1
|
Sun Z, Ji X, Lu S, Du J. Shining a light on environmental science: Recent advances in SERS technology for rapid detection of persistent toxic substances. J Environ Sci (China) 2025; 153:251-263. [PMID: 39855797 DOI: 10.1016/j.jes.2024.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 01/27/2025]
Abstract
Persistent toxic substances (PTS) represent a paramount environmental issue in the 21st century. Understanding the concentrations and forms of PTS in the environment is crucial for accurately assessing their environmental health impacts. This article presents a concise overview of the components of PTS, pertinent environmental regulations, and conventional detection methodologies. Additionally, we offer an in-depth review of the principles, development, and practical applications of surface-enhanced Raman scattering (SERS) in environmental monitoring, emphasizing the advancements in detecting trace amounts of PTS in complex environmental matrices. Recent progress in enhancing SERS sensitivity, improving selectivity, and practical implementations are detailed, showcasing innovative materials and methods. Integrating SERS with advanced algorithms are highlighted as pivotal areas for future research.
Collapse
Affiliation(s)
- Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xunlong Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shaoyu Lu
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Yuan C, Sun L, Wang Z, Hong X, He H, Lu X, Chen Z. Prussian Blue Nanosphere/Fe-Metal Organic Frameworks/Ce Nanocomposite as a Colorimetric Sensing Platform for Direct Detection in Organophosphorus Pesticides in Fetal Bovine Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11046-11055. [PMID: 40263112 DOI: 10.1021/acs.langmuir.5c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Acute pesticide poisoning has resulted in several symptoms that threaten life safety. Thus, developing a rapid detection method would facilitate the identification of toxicants as soon as possible. This study presented an affordable and straightforward detection platform based on a core-shell structure nanocomposite of Prussian blue/Fe-metal-organic frameworks/Ce nanocomposite material, which exhibited peroxidase-like activity and multiple capture sites [marked as phosphate buffer (PB)/Fe-MOF/Ce NPs]. Fe3+ and Fe2+ are located at the core of PB nanoparticles (PB NPs), metal-porphyrin as a metal-organic framework (MOF) shell, and Ce NPs grown on the shell. A practical, economical, accurate, and colorimetric strategy was synthesized to detect organophosphorus pesticides directly in fetal bovine serum. The solution-based PB/Fe-MOF/Ce NP colorimetric sensor demonstrated an ultrasensitive detection performance and excellent reproducibility. The absorbance variation of dichlorvos, methamidophos, and dimethoate follows the linear equation of y = 0.093x + 0.024, y = 0.083x + 0.017, and y = 0.114x + 0.117 under a low content, and the limit of detection (LOD) of the colorimetric sensor was determined using 3s/slope, which was as low as 5.6, 4.8, and 6.5 μg/L, respectively, with the recovery rates ranging from 83.4% to 98.6% and an RSD less than 6%. This study provides an excellent method for effectively detecting acute poisoning samples and offers profound insights for further improving the treatment efficiency of pesticide poisoning, and it has excellent prospects in clinical point-of-care testing.
