZnO/NiO SPME fiber coating showed no noticeable decrease after 175 uses. The method was applied to trace PCB analysis in milk samples, yielding recoveries of 70.3-114.1 %. The ZnO/NiO derived from MOF-based material provides a promising candidate for SPME coatings to extract PCB and other analogs.
Collapse
Affiliation(s)
- Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Zhen Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yingge Hao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
4
|
Dou Y, Li Z, Wang C, Wang Q, Wang Z, Wu Q, Wang C. Hydroxyl-functionalized cationic porous organic polymers for efficient enrichment and detection of phenolic endocrine disrupting chemicals in water and snapper. Food Chem 2024; 460:140587. [PMID: 39067381 DOI: 10.1016/j.foodchem.2024.140587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) can disrupt the normal functioning of the endocrine system in organisms, leading to various health issues. Therefore, monitoring EDCs in the environment and food is of significant importance. In this study, a hydroxyl-functionalized ionic porous organic polymer (OH-IPOP) has been synthesized for the first time using 2-benzimidazolemethanol as a monomer. The OH-IPOP exhibited excellent adsorption performance towards phenolic EDCs. An efficient method for determination of phenolic EDCs (p-tert-butylphenol, bisphenol B, bisphenol A and bisphenol F) in environmental water and snapper samples was successfully established by with OH-IPOP as solid-phase extraction sorbent and determination with high-performance liquid chromatography-ultraviolet detection. The method showed good linearity (r2 > 0.998), low detection limits (0.008-0.020 ng mL-1 for lake water, 1.00-3.00 ng/g for snapper), high recovery rates (82.3-106 %), and good precision (relative standard deviation < 6.6 %), making it a highly efficient adsorbent for the enrichment of EDCs in complex sample matrices.
Collapse
Affiliation(s)
- Yiran Dou
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Cai Y, Wu Y, Tang Y, Xu W, Chen Y, Su R, Fan Y, Jiang W, Wen Y, Gu W, Sun H, Zhu C. In Situ Defect Engineering of Fe-MIL for Self-Enhanced Peroxidase-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403354. [PMID: 39101616 DOI: 10.1002/smll.202403354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Indexed: 08/06/2024]
Abstract
Defect engineering is an effective strategy to enhance the enzyme-like activity of nanozymes. However, previous efforts have primarily focused on introducing defects via de novo synthesis and post-synthetic treatment, overlooking the dynamic evolution of defects during the catalytic process involving highly reactive oxygen species. Herein, a defect-engineered metal-organic framework (MOF) nanozyme with mixed linkers is reported. Over twofold peroxidase (POD)-like activity enhancement compared with unmodified nanozyme highlights the critical role of in situ defect formation in enhancing the catalytic performance of nanozyme. Experimental results reveal that highly active hydroxyl radical (•OH) generated in the catalytic process etches the 2,5-dihydroxyterephthalic acid ligands, contributing to electronic structure modulation of metal sites and enlarged pore sizes in the framework. The self-enhanced POD-like activity induced by in situ defect engineering promotes the generation of •OH, holding promise in colorimetric sensing for detecting dichlorvos. Utilizing smartphone photography for RGB value extraction, the resultant sensing platform achieves the detection for dichlorvos ranging from 5 to 300 ng mL-1 with a low detection limit of 2.06 ng mL-1. This pioneering work in creating in situ defects in MOFs to improve catalytic activity offers a novel perspective on traditional defect engineering.
Collapse
Affiliation(s)
- Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yifei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rina Su
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuexi Fan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yating Wen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hongcheng Sun
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
6
|
Wang C, Wang Q, Wang J, Si K, Zhu H, Wu Q. Well-designed chitosan-based cationic porous polymer: A robust material for effective adsorption of endocrine disrupting chemicals. Int J Biol Macromol 2024; 280:135801. [PMID: 39306166 DOI: 10.1016/j.ijbiomac.2024.135801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
There is an immediate need for meticulous design of easily accessible, cost-effective, chemically stable and eco-friendly materials for effectively removal of water contaminant. Herein, targeting typical water contaminants, endocrine disrupting chemicals (EDCs), three cationic hyper-cross-linked porous polymers (ciHCP-1, ciHCP-2, ciHCP-3) with multiple adsorption sites were designed with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) as precursor. The ciHCP-3 with large surface area (806 m2 g-1) exhibited high sorption capacity (137-366 mg g-1), and fast adsorption kinetics (5 min) for the EDCs, which is superior to the reported sorbents. The adsorption mechanisms can be attributed to the synergistic effect of physisorption and chemisorption. The high preparation reproducibility, physicochemical stability, and reuse capability of ciHCP highlights its great potential in practical water remediation applications.
Collapse
Affiliation(s)
- Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Kaiyuan Si
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
7
|
Gao Y, Tian X, Wang Y, Zhu J, Lou X, Qin M, Lu M, Cai Z. Zr-based multivariate metal-organic framework for rapid extraction of sulfonamide antibiotics from water and food samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135019. [PMID: 38925054 DOI: 10.1016/j.jhazmat.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Based on multiple ligands strategy, a series of multivariate metal organic frameworks (MTV-MOFs) named as PCN-224-DCDPSx were prepared using one-pot solvothermal method to extract and remove sulfonamide antibiotics (SAs). The pore structure and adsorption performance can be further regulated by modulating the doping ratios of medium-tetra(4-carboxylphenyl) porphyrin and 4,4'-dicarboxydiphenyl sulfones. The MTV-MOFs of PCN-224-DCDPS1.0 possesses very large specific surface area (1625 m2/g). Using PCN-224-DCDPS1.0 as sorbent, a dispersive solid-phase extraction method was developed to extract and preconcentrate SAs from water, eggs, and milk prior to high performance liquid chromatography analysis. The limits of detection of method were determined between 0.17 and 0.27 ng/mL with enrichment factors ranging 214-327. The adsorption can be finished within 30 s, and the recovery rate remains above 80 % after 10 repeated uses. The adsorption capacities of sorbent were determined from 300 to 621 mg/g for sulfadiazine, sulphapyridine, sulfamethoxydiazine, sulfachlorpyridazine, sulfabenzamide, and sulfadimethoxine. The adsorption mechanisms were investigated and can be attributed to π-π interactions, hydrogen bonds, and electrostatic interactions. This work represents a method for preparation of MTV-MOFs and uses as sorbent for extraction and enrichment of trace pollutants from complex samples.
