1
|
Chou LT, Lin YP, Yu CH, Ye JF, Hou WC, Hsiao TC. Real-time assessment of PM 1.0-bound trace metal cancer risk through high-resolution GED-ICP-MS and integrated ELCR analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138711. [PMID: 40424813 DOI: 10.1016/j.jhazmat.2025.138711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
This study employed a gas exchange device coupled with inductively coupled plasma mass spectrometry (GED-ICP-MS) for high-resolution analysis of trace metals in PM1.0 within an urban area. The system was validated against conventional filter-based measurements (R2=0.57-0.97) and effectively captured diurnal variations and episodic events typically overlooked by traditional sampling. Through positive matrix factorization (PMF), we identified six distinct sources by integrating trace metal concentrations and particle size distribution (PSD). By combining temporal slope factors of mixtures (SFm) with lung deposited surface area (LDSA), we provided insights into source-specific health risks. The average traffic-related SFm (7.5 ×10-4) was comparable to other traffic sites, though values increased significantly (1.0 ×10-3) during evening rush hours. These findings revealed that vehicle-emitted metals were predominantly in the PM1.0 size range, indicating that traditional PM10-based health risk assessments may underestimate their impact. The observed lack of correlation between LDSA and SFm emphasizes that comprehensive health risk assessment requires both PSD and toxicity measurements, particularly for particles below 100 nm. The overall excess lifetime cancer risk averaged 2.9 × 10-5, varying between peak (4.0 ×10-5) and off-peak (2.5 ×10-5) traffic periods, remaining within US EPA's acceptable range, while demonstrating the crucial role of trace metals in determining health risks despite their low concentrations.
Collapse
Affiliation(s)
- Li-Ti Chou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Jun-Fa Ye
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Xu J, Ganji A, Saeedi M, Jeong CH, Su Y, Munoz T, Lloyd M, Weichenthal S, Evans G, Hatzopoulou M. Unveiling the Impact of Wildfires on Nanoparticle Characteristics and Exposure Disparities through Mobile and Fixed-Site Monitoring in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5621-5635. [PMID: 40070205 DOI: 10.1021/acs.est.4c08675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study investigates the impacts of wildfires on nanoparticle characteristics and exposure disparities in Toronto, integrating data from a large-scale mobile monitoring campaign and fixed-site measurements during the unprecedented 2023 wildfire season. Our results reveal changes in particle characteristics during wildfire days, with particle number concentrations decreasing by 60% and particle diameter increasing by 30% compared to nonwildfire days. Moreover, the median lung deposited surface area (LDSA) levels rose by 31% during wildfire events. We employed gradient boosting models to estimate near-road LDSA levels on both wildfire and nonwildfire days. The LDSA ratio (wildfire/nonwildfire) exceeded 2.0 in certain areas along highways and in downtown Toronto. Furthermore, our findings show that marginalized communities faced greater LDSA increases than less marginalized ones. Under wildfire conditions, the LDSA ratio difference between the most and least marginalized groups was 16% for recent immigrants and visible minorities and 7% for seniors and children, both statistically significant. This study delivers critical insights into the spatiotemporal variations of nanoparticle characteristics during wildfire and nonwildfire periods, demonstrating the substantial health risks posed by increased LDSA levels and the inequitable distribution of these risks among Toronto's diverse population.
