1
|
Carmona-Molero R, Carbonell-Rozas L, García-Campaña AM, del Olmo-Iruela M, Lara FJ. Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry. Toxins (Basel) 2025; 17:63. [PMID: 39998080 PMCID: PMC11860162 DOI: 10.3390/toxins17020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Cyanobacteria are an ancient group of prokaryotes capable of oxygenic photosynthesis. Recently, thermal crises symptoms in hot springs have been associated with acute cyanopeptides poisoning. The aim of this work is to develop a fast, easy and reliable method to monitor the presence of toxic cyanopeptides in geothermal waters. The analytical method based on capillary zone electrophoresis coupled with tandem mass spectrometry (CZE-MS/MS) was developed for the simultaneous determination of 14 cyanopeptides in less than 7.5 min. A basic 50 mM ammonium acetate buffer at pH 10.2 was selected as the background electrolyte, positive electrospray ionization (ESI+) was employed for all compounds, and a salting-out assisted liquid-liquid extraction (SALLE) protocol with acetonitrile as an extraction solvent and MgSO4 as an auxiliary salting-out agent was optimized as sample treatment. Six natural hot springs in the province of Granada (Andalucía, Spain) were sampled at the beginning of the summer season (June) and at the end (September). Biomass collected at two sample points (Santa Fe and Zújar) contained cyanobacteria cells from the genera Phormidium, Leptolyngbya, and Spirulina. Nevertheless, cyanotoxins covered by this work were not found in any of the water samples analyzed. The greenness and transferability of the method was evaluated highlighting its sustainability and applicability.
Collapse
Affiliation(s)
| | | | | | | | - Francisco J. Lara
- Department Analytical Chemistry, University of Granada, Av. Fuente Nueva s/n, 18071 Granada, Spain; (R.C.-M.); (L.C.-R.); (A.M.G.-C.); (M.d.O.-I.)
| |
Collapse
|
2
|
Wang X, Wullschleger S, Jones M, Reyes M, Bossart R, Pomati F, Janssen EML. Tracking Extensive Portfolio of Cyanotoxins in Five-Year Lake Survey and Identifying Indicator Metabolites of Cyanobacterial Taxa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16560-16569. [PMID: 39214609 PMCID: PMC11411708 DOI: 10.1021/acs.est.4c04813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cyanobacterial blooms require monitoring, as they pose a threat to ecosystems and human health, especially by the release of toxins. Along with widely reported microcystins, cyanobacteria coproduce other bioactive metabolites; however, information about their dynamics in surface waters is sparse. We investigated dynamics across full bloom successions throughout a five-year lake monitoring campaign (Greifensee, Switzerland) spanning 150 sampling dates. We conducted extensive suspect screening of cyanobacterial metabolites using the database CyanoMetDB. Across all 850 samples, 35 metabolites regularly co-occurred. Microcystins were present in 70% of samples, with [d-Asp3,(E)-Dhb7]MC-RR reaching concentrations of 70 ng/L. Anabaenopeptins, meanwhile, were detected in 95% of all samples with concentrations of Oscillamide Y up to 100-fold higher than microcystins. Based on LC-MS response and frequency, we identified indicator metabolites exclusively produced by one of three cyanobacteria isolated from the lake, these being [d-Asp3,(E)-Dhb7]MC-RR from Planktothrix sp. G2020, Microginin 761B from Microcystis sp. G2011, and Ferintoic acid B from Microcystis sp. G2020. These indicators showed distinct temporal trends and peaking seasons that reflect the variance in either the abundance of the producing cyanobacteria or their toxin production dynamics. Our approach demonstrates that selecting high LC-MS response and frequent and species-specific indicator metabolites can be advantageous for cyanobacterial monitoring.