Collapse
Affiliation(s)
- Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xiao Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
8
|
Sun W, Qi H, Li T, Lin M, Zhang C, Qiu Y. Salt-resistant continuous solar evaporation composites based on nonwovens with synergistic photothermal effect of graphene oxide/copper sulphide. RSC Adv 2024; 14:28984-28997. [PMID: 39268055 PMCID: PMC11391346 DOI: 10.1039/d4ra05241b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Solar interfacial evaporation is an innovative and environmentally friendly technology for producing freshwater from seawater. However, current interfacial evaporators are costly to manufacture, have poor tolerance to environmental conditions, exhibit instability in evaporation efficiency in highly saline solutions, and fail to prevent salt crystallization. The production of user-friendly, durable and salt-resistant interfacial evaporators remains a significant challenge. By spraying graphene oxide on a nonwoven material using PVA as a binder and adding biphasic Cu x S by an in situ growth method, we designed 2D/3D micro- and nanostructured graphene oxide nanosheets/copper sulfide nanowires (GO/Cu x S) with synergistic photo-thermal effects in the full spectral range. The evaporation efficiency in pure water was 94.61% with an evaporation rate of 1.5622 kg m-2 h-1. In addition, we enhanced convection by employing a vertically aligned water-guide rod structure design, where the concentration difference drives salt dissolution thereby reducing the formation of salt crystals. The evaporation efficiency in 20% salt water was 80.41% with an evaporation rate of 1.3228 kg m-2 h-1 and long-term stability of brine evaporation was demonstrated under continuous sunlight. This solar steam generator expands the potential application areas of desalination and wastewater purification.
Collapse
Affiliation(s)
- Wenbo Sun
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| | - Tan Li
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Minggang Lin
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Chuyang Zhang
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Yiping Qiu
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| |
Collapse
|
9
|
Hu Y, Wu B, Tang YS, Wu Y, Liu LY. Dispersive solid-phase extraction based on zirconium metal-organic framework coupled with gas chromatography-mass spectrometry for determining sugar phosphates in biological samples. Anal Chim Acta 2024; 1317:342908. [PMID: 39030009 DOI: 10.1016/j.aca.2024.342908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Sugar phosphates (SPx) play important role in the metabolism of the organism. SPx such as glycerate 3-phosphate, fructose 6-phosphate and glucose 6-phosphate in biological samples have the poor stability, similar structure and low abundance, which make their separation and detection more challenging. METHOD UiO-66-NH2 and ZrO2 coated SiO2(SBA-15) hard-core-shell adsorbents (UiO-66-NH2@SBA-15 and ZrO2@SBA-15) were synthesized, which were further used for dispersive solid-phase extraction for enriching the SPx in biological samples. The protocol was developed by UiO-66-NH2@SBA-15 and ZrO2@SBA-15 coupled with gas chromatography-mass spectrometry for the detection of trace SPx. The univariate experiment and response surface methodology were used to optimize the adsorption and desorption conditions. RESULTS The adsorbents showed excellent adsorption capacity and specificity towards SPx, which were proved by adsorption and selective experiments. Under the optimized conditions, there were good linearity within the range of 5.0-5000.0 ng mL-1, low limits of detection (0.001-1.0 ng mL-1), low limits of quantification (0.005-5.0 ng mL-1) and good precision (relative standard deviation less than 14.7 % for intra-day and inter-day). The satisfactory recoveries (89.1-113.8 %) and precision (0.5-14.6 %) were obtained when the sorbents were used to extract SPx from serum, saliva and cell samples. Moreover, UiO-66-NH2@SBA-15 was applied to the quantitative analysis of SPx from gastric cancer patients, because of a higher adsorption capacity (169.5-196.1 mg g-1). CONCLUSIONS UiO-66-NH2@SBA-15 showed great potential in the extraction of SPx in biological samples, which was beneficial to find out the metabolic change of SPx and explain the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yuyan Hu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Boxue Wu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Ying-Shu Tang
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Yi Wu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China
| | - Li-Yan Liu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University Heilongjiang, China.
| |
Collapse
|
10
|
Karami F, Sereshti H. Ultrasonic-induced grafted lanthanum sulfide decorated multi-walled carbon nanotube onto bacterial cellulose applied for adsorption of pesticides in environmental waters. J Chromatogr A 2024; 1727:464976. [PMID: 38744186 DOI: 10.1016/j.chroma.2024.464976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
A new biosorbent was fabricated by modification of bacterial cellulose biopolymer grafted with lanthanum sulfide decorated carboxylated multiwall carbon nanotube (La2S3@MWCNT@BC). The sorbent was employed in a green alternative dispersive-solid phase extraction of a variety of 14 pesticides in environmental water samples. The analyses were performed using GC-µECD. The properties and structure of La2S3@MWCNT@BC nanocomposite were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and adsorption-desorption isotherms. The composition of the sorbent was also investigated to evaluate the adsorptive properties of its constituents. The impact of various parameters influencing extraction efficacies such as sorbent dose, adsorption time, sample pH, ionic strength, and desorption conditions was investigated. The method was validated by specificity, matrix effect % (-0.4 to -7.4), enrichment factor (4-10), limits of quantification (0.007-0.31 μg L-1), matrix-matched calibration linearity (0.01-200 µg L-1), determination coefficients (r2=0.9921-0.9998), and precision. The optimized method was applied for the analysis of multiclass pesticides in seven environmental and drinking waters and the recoveries were obtained in the 81-108 % range with RSDs of 2.5-4.7 %. This paper is the first report on the synthesis and use of La2S3@MWCNT@BC nanocomposite to extract pesticides from different water samples. The greenness of the procedure was evaluated by the AGREE protocols.