Collapse
Affiliation(s)
- Junshi Xu
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Arman Ganji
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Milad Saeedi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| | - Cheol-Heon Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Yushan Su
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke M9P 3 V6 Ontario, Canada
| | - Tony Munoz
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke M9P 3 V6 Ontario, Canada
| | - Marshall Lloyd
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1 Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1 Quebec, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S 1A4 Ontario, Canada
| |
Collapse
|
3
|
Alramzi Y, Aghaei Y, Badami MM, Aldekheel M, Tohidi R, Sioutas C. Urban emissions of fine and ultrafine particulate matter in Los Angeles: Sources and variations in lung-deposited surface area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125651. [PMID: 39788181 PMCID: PMC11813679 DOI: 10.1016/j.envpol.2025.125651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Airborne particulate matter (PM) in urban environments poses significant health risks by penetrating the respiratory system, with concern over lung-deposited surface area (LDSA) as an indicator of particle exposure. This study aimed to investigate the diurnal trends and sources of LDSA, particle number concentration (PNC), elemental carbon (EC), and organic carbon (OC) concentrations in Los Angeles across different seasons to provide a comprehensive understanding of the contributions from primary and secondary sources of ultrafine particles (UFPs). Hourly measurements of PNC and LDSA were conducted using the DiSCmini and Scanning Mobility Particle Sizer (SMPS), while OC and EC concentrations were measured using the Sunset Lab EC/OC Monitor. The results showed distinct diurnal trends in PNC and EC, with peaks occurring in the early morning and evening, which were consistent with periods of increased traffic volume. During warmer periods, a midday increase in PNC was observed, attributed to photochemical reactions. In contrast, a nighttime peak during colder months suggested the formation of secondary aerosols through aqueous-phase chemistry. Additionally, the DiSCmini consistently reported higher LDSA values than SMPS, indicating the presence of irregularly shaped UFPs, particularly during periods of heavy traffic flow. Positive Matrix Factorization (PMF) analysis identified three primary sources. Factor 1 (photochemically influenced processes), driven by secondary organic aerosol formation during warmer periods, contributed to 19% of LDSA. Factor 2, in which primarily traffic influenced emissions were the dominant contributor, accounting for 70% of LDSA and associated with high loadings of OC (61%), EC (78%), and NOx (94%). Factor 3 (aqueous phase secondary process influenced emissions) during colder months, accounted for 11% of LDSA. Both Factor 1 and 3 sources exhibited comparable contributions of OC4 (52% and 48%, respectively), underscoring their roles in secondary aerosol formation. These findings emphasize the need to address both primary and secondary emissions to mitigate health risks associated with UFP exposure.
Collapse
Affiliation(s)
- Yousef Alramzi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Yashar Aghaei
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad Aldekheel
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat, 13060, Kuwait
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lin TC, Chiueh PT, Hsiao TC. Challenges in Observation of Ultrafine Particles: Addressing Estimation Miscalculations and the Necessity of Temporal Trends. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:565-577. [PMID: 39670560 PMCID: PMC11741106 DOI: 10.1021/acs.est.4c07460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Ultrafine particles (UFPs) pose a significant health risk, making comprehensive assessment essential. The influence of emission sources on particle concentrations is not only constrained by meteorological conditions but often intertwined with them, making it challenging to separate these effects. This study utilized valuable long-term particle number and size distribution (PNSD) data from 2018 to 2023 to develop a tree-based machine learning model enhanced with an interpretable component, incorporating temporal markers to characterize background or time series residuals. Our results demonstrated that, differing from PM2.5, which is significantly shaped by planetary boundary layer height, wind speed plays a crucial role in determining the particle number concentration (PNC), showing strong regional specificity. Furthermore, we systematically identified and analyzed anthropogenically influenced periodic trends. Notably, while Aitken mode observations are initially linked to traffic-related peaks, both Aitken and nucleation modes contribute to concentration peaks during rush hour periods on short-term impacts after deweather adjustment. Pollutant baseline concentrations are largely driven by human activities, with meteorological factors modulating their variability, and the secondary formation of UFPs is likely reflected in temporal residuals. This study provides a flexible framework for isolating meteorological effects, allowing more accurate assessment of anthropogenic impacts and targeted management strategies for UFP and PNC.