Collapse
Affiliation(s)
- Caixia Yuan
- State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Gansu Business Science and Techology Institute Company Limited, Lanzhou 730010, China
| | - Liedong Sun
- Gansu Business Science and Techology Institute Company Limited, Lanzhou 730010, China
| | - Zifan Wang
- Gansu Tech Innovation Center of Animal Cell, Northwest Minzu University, Lanzhou 730030, PR China
| | - Xia Hong
- Gansu Business Science and Techology Institute Company Limited, Lanzhou 730010, China
| | - Haining He
- Gansu Business Science and Techology Institute Company Limited, Lanzhou 730010, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhenbin Chen
- State Key Laboratory of Advanced Progressing and Recycling of Nonferrous Metal Materials, College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
3
|
Zhang S, Wu D, Liu Q, Shen Y, Wang T. Deep eutectic solvent induced silver-gel as a flexible SERS substrate for sensitive detection of antibiotics under low temperature conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137279. [PMID: 39864195 DOI: 10.1016/j.jhazmat.2025.137279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Antibiotic residues pose a significant threat to global health. Traditional detection methods for antibiotics are cumbersome, time-consuming and often incapable of achieving non-destructive detection at low temperatures. This research introduces a groundbreaking innovation in antibiotic detection: a flexible Surface-Enhanced Raman Scattering substrate based on a silver composite deep eutectic solvent (DES) gel, specifically engineered for low-temperature antibiotic detection. To address the challenge of low SERS response for antibiotics, we utilize R6G (Rhodamine 6 G) to effectively label them. This unique SERS substrate exhibits exceptional mechanical robustness, stability, and frost-resistance. Remarkably, it enables the direct and sensitive detection of six types of labeled antibiotics across four categories in frozen chicken wings at -25 °C, with a limit of detection (LOD) below 1.3 × 10-9 mol/L. Additionally, the substrate demonstrates outstanding homogeneity (relative standard deviation (RSD< 6.4 %), reproducibility (RSD < 6.2 %), and long-term stability over 30 days, ensuring highly sensitive and quantitative antibiotic detection. Theoretical insights reveal that the labeled antibiotics exhibit higher binding energy with silver, further enhancing detection sensitivity. This novel, flexible substrate holds immense potential for quantifying antibiotics in frozen foods and heralds a new era of expanded detection capabilities for a broader spectrum of antibiotics at low temperatures.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| | - Qian Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Yunpeng Shen
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China; State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China.
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China; School of Materials Science and Engineering, Xinjiang Engineering Research Center of Environmental and Functional Materials, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| |
Collapse
|
4
|
Wang J, Feng Y, Zhang H, Han L, Xia J, Wang G. Uniformly aligned Ag NPs/graphene paper for enhanced SERS detection of pesticide residue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125535. [PMID: 39644821 DOI: 10.1016/j.saa.2024.125535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The surface-enhanced Raman scattering (SERS) technique provides a quick and reliable method for detecting pesticide residues. In this study, flexible substrates, composed of orderly arranged silver nanospheres (Ag NPs) films on graphene paper, were fabricated through a simple, low-cost Ag NP self-assembly process at a liquid-liquid interface, followed by transfer of the films onto the graphene paper. The SERS performance of the fabricated substrates was evaluated using a portable Raman spectrometer, with rhodamine 6G (R6G) serving as the probe molecule. The results indicate that the bilayer Ag NP films-covered graphene paper exhibits optimal overall performance, characterized by high sensitivity and high uniformity. The limit of detection (LOD) for the R6G molecule is as low as 8.73 × 10-9 M, demonstrating the strong signal amplification capability of the SERS substrate. Moreover, the relative standard deviation (RSD) of the Raman intensity at 1508 cm-1 for different selected points on the substrate is 5.018 %, indicating high uniformity of the SERS substrate. Finally, the performance of the SERS substrate was further evaluated by detecting thiram in fresh orange juice, demonstrating the capability to detect concentrations as low as 10-6 M. This result highlights the significant potential of the developed SERS substrate for practical applications in food safety and quality control.
Collapse
Affiliation(s)
- Jinyang Wang
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Yue Feng
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Huiliang Zhang
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China; Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Handan 056038, Hebei, China; Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Handan 056038, Hebei, China.
| | - Longhao Han
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Jin Xia
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Guangjian Wang
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China.