Collapse
Affiliation(s)
- Faezeh Karami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Marghade D, Shelare S, Prakash C, Soudagar MEM, Yunus Khan TM, Kalam MA. Innovations in metal-organic frameworks (MOFs): Pioneering adsorption approaches for persistent organic pollutant (POP) removal. ENVIRONMENTAL RESEARCH 2024; 258:119404. [PMID: 38880323 DOI: 10.1016/j.envres.2024.119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Adsorption is a promising way to remove persistent organic pollutants (POPs), a major environmental issue. With their high porosity and vast surface areas, MOFs are suited for POP removal due to their excellent adsorption capabilities. This review addresses the intricate principles of MOF-mediated adsorption and helps to future attempts to mitigate organic water pollution. This review examines the complicated concepts of MOF-mediated adsorption, including MOF synthesis methodologies, adsorption mechanisms, and material tunability and adaptability. MOFs' ability to adsorb POPs via electrostatic forces, acid-base interactions, hydrogen bonds, and pi-pi interactions is elaborated. This review demonstrates its versatility in eliminating many types of contaminants. Functionalizing, adding metal nanoparticles, or changing MOFs after they are created can improve their performance and remove contaminants. This paper also discusses MOF-based pollutant removal issues and future prospects, including adsorption capacity, selectivity, scale-up for practical application, stability, and recovery. These obstacles can be overcome by rationally designing MOFs, developing composite materials, and improving material production and characterization. Overall, MOF technology research and innovation hold considerable promise for environmental pollution solutions and sustainable remediation. Desorption and regeneration in MOFs are also included in the review, along with methods for improving pollutant removal efficiency and sustainability. Case studies of effective MOF regeneration and scaling up for practical deployment are discussed, along with future ideas for addressing these hurdles.
Collapse
Affiliation(s)
- Deepali Marghade
- Department of Applied Chemistry, Priyadarshini College of Engineering, Nagpur, Maharashtra, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Sagar Shelare
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra, India.
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manzoore Elahi M Soudagar
- Faculty of Engineering, Lishui University, 323000, Lishui, Zhejiang, PR China; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| | - T M Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - M A Kalam
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia.
| |
Collapse
|
12
|
Dai K, Chen L, Aryee AA, Yang P, Han R, Qu L. Adsorption studies of tetracycline hydrochloride and diclofenac sodium on NH 2-MIL-53(Al/Zr) sodium alginate gel spheres. Int J Biol Macromol 2024; 271:132637. [PMID: 38795565 DOI: 10.1016/j.ijbiomac.2024.132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Metal-organic frameworks are emerging inorganic-organic hybrid materials that can be self-assembled from metal ions and organic ligands via coordination bonds. These materials possess large specific surface area, tunable pore structure, abundant active center, diversity of functional groups as well as high mechanical and thermal stability which promote their applications in adsorption and catalysis studies. In this study, NH2-MIL-53(Al/Zr) was prepared and embedded into sodium alginate gel spheres (NH2-MIL-53(Al/Zr)-SA) and its adsorption properties towards TC and DCF in solution were investigated. According to XRD and FTIR analysis, the structure of the raw material was not changed after making the gel spheres. The maximum adsorption towards TC (pH =3) and DCF (pH =5) reached 98.5 mg·g-1 and 192 mg·g-1, respectively. The process was consistent with Langmuir and Freundlich, suggesting that there was both monolayer and multilayer adsorption which infers the presence of physical adsorption (intra-particle diffusion) and non-homogeneous chemical adsorption. The thermodynamic parameters showed that the adsorption process was a spontaneous entropy increasing reaction. The regeneration rate of spent NH2-MIL-53(Al/Zr)-SA could still reach 99.1 % after three cycles, indicating good regeneration performance. This study can provide a basis for the application of NH2-MIL-53(Al/Zr)-SA in wastewater treatment.
Collapse
Affiliation(s)
- Kailu Dai
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Peifeng Yang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Tong Y, Wu Y, Nie L, Jiang L, Zhou Q. High enrichment and measurement of heterocyclic aromatic hydrocarbons from environmental waters with magnetic resorcinol-formaldehyde nanocomposites coupled with high performance liquid chromatography. Talanta 2024; 273:125864. [PMID: 38452592 DOI: 10.1016/j.talanta.2024.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Heterocyclic aromatic hydrocarbons are concerned pollutants with carcinogenic toxicity, which exist universally in various environmental matrices and have great harm to environmental and human health. In present work, magnetic resorcinol-formaldehyde composites (Fe3O4@SiO2@R-F) were fabricated via aldol condensation reaction under alkaline condition. The prepared magnetic materials were examined and analyzed with Fourier transform infrared spectroscopy and other related instruments. The Fe3O4@SiO2@R-F composites were utilized to develop an efficient magnetic solid phase extraction (MSPE) method for extracting six heteropolyclic aromatic hydrocarbons from environmental water samples including carbazole (CB), 7-methylquinoline (7-MQL), 9-methylcarbazole (9-MCB), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The analytes were analyzed by high performance liquid chromatography-ultraviolet variable wavelength detector (HPLC-VWD). The main factors affecting MSPE were optimized. With the optimal parameters, 9-MCB and 4-MDBT have good linearity over the concentration range of 0.1-300 μg L-1, and 7-MQL, CB, DBT and 4,6-DMDBT have good linearity over the concentration range of 0.5-300 μg L-1. The limits of detection were over the concentration range of 0.012-0.031 μg L-1. This method was successfully employed to measure real waters, and the spiked recoveries ranged from 89.4% to 99.9%. The results confirmed that the developed method was reliable, robust and could be employed as a usefully alternate way for analyzing such pollutants in waters.
Collapse
Affiliation(s)
- Yayan Tong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
14
|
Cai Z, Zhao B, Hao L, Wang Q, Wang Z, Wu Q, Wang C. Fabrication of imidazoline-linked cationic covalent triazine framework for enrichment of environmental estrogens. Talanta 2024; 272:125750. [PMID: 38364559 DOI: 10.1016/j.talanta.2024.125750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Imidazoline-linked cationic covalent triazine framework (IM-iCTF) was facilely prepared through the Debus-Radziszewski reaction, involving 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline, formaldehyde and methylglyoxal. The IM-iCTF was applied as a sorbent for cartridge solid-phase extraction (SPE). It provided good adsorption performance for estrogen and estrogen mimics including bisphenol F, bisphenol A, 7β-estradiol, bisphenol B and estrone. The adsorption isotherm, adsorption kinetic model, thermodynamic calculations and adsorption mechanism were investigated to reveal the adsorption behavior. The IM-iCTF was employed for the extraction of the estrogens and estrogen mimics from water, fish and shrimp (fish and shrimp samples were extracted with acetonitrile before the SPE). The analytes were then determined by high-performance liquid chromatography with diode array detection. The limits of detection were 0.008-0.05 ng mL-1 for water, 0.015-0.11 μg g-1 for fish, and 0.012-0.10 μg g-1 for shrimp samples. This research not only offers a new approach to construct cationic covalent triazine framework, but also provides a reliable strategy for the adsorption/enrichment trace level of organic pollutants.