Collapse
Affiliation(s)
- Tzu-Chi Lin
- Graduate
Institute of Environmental Engineering, College of Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan
| | - Pei-Te Chiueh
- Graduate
Institute of Environmental Engineering, College of Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan
| | - Ta-Chih Hsiao
- Graduate
Institute of Environmental Engineering, College of Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan
- Research
Center for Environmental Changes, Academia
Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Chang KE, Lin TH, Hsiao TC, Chang YL, Lin TC, Chan CY, Chou CCK. Quantifying the effects of the microphysical hygroscopic restructuring of soot on ensemble optical properties and satellite aerosol optical depth retrievals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177821. [PMID: 39626418 DOI: 10.1016/j.scitotenv.2024.177821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Black carbon, or soot, significantly contributes to atmospheric light absorption due to its low single scattering albedo (SSA). This study investigates the impact of soot's hygroscopic restructuring on satellite remote sensing, focusing on radiative forcing, top-of-atmosphere (TOA) reflectance, and aerosol optical depth (AOD) retrievals. We characterized soot aging using relative humidity (RH) growth factor functions and modeled fresh and aging soot aggregates using a cluster-cluster aggregation algorithm. Bulk optical properties for each RH level were simulated using core-mantle generalized multi-sphere Mie-solution, weighted by the probability density function of soot monomer numbers. We incorporated soot aging models into the 6S radiative transfer model by adjusting the geometric mean radius of the soot component to match bulk SSA values at each aging degree. Extensive radiative transfer simulations were conducted, complemented by an analysis of 16 actual soot-containing cases in China from 2016 to 2019. Results showed that identical soot loads correspond to lower reflectance in dry environments and higher reflectance in humid environments. MODIS AOD retrieval errors approached zero when RH was close to 70 %, likely due to the similarity between the 6S default soot and the aging model at this humidity. Neglecting RH led to overestimations in AOD for cases with RH < 65 % and underestimations in high humidity cases (RH > 75 %). The average MODIS AOD retrieval errors for RH < 65 %, RH between 65 % and 75 %, and RH > 75 % were -33.15 %, -1.80 %, and +42.42 %, respectively. This study underscores the necessity of incorporating RH into satellite AOD retrieval algorithms to enhance accuracy and reduce uncertainties.
Collapse
Affiliation(s)
- Kuo-En Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Tang-Huang Lin
- Center for Space and Remote Sensing Research, National Central University, Taoyuan, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Yi-Ling Chang
- Center for Space and Remote Sensing Research, National Central University, Taoyuan, Taiwan
| | - Tzu-Chi Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Chan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Bousiotis D, Damayanti S, Baruah A, Bigi A, Beddows DCS, Harrison RM, Pope FD. Pinpointing sources of pollution using citizen science and hyperlocal low-cost mobile source apportionment. ENVIRONMENT INTERNATIONAL 2024; 193:109069. [PMID: 39423579 DOI: 10.1016/j.envint.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Currently, methodologies for the identification and apportionment of air pollution sources are not widely applied due to their high cost. We present a new approach, combining mobile measurements from multiple sensors collected from the daily walks of citizen scientists, in a high population density area of Birmingham, UK. The methodology successfully pinpoints the different sources affecting the local air quality in the area using only a handful of measurements. It was found that regional sources of pollution were mostly responsible for the PM2.5 and PM1 concentrations. In contrast, PM10 was mostly associated with local sources. The total particle number and the lung deposited surface area of PM were almost solely associated with traffic, while black carbon was associated with both the sources from the urban background and local traffic. Our analysis showed that while the effect of the hyperlocal sources, such as emissions from construction works or traffic, do not exceed the distance of a couple of hundred meters, they can influence the health of thousands of people in densely populated areas. Thus, using this novel approach we illustrate the limitations of the present measurement network paradigm and offer an alternative and versatile approach to understanding the hyperlocal factors that affect urban air quality. Mobile monitoring by citizen scientists is shown to have huge potential to enhance spatiotemporal resolution of air quality data without the need of extensive and expensive campaigns.
Collapse
Affiliation(s)
- Dimitrios Bousiotis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Seny Damayanti
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Arunik Baruah
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, 41125, Italy; University School of Advanced Studies IUSS Pavia, Palazzo Del Brotello, Pavia, 27100, Italy
| | - Alessandro Bigi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - David C S Beddows
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roy M Harrison
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Panizzolo M, Barbero F, Ghelli F, Garzaro G, Bellisario V, Guseva Canu I, Fenoglio I, Bergamaschi E, Bono R. Assessing the inhaled dose of nanomaterials by nanoparticle tracking analysis (NTA) of exhaled breath condensate (EBC) and its relationship with lung inflammatory biomarkers. CHEMOSPHERE 2024; 358:142139. [PMID: 38688349 DOI: 10.1016/j.chemosphere.2024.142139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1β, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics. University of Torino, Italy
| | | | - Federica Ghelli
- Department of Public Health and Pediatrics. University of Torino, Italy.