| |
Collapse
|
5
|
Chen J, Ke X, Zhou Z, Ye W, Liu H, Zhang W, Liu X. An Ag-nanoplate decorated cavity-nanorod array SERS substrate for trace detection of PCB-77. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2161-2170. [PMID: 39957686 DOI: 10.1039/d5ay00025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We report the fabrication of a substrate with cavity-nanorods and decorated with Ag-nanoplates (C-NR@Ag). The cavities on the substrate are formed by metal assistant chemical etching, and the Ag-nanoplates in the cavities by galvanic cell deposition enhance the SERS performance effectively. Analytes in solution are adsorbed on Ag-nanoplates and located in hot spots, which enhance the SERS performance effectively. The enhancement factor of the Ag-nanoplates decorated on nanorod cavities is calculated to be 3.6 × 106, which is about 3 fold higher than that on the nanorods. The C-NR@Ag substrate is able to detect polychlorinated biphenyls (PCBs) with the lower limit of detection at 1.0 × 10-12 M. Additionally, due to the semi-volatile nature of PCB-77, the lower limit of detection of the C-NR@Ag substrate for PCB-77 was 1.0 × 10-11 M by the non-contact collection method. These results present a novel approach towards enhancing SERS performance and facilitating the rapid detection of PCB-77.
Collapse
Affiliation(s)
- Jinran Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing Jiaotong University, Chongqing, 400074, P. R. China
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Xiurui Ke
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wenqi Ye
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, P. R. China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China.
| |
Collapse
|
6
|
Gu Y, Fang P, Chen Y, Xie T, Yang G, Qu L. Multi-channel surface-enhanced Raman spectroscopy (SERS) platform for pollutant detection in water fabricated on polydimethylsiloxane. Mikrochim Acta 2024; 191:595. [PMID: 39269496 DOI: 10.1007/s00604-024-06681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
A miniature multi-channel surface-enhanced Raman scattering (SERS) sensor based on polydimethylsiloxane (PDMS) is constructed to achieve rapid delivery of polluted water and specific identification of multiple components. Hg2+, organic pollutants, and sodium nitrite are successfully identified by the multi-channel SERS sensor using Cy5, cyclodextrin, and urea in the corresponding detection area. This multi-channel sensor exhibits excellent sensitivity and specificity, with detection limits of 3.2 × 10-10 M for Hg2+, 1.0 × 10-8 M for aniline, 6.9 × 10-9 M for diphenylamine, 9.1 × 10-8 M for PCB-77, and 7.5 × 10-9 M for pyrene, and 5.0 × 10-7 M for sodium nitrite. Compared with traditional analysis techniques, this method exhibited excellent recovery for the water pollutants ranging from 82.1 to 115.8%. The PDMS-based microchannel allows for simultaneous and rapid identification of multiple environmental pollutants, offering a portable detection method for emergency testing of environmental pollutants and routine determination of water pollutants.
Collapse
Affiliation(s)
- Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Puhao Fang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tianhua Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
7
|
Guo R, Wang J, Zhao W, Cui S, Qian S, Chen Q, Li X, Liu Y, Zhang Q. A novel strategy for specific sensing and inactivation of Escherichia coli: Constructing a targeted sandwich-type biosensor with multiple SERS hotspots to enhance SERS detection sensitivity and near-infrared light-triggered photothermal sterilization performance. Talanta 2024; 269:125466. [PMID: 38008021 DOI: 10.1016/j.talanta.2023.125466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Human health is greatly threatened by bacterial infection, which raises the risk of serious illness and death in humans. For early screening and accurate treatment of bacterial infection, there is a strong desire to undertake ultrasensitive detection and effective killing of pathogenic bacteria. Herein, a novel surface-enhanced Raman scattering (SERS) biosensor based on sandwich structure consisting of capture probes/bacteria/SERS tags was established for specific identification, capture and photothermal killing of Escherichia coli (E. coli). Finite-difference time-domain (FDTD) technique was used to simulate the electromagnetic field distribution of capture probes, SERS tags and sandwich-type SERS substrate, and a possible SERS enhancement mechanism based on sandwich structure was presented and discussed. Sandwich-type SERS biosensor successfully achieved distinctive identification and magnetic beneficiation of E. coli. In addition, a single SERS substrate, including capture probes and SERS tags, could also achieve outstanding photothermal effects as a consequence of localized surface plasmon resonance (LSPR) effect. Intriguingly, sandwich-type SERS biosensor demonstrated a higher photothermal conversion efficiency (50.03 %) than the single substrate, which might be attributed to the formation of target bacterial clusters. The superior biocompatibility and the low toxicity of the sandwich-type biosensor were confirmed. Our approach offers a fresh method for constructing sandwich-type biosensor with multiple SERS hotspots based on extremely effective hybrid plasmonic nanoparticles, and has a wide range of potential applications in the recognition and treatment of bacteria.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Jingru Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Qiuxu Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Xue Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China.