Collapse
Affiliation(s)
- Zixuan Cai
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Bin Zhao
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lin Hao
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Qianqian Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
15
|
Le HV, Vo NT, Phan HT, Dao TM, Nguyen BG, Nguyen TT, Ho PH, Nguyen KD. A sulfonate ligand-defected Zr-based metal-organic framework for the enhanced selective removal of anionic dyes. RSC Adv 2024; 14:16389-16399. [PMID: 38774621 PMCID: PMC11106604 DOI: 10.1039/d4ra02803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024] Open
Abstract
In this work, we introduce a novel defective analogue of the representative 6-connected zirconium-based metal-organic framework (MOF-808), by employing 5-sulfoisophthalic acid monosodium salt (H2BTC-SO3Na) as a defect inducer via a mixed-linker approach. The structural integrity and different physicochemical properties were investigated by various characterization techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen physisorption at 77 K. Additionally, proton nuclear magnetic resonance (1H-NMR), energy-dispersive X-ray (EDX), and inductively coupled plasma optical emission spectroscopy (ICP-OES) were employed to confirm the presence of 6.9 mol% of the 5-sulfoisophthalate ligand within the highly crystalline MOF-808 structure. The defective material exhibited significant enhancements in the removal efficiency of various organic dyes, including approximately 64% and 77% for quinoline yellow and sunset yellow, and 56% and 13% for rhodamine B and malachite green, compared to its pristine counterpart. Importantly, the defective MOF-808 showed a remarkable selectivity toward anionic species in binary-component dyes comprising both anionic and cationic dyes.
Collapse
Affiliation(s)
- Ha V Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| | - Nhi T Vo
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| | - Hoan T Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| | - Thu M Dao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| | - Bao G Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| | - Phuoc H Ho
- Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Khoa D Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City 70000 Vietnam
| |
Collapse
|
16
|
Cai Z, Li Z, Wang Q, Wang Z, Wu Q, Wang C. Synthesis of cyano and ionic dual-functional hypercrosslinked porous polymer for effective adsorption and detection of endocrine disrupting chemicals in milk matrix. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132746. [PMID: 37832438 DOI: 10.1016/j.jhazmat.2023.132746] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can interfere with the normal function of endocrine system, posing serious risk to human health. The monitoring of EDCs in foods is of great importance to ensure food security. Herein, a cyano and ionic dual-functionalized hypercrosslinked porous polymer (CN-iHCP) was designed and prepared for the first time through hyper-crosslink of 1-(4-cyanophenyl)imidazole and 1,4-bis(chloromethyl)benzene. The adsorption mechanism mainly involves electrostatic interaction, hydrogen bonding and π-π stacking interaction. A sensitive analytical method for simultaneous detection of the four phenolic EDCs was established by coupled CN-iHCP based solid-phase extraction with high performance liquid chromatography. Under optimal conditions, the target EDCs exhibited good linearity with coefficient r > 0.993 and high enrichment factors of 164-243. The detection limits (S/N = 3) of EDCs were 0.20-0.50 ng mL-1 for milk sample. The extraction recoveries for the spiked milk samples were in the range of 85.5%- 116.0%. This work not only highlights the CN-iHCP as a promising adsorbent to efficiently enrich EDCs and other pollutants, but also provides a new strategy for the functionalization of HCP for wide applications.
Collapse
Affiliation(s)
- Zixuan Cai
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
17
|
Li D, Gao Y, Mu M, Zhu S, Zhang N, Lu M. Ionic liquid-modified UiO-66-NH 2 as sorbent of dispersive solid-phase extraction for rapid adsorption and enrichment of benzoylurea insecticides. Mikrochim Acta 2023; 190:446. [PMID: 37853180 DOI: 10.1007/s00604-023-06020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Ionic liquid (IL)-modified UiO-66-NH2 composite was prepared and used as sorbent of dispersed solid-phase extraction (dSPE) for extracting trace benzoylurea insecticides (BUs) from complex environmental matrices. The IL in framework endowed the prepared material had electropositive characteristics, which can produce interaction with electron rich guest molecules, such as BUs. The high thermal and chemical stability of UiO-66-NH2/IL enabled it to be reused for 16 times without significant reduction in adsorption performance. Due to the multiple forces including π-π, hydrogen bonding, and fluorine-fluorine interaction, UiO-66-NH2/IL showed good adsorption performance, short adsorption time (20 s) and rapid desorption ability (60 s) for BUs. Under the optimal conditions, the method exhibited wide linear range (0.02-500 ng mL-1) with correlation coefficient (R2) not worse than 0.9928, high enrichment factor (252-300), and low detection limit (0.005-0.4 ng mL-1). The dispersed solid phase extraction coupling with high-performance liquid chromatography-diode array detector (dSPE-HPLC-DAD) was successfully used to detection of BUs in real environmental samples and satisfactory recoveries were obtained (80.5%±2.4-118%±3.2). The results indicated that UiO-66-NH2/IL composite can be a potential sorbent for the preconcentration of trace insecticides in environmental samples.
Collapse
Affiliation(s)
- Dan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyao Mu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
18
|
Barzin M, Pooladi M. Polyaniline-co-polyindole functionalized magnetic porous carbon derived from MIL-53(Fe) for separation/enrichment of nitrophenols pollutants before determination with high-performance liquid chromatography-ultraviolet detection. J Sep Sci 2023; 46:e2300193. [PMID: 37248655 DOI: 10.1002/jssc.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Herein, a novel polyaniline-co-polyindole functionalized magnetic porous carbon derived from MIL-53(Fe) was prepared and employed as an excellent nano-adsorbent to preconcentrate trace amounts of nitro-phenols in water and wastewater samples. Briefly, magnetic MIL-53(Fe) was synthesized by the addition of magnetite nanoparticles, terephthalic acid, and FeCl3 to the reaction medium. The magnetic MIL-53(Fe) was pyrolyzed under nitrogen protection to obtain a magnetic porous carbon nanocomposite, and finally, the nanomaterial was functionalized with polyaniline-co-polyindole via oxidation polymerization. The obtained nano-adsorbent was characterized via X-ray diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and transmission and scanning electron microscopies. After that, the fabricated nano-material was utilized as an excellent nano-adsorbent for the preconcentration of trace nitro-phenols (2-nitrophenol, 4-nitrophenol, and 2,4-dinitrophenol) in environmental water, and wastewater samples. The detection limits were obtained from 0.1 to 0.15 μg/L after performing the optimization process. The new method was in the range of 0.4-300 μg/L. The proposed method exhibited a good precision from 3.2% to 9.6% for within-day assay, and 5.2%-13.2% for between-day assay at three concentration levels (1, 50, and 250 μg/L). Eventually, this method was utilized to preconcentrate/determine the target analytes in three water, and wastewater samples, satisfactory (relative standard deviations, 5.4%-9.3%; relative recovery, 88%-109%).