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics. University of Torino, Italy
| | | | - Irina Guseva Canu
- Department of Occupational and Environmental Health, UniSanté, Lausanne, Switzerland
| | | | | | - Roberto Bono
- Department of Public Health and Pediatrics. University of Torino, Italy
| |
Collapse
|
8
|
Zhang Z, Man H, Zhao J, Huang W, Huang C, Jing S, Luo Z, Zhao X, Chen D, He K, Liu H. VOC and IVOC emission features and inventory of motorcycles in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133928. [PMID: 38447368 DOI: 10.1016/j.jhazmat.2024.133928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
How did the motorcycle emissions evolve during the economic development in China? To address data gaps, this study firstly measured the volatile organic compound (VOC) and intermediate-volatility organic compound (IVOC) emissions from motorcycles. The results confirmed that the emission control of motorcycles, especially small-displacement motorcycles, significantly lagged behind other gasoline-powered vehicles. For the China IV motorcycles, the average VOC and IVOC emission factors (EFs) were 2.74 and 7.78 times higher than the China V-VI light-duty gasoline vehicles, respectively. The notable high IVOC emissions were attributed to a dual influence from gasoline and lubricating oil. Furthermore, based on the complete EF dataset and economy-related activity data, a county-level emission inventory was developed in China. Motorcycle VOC and IVOC emissions changed from 2536.48 Gg and 197.19 Gg in 2006 to 594.21 Gg and 12.66 Gg in 2020, respectively. The absence of motorcycle IVOC emissions in the existed vehicular inventories led to an underestimation of up to 20%. Across the 15 years, the motorcycle VOC and IVOC emission hotspots were concentrated in the undeveloped regions, with the rural emissions reaching 5.81-10.14 times those of the urban emissions. This study provides the first-hand and close-to-realistic data to support motorcycle emission management and accurate air quality simulations.
Collapse
Affiliation(s)
- Zhining Zhang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanyang Man
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Junchao Zhao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wendong Huang
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd, Shanghai 201805, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhenyu Luo
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinyue Zhao
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dawei Chen
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kebin He
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Jashim ZB, Shahrukh S, Hossain SA, Jahan-E-Gulshan, Huda MN, Islam MM, Hossain ME. Biomonitoring potentially toxic elements in atmospheric particulate matter of greater Dhaka region using leaves of higher plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:468. [PMID: 38656463 DOI: 10.1007/s10661-024-12612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.
Collapse
Affiliation(s)
- Zuairia Binte Jashim
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahid Akhtar Hossain
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Jahan-E-Gulshan
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
10
|
Liu J, Ma F, Chen TL, Jiang D, Du M, Zhang X, Feng X, Wang Q, Cao J, Wang J. High-time resolution PM 2.5 source apportionment assisted by spectrum-based characteristics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169055. [PMID: 38056663 DOI: 10.1016/j.scitotenv.2023.169055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Characteristics extraction and anomaly analysis based on frequency spectrum can provide crucial support for source apportionment of PM2.5 pollution. In this study, an effective source apportionment framework combining the Fast Fourier Transform (FFT)- and Continuous Wavelet Transform (CWT)-based spectral analyses and Positive Matrix Factorization (PMF) receptor model is developed for spectrum characteristics extraction and source contribution assessment. The developed framework is applied to Beijing during the winter heating period with 1-h time resolution. The spectrum characteristics of anomaly frequency, location, duration and intensity of PM2.5 pollution can be captured to gain an in-depth understanding of source-oriented information and provide necessary indicators for reliable PMF source apportionment. The combined analysis demonstrates that the secondary inorganic aerosols make relatively high contributions (50.59 %) to PM2.5 pollution during the winter heating period in Beijing, followed by biomass burning, vehicle emission, coal combustion, road dust, industrial process and firework emission sources accounting for 15.01 %, 11.00 %, 10.70 %, 5.31 %, 3.88 %, and 3.51 %, respectively. The source apportionment result suggests that combining frequency spectrum characteristics with source apportionment can provide consistent rationales for understanding the temporal evolution of PM2.5 pollution, identifying the potential source types and quantifying the related contributions.