| |
Collapse
|
8
|
Chen H, Han C, Zhang L, Wu Y. Porous rod-shaped Fe 2O 3/Ag/BP: a novel substrate for highly sensitive SERS detection of persistent organic pollutants. NANOTECHNOLOGY 2024; 35:195710. [PMID: 38330462 DOI: 10.1088/1361-6528/ad27ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
A surface enhanced Raman scattering (SERS) substrate of porous rod-shaped ferric oxide (Fe2O3) combined with silver nanoparticles (Ag NPs) and black phosphorus (Fe2O3/Ag/BP) was fabricated to detect the persistent organic pollutants (POPs) at low concentration. The organic pollutant Rhodamine 6G (R6G) was used as the probe molecule to study the performances of Fe2O3/Ag/BP, and 4-chlorobiphenyl (PCB-3) was the target of detection. The limit of detection (LOD) of R6G based on this novel SERS substrate Fe2O3/Ag/BP was as low as 1.0 × 10-15M, which was five orders of magnitude lower than that of Fe2O3/Ag (10-10M). The enhancement factor (EF) of Fe2O3/Ag/BP was 6.44 × 108, which was 3.1 times higher than that of porous rod-shaped Fe2O3/Ag (2.08 × 108). The Raman signal of R6G based on Fe2O3/Ag/BP had a good homogeneity, and the relative standard deviation (RSD) of Raman signal intensities of R6G at 1643 cm-1was only 5.97%. Furthermore, the Fe2O3/Ag/BP substrate exhibited a recyclability through the photocatalytic degradation of R6G. The LOD of PCB-3 based on Fe2O3/Ag/BP was 10-9M. Besides, Fe2O3/Ag/BP had a high SERS activity even it was kept in a centrifuge tube without requiring complicated treatment. These results highlight the potential application of Fe2O3/Ag/BP for ultra-trace detection of POPs in the environment.
Collapse
Affiliation(s)
- Hang Chen
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou 221400, People's Republic of China
| | - Caiqin Han
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Le Zhang
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou 221400, People's Republic of China
| | - Ying Wu
- School of Physics and Electronic Engineering, Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| |
Collapse
|
9
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Jiang Y, Liu Y, Yang J. Ultrasensitive dual-enhanced sandwich strategy for simultaneous detection of Escherichia coli and Staphylococcus aureus based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags. J Colloid Interface Sci 2023; 634:651-663. [PMID: 36549213 DOI: 10.1016/j.jcis.2022.12.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this work, a novel surface-enhanced Raman scattering (SERS) sandwich strategy biosensing platform has been established for simultaneously detecting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Fe3O4@SiO2-Au nanocomposites (NCs) with varying amounts of Au nanocrystals were prepared, and the effect of interparticle gaps on SERS activity was studied by finite-difference time-domain (FDTD) method. The optimal magnetic SERS-active substrates (FS-A5) were functionalized with the specific aptamers to act as capture probes. Meanwhile, graphene oxide-Au nanostars (GO-Au NSs) decorated with Raman reporters and aptamers were used as SERS tags. The loading density of Au NSs on GO was tuned to change the number of SERS active sites. In this proposal, E. coli and S. aureus were first captured by capture probes and then bound with SERS tags to form a sandwich-like structure, which caused enhanced electromagnetic field because of the dual enhancement strategy. Under optimal conditions, SERS platform could detect E. coli and S. aureus simultaneously, and the detection limit was as low as 10 cfu/mL. Our sandwich assay-based dual-enhanced SERS platform provides a new idea for simultaneously detecting multiple pathogens with high selectivity and sensitivity, and thus will have more hopeful prospects in the field of food safety.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
11
|