Collapse
Affiliation(s)
- Mahnaz Barzin
- Department of Medicinal Chemistry, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Pooladi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
19
|
Synthesis of spindle-like amino-modified Zn/Fe bimetallic metal-organic frameworks as sorbents for dispersive solid-phase extraction and preconcentration of phytohormoes in vegetable samples. Food Chem 2023; 409:135272. [PMID: 36623357 DOI: 10.1016/j.foodchem.2022.135272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Amino-modified Zn/Fe bimetallic metal-organic frameworks (NH2-Zn/Fe-MIL-88) were synthesized using a one-step solvothermal method with FeCl3·6H2O and Zn(NO3)2·6H2O as metal salts and 2-aminoterephthalic acid as organic ligand. The morphology of NH2-Zn/Fe-MIL-88 can be regulated from octahedral-like to spindle-like with changing molar ratios of metal salts. Using NH2-Zn/Fe-MIL-88 as sorbent, a dispersive solid-phase extraction with putting sorbents into sample solution to extract targets was developed to preconcentrate phytohormones in vegetables. To study the extraction efficiency, a series of NH2-Zn/Fe-MIL-88s with varying molar ratios of metal salts were prepared. The results indicated that NH2-Zn/Fe-MIL-88(1) presented the highest extraction efficiency (82.6 %-98.1 %) to phytohormones among all prepared NH2-Zn/Fe-MIL-88(x). The limits of detection were calculated at 0.07-0.15 ng/mL. The adsorption isotherms and kinetic parameters of NH2-Zn/Fe-MIL-88 for phytohormones were conformed to Langmuir and pseudo-second-order models. The NH2-Zn/Fe-MIL-88 as sorbent combined with HPLC was applied to detect phytohormones in cucumber and tomato samples.
Collapse
|
20
|
Jung WT, Hsieh YH, Kuo YJ, Yu YH, Liu YH, Lu KL, Lee HL. Rapid microwave synthesis of MOF microrods: Dispersive SPE coupled with UHPLC-MS/MS to determine fluoroquinolones in honey. Talanta 2023; 263:124733. [PMID: 37247453 DOI: 10.1016/j.talanta.2023.124733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
A novel sorbent Cu-S metal-organic framework (MOF) microrods was prepared for dispersive solid-phase extraction via microwave synthesis and used to determine 12 fluoroquinolones (FQs) in honey samples employing ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The best extraction efficiency was achieved by optimizing sample pH, sorbent quantity, eluent type/volume, and extraction and elution time. The proposed MOF exhibits advantages such as rapid synthesis time (20 min) and outstanding adsorption ability toward zwitterionic FQs. These advantages can be attributed to multiple interactions, including hydrogen bonding, π-π interaction, and hydrophobic interaction. The limits of detection of analytes were 0.005-0.045 ng g-1. Acceptable recoveries (79.3%-95.6%) were obtained under the optimal conditions. Precision (relative standard deviation, RSD) was <9.2%. These results demonstrate the utility of our sample preparation method and the high capacity of Cu-S MOF microrods for rapid and selective extraction of FQs from honey samples.
Collapse
Affiliation(s)
- Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yi-Hsuan Hsieh
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yen-Jung Kuo
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yuan-Hsiang Yu
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, Xinzhuang District, New Taipei City, 24205, Taiwan.
| |
Collapse
|
21
|
Wang K, Qin X, Chai K, Wei Z, Deng F, Liao B, Wu J, Shen F, Zhang Z. Efficient recovery of bisphenol A from aqueous solution using K 2CO 3 activated carbon derived from starch-based polyurethane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67758-67770. [PMID: 37115443 DOI: 10.1007/s11356-023-27273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are increasingly polluting water, making it of practical value to develop novel desirable adsorbents for removing these pollutants from wastewater. Here, a simple cross-linking strategy combined with gentle chemical activation was demonstrated to prepare starch polyurethane-activated carbon (STPU-AC) for adsorbing BPA in water. The adsorbents were characterized by various techniques such as FTIR, XPS, Raman, BET, SEM, and zeta potential, and their adsorption properties were investigated comprehensively. Results show that STPU-AC possesses a large surface area (1862.55 m2·g-1) and an abundance of functional groups, which exhibited superior adsorption capacity for BPA (543.4 mg·g-1) and favorable regenerative abilities. The adsorption of BPA by STPU-AC follows a pseudo-second-order kinetic model and a Freundlich isotherm model. The effect of aqueous solution chemistry (pH and ionic strength) and the presence of other contaminants (phenol, heavy metals, and dyes) on BPA adsorption was also analyzed. Moreover, theoretical studies further demonstrate that hydroxyl oxygen and pyrrole nitrogen are the primary adsorption sites. We found that the efficient recovery of BPA was associated with pore filling, hydrogen-bonding interaction, hydrophobic effects, and π-π stacking. These findings demonstrate the promising practical application of STPU-AC and provide a basis for the rational design of starch-derived porous carbon.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xingzhen Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fan Deng
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bingyu Liao
- Guangxi Xiangsheng Household Materials Technology Co., Ltd., Chongzuo, 532200, Guangxi, China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fang Shen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Zhi Zhang
- Guangxi Xiangsheng Household Materials Technology Co., Ltd., Chongzuo, 532200, Guangxi, China
| |
Collapse
|
22
|
Wang B, Zeng Y, Ou J, Xiong M, Qiu R. Different strengthening effects of amino and nitro groups on the bisphenol A adsorption of an aluminum metal-organic framework in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65712-65727. [PMID: 37093372 DOI: 10.1007/s11356-023-26725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
In recent years, metal-organic frameworks (MOFs) have been employed in numerous applications for adsorption. Researchers synthesize new MOFs by various methods, including the introduction of functional groups. In this study, three different aluminum-based MOFs (with non-functionalized, amino-functionalized, nitro-functionalized) were produced by hydrothermal synthesis and used for investigating typical endocrine disrupting chemicals (EDCs), namely for bisphenol A (BPA) adsorption. We used several methods to characterize the MOFs and conducted batch adsorption experiments to investigate their adsorption properties, and explore the influence of different functional groups on adsorption materials. The specific surface area of Al-MOF-NH2 is 6 times larger than that of Al-MOF according to the N2 adsorption and desorption isotherms of the material, that is, the BET of Al-MOF, Al-MOF-NH2, and Al-MOF-NO2 were 109.68, 644.03, and 146.60 m2/g. Note that although the same synthesis method is used, pore size is greatly changed because of the different functional groups. Al-MOF and Al-MOF-NO2 have more mesopores, and Al-MOF-NH2 is mainly microporous. The BPA adsorption capacities of Al-MOF, Al-MOF-NH2, and Al-MOF-NO2 were 46.43, 227.78, and 155.84 mg/L. The outcomes can also be explained by the improved adsorption performance from the addition of amino functional groups. In this research, the adsorption isotherms and adsorption kinetics of the three Al-MOFs for BPA were also investigated to explain the different adsorption properties of various functional groups. The results show that the amino-functionalized materials have remarkable characterization morphologies, uniform particle distributions, appropriate particle sizes, excellent specific surface areas, and superior adsorption effects.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China.