Collapse
Affiliation(s)
- Jie Liu
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Institute of Environmental Engineering (IfU), ETH Zürich, 8093 Zürich, Switzerland
| | - Fangjingxin Ma
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Tse-Lun Chen
- Institute of Environmental Engineering (IfU), ETH Zürich, 8093 Zürich, Switzerland; Laboratories of Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dexun Jiang
- School of Information Engineering, Harbin University, Harbin 150086, China; Institute of Environmental Engineering (IfU), ETH Zürich, 8093 Zürich, Switzerland
| | - Meng Du
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xiaole Zhang
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Feng
- Institute of Environmental Engineering (IfU), ETH Zürich, 8093 Zürich, Switzerland; Laboratories of Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, 8093 Zürich, Switzerland; Laboratories of Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
11
|
Liu X, Hadiatullah H, Zhang X, Trechera P, Savadkoohi M, Garcia-Marlès M, Reche C, Pérez N, Beddows DCS, Salma I, Thén W, Kalkavouras P, Mihalopoulos N, Hueglin C, Green DC, Tremper AH, Chazeau B, Gille G, Marchand N, Niemi JV, Manninen HE, Portin H, Zikova N, Ondracek J, Norman M, Gerwig H, Bastian S, Merkel M, Weinhold K, Casans A, Casquero-Vera JA, Gómez-Moreno FJ, Artíñano B, Gini M, Diapouli E, Crumeyrolle S, Riffault V, Petit JE, Favez O, Putaud JP, Santos SMD, Timonen H, Aalto PP, Hussein T, Lampilahti J, Hopke PK, Wiedensohler A, Harrison RM, Petäjä T, Pandolfi M, Alastuey A, Querol X. Ambient air particulate total lung deposited surface area (LDSA) levels in urban Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165466. [PMID: 37451445 DOI: 10.1016/j.scitotenv.2023.165466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.
Collapse
Affiliation(s)
- Xiansheng Liu
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | | | - Xun Zhang
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, China; Hotan Normal College. Hotan 848000, Xinjiang, China.
| | - Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), 08242 Manresa, Spain
| | - Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Wanda Thén
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Panayiotis Kalkavouras
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Duebendorf, Switzerland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK
| | - Benjamin Chazeau
- Aix Marseille Univ., CNRS, LCE, Marseille, France; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Grégory Gille
- AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Côte-d'Azur, Marseille, France
| | | | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Harri Portin
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Nadezda Zikova
- Institute of Chemical Process Fundamentals, v.v.i. Academy of Sciences of the Czech Republic Rozvojova, Prague, Czech Republic
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals, v.v.i. Academy of Sciences of the Czech Republic Rozvojova, Prague, Czech Republic
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Holger Gerwig
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - Juan Andrés Casquero-Vera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | | | - Maria Gini
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Suzanne Crumeyrolle
- Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000, Lille, France
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | - Olivier Favez
- Institut national de l'environnement industriel et des risques (INERIS), Parc Technologique Alata BP2, Verneuil-en-Halatte, France
| | | | | | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Pasi P Aalto
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tareq Hussein
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland; Environmental and Atmospheric Research Laboratory, Department of Physics, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tuukka Petäjä
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
12
|
Ting YC, Chang PK, Hung PC, Chou CCK, Chi KH, Hsiao TC. Characterizing emission factors and oxidative potential of motorcycle emissions in a real-world tunnel environment. ENVIRONMENTAL RESEARCH 2023; 234:116601. [PMID: 37429395 DOI: 10.1016/j.envres.2023.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Transportation emissions significantly affect human health, air quality, and climate in urban areas. This study conducted experiments in an urban tunnel in Taipei, Taiwan, to characterize vehicle emissions under real driving conditions, providing emission factors of PM2.5, eBC, CO, and CO2. By applying multiple linear regression, it derives individual emission factors for heavy-duty vehicles (HDVs), light-duty vehicles (LDVs), and motorcycles (MCs). Additionally, the oxidative potential using dithiothreitol assay (OPDTT) was established to understand PM2.5 toxicity. Results showed HDVs dominated PM2.5 and eBC concentrations, while LDVs and MCs influenced CO and CO2 levels. The CO emission factor for transportation inside the tunnel was found to be higher than those in previous studies, likely owing to the increased fraction of MCs, which generally emit higher CO levels. Among the three vehicle types, HDVs exhibited the highest PM2.5 and eBC emission factors, while CO and CO2 levels were relatively higher for LDVs and MCs. The OPDTTm demonstrated that fresh traffic emissions were less toxic than aged aerosols, but higher OPDTTv indicated the impact on human health cannot be ignored. This study updates emission factors for various vehicle types, aiding in accurate assessment of transportation emissions' effects on air quality and human health, and providing a guideline for formulating mitigation strategies.