Collapse
Affiliation(s)
- Xuejian Wang
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Simon Wullschleger
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Martin Jones
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Marta Reyes
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Raphael Bossart
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Francesco Pomati
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| | - Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf 8600, Switzerland
| |
Collapse
|
3
|
Ji W, Ma J, Zheng Z, Al-Herrawy AZ, Xie B, Wu D. Algae blooms with resistance in fresh water: Potential interplay between Microcystis and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173528. [PMID: 38802023 DOI: 10.1016/j.scitotenv.2024.173528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Microcystis, a type of cyanobacteria known for producing microcystins (MCs), is experiencing a global increase in blooms. They have been recently recognized as potential contributors to the widespread of antibiotic resistance genes (ARGs). By reviewing approximately 150 pieces of recent studies, a hypothesis has been formulated suggesting that significant fluctuations in MCs concentrations and microbial community structure during Microcystis blooms could influence the dynamics of waterborne ARGs. Among all MCs, microcystin-LR (MC-LR) is the most widely distributed worldwide, notably abundant in reservoirs during summer. MCs inhibit protein phosphatases or increase reactive oxygen species (ROS), inducing oxidative stresses, enhancing membrane permeability, and causing DNA damage. This further enhances selective pressures and horizontal gene transfer (HGT) chances of ARGs. The mechanisms by which Microcystis regulates ARG dissemination have been systematically organized for the first time, focusing on the secretion of MCs and the alterations of bacterial community structure. However, several knowledge gaps remain, particularly concerning how MCs interfere with the electron transport chain and how Microcystis facilitates HGT of ARGs. Concurrently, the predominance of Microcystis forming the algal microbial aggregates is considered a hotspot for preserving and transferring ARGs. Yet, Microcystis can deplete the nutrients from other taxa within these aggregates, thereby reducing the density of ARG-carrying bacteria. Therefore, further studies are needed to explore the 'symbiotic - competitive' relationships between Microcystis and ARG-hosting bacteria under varied nutrient conditions. Addressing these knowledge gaps is crucial to understand the impacts of the algal aggregates on dynamics of waterborne antibiotic resistome, and underscores the need for effective control of Microcystis to curb the spread of antibiotic resistance. Constructed wetlands and photocatalysis represent advantageous strategies for halting the spread of ARGs from the perspective of Microcystis blooms, as they can effectively control Microcystis and MCs while maintaining the stability of aquatic ecosystem.
Collapse
Affiliation(s)
- Wenhui Ji
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Jingkai Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Zhipeng Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Ahmad Z Al-Herrawy
- Water Pollution Research Department, National Research Centre, Giza, Egypt
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
4
|
Li H, Kang S, Gu X, Yang H, Chen H, Mao Z, Zeng Q, Chen Y, Wang W, Gong C. The toxicological effects of life-cycle exposure to harmful benthic cyanobacteria Oscillatoria on zebrafish growth and reproduction: A comparative study with planktonic Microcystis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169302. [PMID: 38104816 DOI: 10.1016/j.scitotenv.2023.169302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The risks of planktonic cyanobacteria blooms have been the focus of much scientific research, but studies on the ecotoxicological effects of benthic cyanobacteria are lagging. The impacts of cyanobacteria cells on fish populations might be more complex in contrast to purified cyanotoxins or cyanobacteria extracts. This study systematically compared the chronic effects of benthic Oscillatoria sp. (producing cylindrospermopsins) and planktonic Microcystis aeruginosa (producing microcystins) on the growth and reproduction of zebrafish through life-cycle exposure (5- 90 days post fertilization). The results showed that both Oscillatoria sp. and M. aeruginosa exposure caused growth inhibition and fecundity reduction in F0 generation by disrupting sex hormone levels, delayed ovarian and sperm development, and induced pathological lesions in zebrafish gonads. Furthermore, exposure to Oscillatoria sp. or M. aeruginosa in adult zebrafish increased mortality and teratogenicity in F1 embryos (without exposure), indicating a parental transmission effect of developmental toxicity. The difference was that M. aeruginosa exposure led to significant alterations in pathways, such as tissue development, redox processes, and steroid hormone synthesis. In contrast, Oscillatoria sp. exposure primarily disrupted the PPAR signaling pathway, cell adhesion molecules, and lipid transport pathways. Interestingly, the differentially expressed genes revealed that male fish were more sensitive to harmful cyanobacteria than females, whether exposed to Oscillatoria sp. or M. aeruginosa. These findings contribute to a better mechanistic understanding of the chronic toxic effects of distinct types of harmful cyanobacteria, suggesting that the ecological risk of benthic cyanobacteria requires further attention.
Collapse
Affiliation(s)
- Hongmin Li
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Siqi Kang
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanfeng Chen
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| | - Wenxia Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Linyi University, Linyi, Shandong 276000, China
| | - Chen Gong
- School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
| |
Collapse
|
5
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|