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Sichuan, 610500, People's Republic of China.
| | - Yao Zeng
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Jinghan Ou
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Mingyang Xiong
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ruisi Qiu
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China
| |
Collapse
|
23
|
Hosseini FS, Kharazmi F, Davarani SSH, Ebrahimzadeh H. Development of electrospun nanofibers based on Poly (vinyl alcohol) for thin film solid-phase microextraction of antidepressant drugs in biological samples. J Chromatogr A 2023; 1697:463984. [PMID: 37084693 DOI: 10.1016/j.chroma.2023.463984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Today, antidepressants are widely used and it is important to determine their trace amounts due to harmful consequences. Here, a new nano sorbent was reported for the simultaneous extraction and determination of three types of antidepressant drugs (Clomipramine (CLO), Clozapine (CLZ), and Trimipramine (TRP) by the thin-film solid-phase micro-extraction (TFME-μSPE) method followed by the Gas Chromatography-flame ionization detector (GC-FID) analysis. So, the compound poly (vinyl alcohol) (PVA)/citric acid(CA)/β-cyclodextrin/Bi2S3@g-C3N4 nano sorbent was constructed by electrospinning technique. Then, nano sorbent was studied to optimize the many parameters impacting the extraction performance. Electrospun nanofiber has a large surface area, high porosity, and homogeneous morphology with a uniform bead-free structure. In optimal conditions, the limits of detection and quantification were calculated to be 0.15-0.03 ng mL-1 and 0.5-0.1 ng mL-1, respectively. The dynamic linear range (DLR) was in the range of 0.1 to 1000 ng mL-1 for CLO and CLZ, and 0.5 to 1000 ng mL-1 for TRP with correlation coefficients (R2) of 0.999. The relative standard deviations (RSDs) were achieved in the range of 4.9-6.8% (intra-day, n = 4) and 5.4-7.9% (inter-day, n = 3) in the period of 3 days. Finally, the capability of the method was evaluated to simultaneously measure trace amounts of antidepressants aqueous sample with desirable extraction efficiency (78 to 95%).
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Farbod Kharazmi
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Saied Saeed Hosseiny Davarani
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
Xu L, Bai T, Yi X, Zhao K, Shi W, Dai F, Wei J, Wang J, Shi C. Polypropylene fiber grafted calcium alginate with mesoporous silica for adsorption of Bisphenol A and Pb 2. Int J Biol Macromol 2023; 238:124131. [PMID: 36958444 DOI: 10.1016/j.ijbiomac.2023.124131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polypropylene grafted calcium alginate with mesoporous silica (PP-g-CaAlg@SiO2) for adsorbing Bisphenol A (BPA) and Pb2+ was prepared by calcium chloride (CaCl2) crosslinking and hydrochloric acid solution treatment. The PP-g-CaAlg@SiO2 was characterized by SEM, TEM, BET, XRD, FTIR and TG. PP-g-CaAlg@SiO2 exhibited excellent adsorption capacity for BPA and Pb2+, because the formation of reticulated nanorod structure increased its specific surface area. Subsequently, the adsorption behaviours of BPA and Pb2+, including adsorption isotherms and adsorption kinetics, were investigated. Afterward, isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulation were performed to explore the adsorption mechanism. The results indicated that hydrogen bonding played the leading role in the adsorption of BPA, while the bonding of Pb2+ to carboxyl group binding sites was the focus of Pb2+ adsorption. In addition, the adsorption capacity of PP-g-CaAlg@SiO2 was stable over 10 cycles.
Collapse
Affiliation(s)
- Lijing Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tian Bai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinzhun Yi
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Wenxiong Shi
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300387, China
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Ce Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 300387, China
| |
Collapse
|
25
|
Li T, Wang R, Yin R, Xu H, Han X, Du Q, Cheng J, Lin Z, Wang P. Effective Extraction of Bisphenol Compounds from Milk with Stable Zr(IV)-Based Metal-Organic Framework Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4272-4280. [PMID: 36857603 DOI: 10.1021/acs.jafc.2c09085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisphenol compounds (BPs) have recently been the subject of growing interest due to their wide use in industrial and consumer products. Besides their adverse effects on human endocrine system, effective extraction of BPs and their elimination from complex sample matrix are still significant challenges in food analysis. Herein, a novel Zr(IV)-based metal-organic framework (MOF), named BUT-16, has been synthesized and utilized for the extraction and enrichment of BPs in milk samples. Bisphenol A (BPA), one of the highest production volume BPs, is used as a model molecule. The uptake capacity for BPA can reach up to 48 mg/g, and the adsorption rate is rapid (∼10 min), because of the larger surface area and cooperation of multiple functionalities of BUT-16. Employing BUT-16 in solid-phase extraction, coupled with ultra-performance liquid chromatography-tandem mass spectrometry detection, we generated a rapid, facile, and robust method for the enrichment and detection of trace BPA and its 12 substitutes in milk samples. After optimization, the limits of detection and quantification for BPs can be achieved as low as 0.05 and 0.2 ng/mL, respectively. Without the correction of the isotopic internal standard, the average recoveries of BPs at the different spiked concentrations varied from 63.8 to 120.6%, with a satisfactory precision (RSD ≤ 8.2%). Furthermore, the proposed method was successfully applied to the detection of BPs in real milk samples, and the results were in accordance with those of methods reported previously.