Zhang Q, Liu Z, Zhang H, Han C, Wu Y, Yan C, Liu Y, Wu B, Yang G, Duan P. Highly sensitive AuNSs@AgNR SERS substrates for rapid determination of aromatic amines. Analyst 2023; 148:814-822. [PMID: 36632825 DOI: 10.1039/d2an01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The leakage of aromatic amines will pose a great threat to human health and the ecological environment. Therefore, there is an urgent need to achieve rapid and high-sensitivity detection of such substances. In this study, a simple surface-enhanced Raman scattering (SERS) method based on gold nanostars-modified silver nanorods (AuNSs@AgNRs) was established for the detection of benzidine and 4-aminobiphenyl (4-ABP). The enhancement factors of the substrate towards rhodamine 6G (R6G) and crystal violet (CV) were 4.67 × 108 and 1.11 × 108, respectively. Combined with density functional theory (DFT), the AuNSs@AgNR substrate achieved the rapid detection of benzidine and 4-ABP and obtained low detection limits (LODbenzidine = 7.09 × 10-9 M; LOD4-ABP = 1.20 × 10-9 M). Furthermore, the AuNSs@AgNR substrate can realize the high-sensitivity detection of benzidine and 4-ABP in the spiked river water samples within 3 min, which means that the AuNSs@AgNR-based SERS method can be used as a portable platform to realize the on-site rapid detection of environmental pollutants.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Zhenglin Liu
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Hengchang Zhang
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Bin Wu
- The 41st Institute of China Electronics Technology Group Corporation, Qingdao 266555, China.
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Peitong Duan
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China. .,National University Science Park, Jiangsu Normal University, Xuzhou 221009, China
| |
Collapse
|
12
|
Liao D, Liang G, Liu Y, Yan W, Guo Y, Liang W, Dong C, Fan L. Design an efficient photoelectrochemical aptasensor for PCB72 based on CdTe@CdS core@shell quantum dots-decorated TiO 2 nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129901. [PMID: 36084454 DOI: 10.1016/j.jhazmat.2022.129901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this work, an efficient and novel photoelectrochemical (PEC) aptasensor for 2,3',5,5'-tetrachlorobiphenyl (PCB72) was constructed based on CdTe@CdS core@shell quantum dots (CdTe@CdS QDs)-decorated TiO2 nanotubes (TiO2 NTs). CdTe@CdS QDs were prepared by the combination of CdTe and CdS with a proper lattice mismatch. Due to their large band offsets, core@shell QDs can reduce undesirable carrier recombination, significantly improving their charge separation efficiency. Then the synthesized CdTe@CdS QDs were modified on TiO2 NTs (CdTe@CdS QDs/TiO2 NTs) through electrostatic adsorption method. The as-prepared composites exhibit a wide visible light absorption range, good PEC activity and high photoelectric conversion efficiency. Also, the PEC aptasensor prepared via the immobilization of anti-PCB72 aptamer on the composites exhibits outstanding analytical performance with high sensitivity and specificity for PCB72 under visible-light irradiation, achieving a detection limit as low as 0.03 ng/L. It was also applied to detect PCB72 in four different real environmental samples with satisfactory results.
Collapse
Affiliation(s)
- Dongyun Liao
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guifang Liang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuyao Liu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wenting Liang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
13
|
Liu Z, Zhang Q, Zhong X, Han C. Molecular–substrate interaction on dynamic SERS detection of butylated hydroxyanisole on a silver nano-tripod substrate. Phys Chem Chem Phys 2022; 24:26413-26420. [DOI: 10.1039/d2cp04474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A SERS enhancement model with a surface adsorption effect is proposed by dynamical SERS analysis of butylated hydroxyanisole on a silver nano-tripod substrate.
Collapse
Affiliation(s)
- Zhenglin Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qian Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiao Zhong
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|