Collapse
Affiliation(s)
- Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Kai Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Chang Hung
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Kai-Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Colledge of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
13
|
Meng X, Wang Y, Wang T, Jiao B, Shao H, Jia Q, Duan H. Particulate Matter and Its Components Induce Alteration on the T-Cell Response: A Population Biomarker Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:375-384. [PMID: 36537917 DOI: 10.1021/acs.est.2c04347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with the T-cell potential of particulate matter (PM) in animal studies, comprehensive evaluation on the impairments of T-cell response and exposure-response from PM and its components in human population is limited. There were 768 participants in this study. We measured environmental PM and its polycyclic aromatic hydrocarbons (PAHs) and metals and urinary metabolite levels of PAHs and metals among population. T lymphocyte and its subpopulation (CD4+ T cells and CD8+ T cells) and the expressions of T-bet, GATA3, RORγt, and FoxP3 were measured. We explored the exposure-response of PM compositions by principal component analysis and mode of action by mediation analysis. There was a significant decreasing trend for T lymphocytes and the levels of T-bet and GATA3 with increased PM levels. Generally, there was a negative correlation between PM, urinary 1-hydroxypyrene, urinary metals, and the levels of T-bet and GATA3 expression. Additionally, CD4+ T lymphocytes were found to mediate the associations of PM2.5 with T-bet expression. PM and its bound PAHs and metals could induce immune impairments by altering the T lymphocytes and genes of T-bet and GATA3.
Collapse
Affiliation(s)
- Xiangjing Meng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Qiang Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
14
|
Gonzalez A, Boies A, Swanson J, Kittelson D. Measuring the effect of fireworks on air quality in Minneapolis, Minnesota. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05023-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
Air quality was measured before, during, and after a 4th of July fireworks display in downtown Minneapolis, Minnesota using a mix of low-cost sensors (CO, CO2, and NO) for gases and portable moderate cost instruments for particle measurements (PM2.5, lung deposited surface area, and number weighted particle size distributions). Meteorological conditions—temperature, humidity, and vertical temperature profile were also monitored. Concentrations of particles and most gaseous species peak between 10 pm and midnight on July 4th, decrease in the middle of the night but increase again and by between 6 and 7 am reach concentrations as high or higher than during fireworks. This overnight increase is likely due to a temperature inversion trapping emissions. Between 10 pm and midnight on July 4th the measures of particle concentration increase by 180–600% compared to the same period on July 3rd. Particle size distributions are strongly influenced by fireworks, shifting from traffic-like bimodal distributions before to a nearly unimodal distribution dominated by a large accumulation mode during and after. The shape of the size distribution measured during the early morning peak is nearly identical to that observed during fireworks, suggesting that the early morning peak is mainly due to trapped fireworks emissions not early morning traffic. Gaseous species are less strongly influenced by fireworks than particles. Comparing measurements made between 10 pm and midnight on July 4th and the same period on July 3rd, the concentration of CO increases 32% while the CO2 increases only 2% but increases by another 15% overnight. The NO concentration behaves oddly, decreasing during fireworks, but then recovering the next morning, more than doubling overnight. Our measurements of CO, NO, and PM2.5 are compared with those made at the nearest (~ 2 km away) Minnesota Pollution Control Agency Air Monitoring Station. Their NO results are quite different from ours with much lower concentrations before fireworks, a distinct peak during, followed by a strong overnight increase and an early morning peak somewhat similar in shape and concentration to ours. These differences are likely due mainly to malfunction of our low-cost NO sensor. Concentrations of CO and PM2.5 track ours within 25% but peak shapes are somewhat different, which is not unexpected given the spatial separation of the measurements.
Article highlights
Low-cost and moderate-cost sensors are used to monitor the impact of a 4th of July fireworks display on local air quality.
Particle concentrations and size are more strongly influenced by fireworks than are concentrations gaseous pollutants.
Particle size distributions produced by fireworks are distinctly different from those associated with urban traffic sources.
Collapse
|