Collapse
Affiliation(s)
- Tong Li
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruiguo Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Ruijie Yin
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Hongyan Xu
- Inner Mongolia Yili Industrial Group Co.,Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Xiaoxu Han
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Huhhot, Inner Mongolia 010080, P. R. China
| | - Qiuling Du
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Jie Cheng
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Institute of Nanomedicine and Nanobiosensing, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Peilong Wang
- Chinese Academy of Agricultural Sciences, Institute of Quality Standards and Testing Technology for Agro-products, Beijing 100081, P. R. China
| |
Collapse
|
26
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Behzadi M. Determination of Bisphenol A, B, F and S in Canned Foodstuffs and Canned Pet Foods by Solid-phase Microextraction With Polytyramine Nanocomposite Fiber. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Zhang J, Wang Y, Yu J, Wang Q, Khattak KN, Yang X. Determination of pyrethroids in water samples by dispersive solid-phase extraction coupled with high-performance liquid chromatography. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10813. [PMID: 36440628 DOI: 10.1002/wer.10813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
A metal-organic framework UiO-66 was prepared and used as a sorbent for dispersive solid-phase extraction combined with high-performance liquid chromatography (DSPE-HPLC) for extracting and determining four pyrethroids in water samples for the first time. The as-synthesized material was confirmed by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and N2 adsorption-desorption analysis. In addition, several important parameters affecting DSPE efficiency, including sorbent dosage, extraction time, salt concentration, pH, elution solvent, elution volume, and elution time, were optimized. Under the optimum conditions, the UiO-66 based on the DSPE-HPLC method displayed a wide linear range (10-1000 ng/ml), low limits of detection (2.8-3.5 ng/ml), and good precision (relative standard deviations [RSDs] < 3%) for the four pyrethroids. The recoveries at different spiked levels ranged from 89.3% to 107.7%. In addition, UiO-66 featured good reusability and reproducibility. The results demonstrated that π-π stacking interactions, hydrophobic interactions, and van der Waals forces between UiO-66 and the four pyrethroids played a crucial role in the adsorption process. Meanwhile, the maximum extraction capability could be obtained within 5 min. Thus, the DSPE coupled with the UiO-66 sorbent can be successfully used in the analysis of four pyrethroids in environmental water samples. PRACTITIONER POINTS: Simultaneous determination of four pyrethroids using the developed UiO-66-based DSPE-HPLC method in water samples. The developed method had a short enrichment time, broad linear ranges, a low detection limit, and high enrichment factor. It is showed that π-π stacking interaction, hydrophobic interaction, and van der Waals forces were the main mechanism.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Jun Yu
- Nanchong City Product Quality Supervision and Inspection Institute, Nanchong, China
| | - Qingying Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Kashif Nawaz Khattak
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| |
Collapse
|
29
|
Zhang H, Li G, Zhu Q, Xiong P, Li R, Liu S, Zhang A, Liao C, Jiang G. Stable magnetic CoZn/N-doped polyhedron with self-generating carbon nanotubes for highly efficient removal of bisphenols from complex wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129584. [PMID: 35868084 DOI: 10.1016/j.jhazmat.2022.129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols have extensively been found in various environmental matrices and caused public concerns due to their endocrine-disrupting potential. Herein, we developed a ZIF-67@ZIF-8-derived CoZn/nitrogen-doped carbon (CoZn/NC) as a robust adsorbent for bisphenols in wastewaters. The self-generating carbon nanotubes and the open metal sites provided sufficient adsorption sites. The Co component endowed the derivative with strong magnetism facilitating its separation from water. CoZn/NC exhibited exceeding water stability in pH 3 - 12 solution and withstood water up to 15 days. The great applicability of CoZn/NC was validated with 16 real wastewaters from different sources (recoveries exceeding 97.9%). Fast adsorption kinetics were observed with removal efficiencies above 96.5% within 1 min. The adsorption isotherms were well fitted with the Langmuir model, with adsorption capacities of 222, 200, 193, and 321 mg g-1 for bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, respectively. Variations in external conditions, including pH 3 - 9, humic acid (50 mg L-1), and NaCl (0.1 mol L-1), had negligible impacts on the adsorption process. The characterizations and density functional theory computation demonstrated that electrostatic, hydrophobic, π - π, and cation- π interactions are the driving forces in this system. The as-prepared CoZn/NC exhibits great promise in real wastewater treatment.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Alhmaunde A, Masrournia M, Javid A. Facile synthesis of new magnetic sorbent based on MOF-on-MOF for simultaneous extraction and determination of three benzodiazepines in various environmental water samples using dispersive micro solid-phase extraction and HPLC. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Guo L, Wang Y, Yan M, Li X, Jiang X, Wang M, Wang Q, Wang X, Hao Y. Fabrication of Ce-doped DUT-52 as a sorbent for dispersive solid phase extraction of estrogens in human urine samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3094-3102. [PMID: 35916556 DOI: 10.1039/d2ay00795a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A cerium (Ce)-doped metal-organic framework composite (Ce/DUT-52) was prepared by using a solvothermal method and was explored as a sorbent for dispersive solid phase extraction (DSPE) of three estrogens (α-estradiol, estrone, and hexestrol) in human urine samples. After doping with Ce(III), Ce/DUT-52 exhibited more attractive features involving a higher specific surface area (774.7 m2 g-1) and zeta potential (31.4 mV), which made it an efficient adsorbent for the separation and enrichment of estrogens. The factors influencing DSPE efficiency such as the adsorbent amount, extraction time, pH, NaCl concentration, elution solvent and elution volume were investigated in detail. Under the evaluated conditions, Ce/DUT-52 showed good reusability (n = 6, RSDs ≤ 4.8%). Notably, the cofunction of electrostatic interaction, hydrophobic interaction, hydrogen bonding and π-π interaction might play major roles between estrogens and Ce/DUT-52. Finally, coupled with high-performance liquid chromatography (HPLC), a fast and sensitive method was established, which provided low limits of detection (1.5-2.0 ng mL-1), wide linear ranges (3-500 ng mL-1) and satisfactory recoveries (79.8-96.1%). The results demonstrated that Ce/DUT-52 had excellent adsorption ability to the targets and the developed method provided an alternative strategy for the determination of trace estrogens or other compounds with similar chemical structures in urine samples.
Collapse
Affiliation(s)
- Linan Guo
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| | - Yahui Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
- Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai 264001, Shandong, China
| | - Meng Yan
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| | - Xinxin Li
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| | - Xinyao Jiang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
- Key Laboratory of Coal Mine Health and Safety of Hebei Province, School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| | - Yulan Hao
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian District, Tangshan 063200, Hebei, China.
| |
Collapse
|
32
|
Mahmoud ME, Elsayed SM, Mahmoud SELM, Nabil GM, Salam MA. Recent progress of metal organic frameworks-derived composites in adsorptive removal of pharmaceuticals. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Easy, fast, and clean fluorescence analysis of tryptophan with clays and graphene/clay mixtures. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Qin P, Chen D, Li M, Li D, Gao Y, Zhu S, Mu M, Lu M. Melamine/MIL-101(Fe)-derived magnetic carbon nanotube-decorated nitrogen-doped carbon materials as sorbent for rapid removal of organic dyes from environmental water sample. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Synthesis of Metal–Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. Int J Mol Sci 2022; 23:ijms23147980. [PMID: 35887328 PMCID: PMC9324456 DOI: 10.3390/ijms23147980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hazardous chemical compounds such as endocrine-disrupting chemicals (EDCs) are widespread and part of the materials we use daily. Among these compounds, bisphenol A (BPA) is the most common endocrine-disrupting chemical and is prevalent due to the chemical raw materials used to manufacture thermoplastic polymers, rigid foams, and industrial coatings. General exposure to endocrine-disrupting chemicals constitutes a serious health hazard, especially to reproductive systems, and can lead to transgenerational diseases in adults due to exposure to these chemicals over several years. Thus, it is necessary to develop sensors for early detection of endocrine-disrupting chemicals. In recent years, the use of metal–organic frameworks (MOFs) as sensors for EDCs has been explored due to their distinctive characteristics, such as wide surface area, outstanding chemical fastness, structural tuneability, gas storage, molecular separation, proton conductivity, and catalyst activity, among others which can be modified to sense hazardous environmental pollutants such as EDCs. In order to improve the versatility of MOFs as sensors, semiconductor quantum dots have been introduced into the MOF pores to form metal–organic frameworks/quantum dots composites. These composites possess a large optical absorption coefficient, low toxicity, direct bandgap, formidable sensing capacity, high resistance to change under light and tunable visual qualities by varying the size and compositions, which make them useful for applications as sensors for probing of dangerous and risky environmental contaminants such as EDCs and more. In this review, we explore various synthetic strategies of (MOFs), quantum dots (QDs), and metal–organic framework quantum dots composites (MOFs@QDs) as efficient compounds for the sensing of ecological pollutants, contaminants, and toxicants such as EDCs. We also summarize various compounds or materials used in the detection of BPA as well as the sensing ability and capability of MOFs, QDs, and MOFs@QDs composites that can be used as sensors for EDCs and BPA.
Collapse
|
36
|
Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Reconstruction of Electronic Structure of MOF-525 via Metalloporphyrin for Enhanced Photoelectro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photoelectro-Fenton (PEF) process can continuously promote the occurrence of Fenton reaction and the generation of active species, which is an advanced oxidation technology for pollutant degradation. However, the lack of bifunctional catalysts restricts the development of PEF technology. In this study, the electronic rearrangement MOF-525 modified by metalloporphyrin (named MOF-525-Fe/Zr) was prepared, to load on the carbon felt as a novel cathode catalyst, which is used in PEF process. A series of characterization and photoelectric chemical properties tests combined with DFT calculation showed that the modification of MOF-525 could not only have the large specific surface area and multistage pore structure but also co-stimulate the metal-to-ligand charge transfer (MLCT) and ligand-to-cluster charge transfer (LCCT) by photoelectric synergy. These charge transitions provide periodic electron donor-acceptor conduction paths in MOF-525-Fe/Zr, which can improve the active species formation and transfer efficiency. Owing to their favorable pore and electronic structure as well as stability, MOF-525-Fe/Zr shows great promise for the application in the catalytic process of PEF. Sulfamethoxazole (SMX) degradation was enhanced by MOF-525-Fe/Zr with the TOC removal rate above 75% both in river water and tap water. Finally, the reasonable pathway of PEF catalytic degradation of SMX was proposed by HPLC-MS analysis. In conclusion, this study provides a new idea for reconstructing the electronic structure of MOFs catalyst and broadening the practical application of PEF technology.
Collapse
|
38
|
Li D, Li M, Zhu S, Gao Y, Mu M, Zhang N, Wang Y, Lu M. Porous Hexagonal Boron Nitride as Solid-Phase Microextraction Coating Material for Extraction and Preconcentration of Polycyclic Aromatic Hydrocarbons from Soil Sample. NANOMATERIALS 2022; 12:nano12111860. [PMID: 35683716 PMCID: PMC9182517 DOI: 10.3390/nano12111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment plays important role in the analysis and detection of trace pollutants in complex matrices, such as environmental and biological samples. The adsorption materials of sample pretreatment receive considerable attention, which has a significant effect on the sensitivity and selectivity of the analytical method. In this work, the porous hexagonal boron nitride (h-BN) was utilized as a coating material of solid-phase microextraction (SPME) to extract and preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to separation and detection with GC-FID. Attributed to the multiple interactions including hydrophobicity, hydrogen bonding and strong π–π interaction, the h-BN coating showed excellent extraction performance for PAHs. Under the optimal conditions, the method showed the linear relationship in the range of 0.1–50 ng mL−1 for acenaphthene, 0.05–50 ng mL−1 for pyrene, and 0.02–50 ng mL−1 for fluorene, phenanthrene and anthracene with a correlation coefficient (R2) not lower than 0.9910. The enrichment factors were achieved between 1526 and 4398 for PAHs with h-BN as SPME fiber coating. The detection limits were obtained in the range of 0.004–0.033 ng mL−1, which corresponds to 0.08–0.66 ng g−1 for soil. The method was successfully applied to analysis of real soil samples. The recoveries were determined between 78.0 and 120.0% for two soil samples. The results showed that h-BN material provided a promising alternative in sample pretreatment and analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Zhang
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| | | | - Minghua Lu
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| |
Collapse
|
39
|
Hu H, Ruan G, Jiang X, Pan H, Wu Z, Huang Y. Enhanced ethopabate adsorption in monodispersed porous carbon derived from zeolitic imidazolate framework-8. NEW J CHEM 2022. [DOI: 10.1039/d2nj00843b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drastically improved adsorption capacity for ethopabate is achieved by the partial carbonization of ZIF-8.
Collapse
Affiliation(s)
- Haoyun Hu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Guihua Ruan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Xiangqiong Jiang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hong Pan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Zhuqiang Wu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Yipeng Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| |
Collapse
|