1
|
Liu Q, Wang Z, Chang T, Wang T, Wang Y, Zhao Z, Li M, Liu J. Insight into enhanced tetracycline photodegradation by hematite/biochar composites: Roles of charge transfer, biochar-derived dissolved organic matter and persistent free radicals. BIORESOURCE TECHNOLOGY 2025; 420:132118. [PMID: 39870140 DOI: 10.1016/j.biortech.2025.132118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The kinit of TC removal with Hem/BC-5 reached 0.103 min-1, 3.8 and 6.1 times faster than those with hematite and biochar, attributed to boosting free radicals. The enhanced light absorption and charge transfer helped generate more H2O2 and •OH through 2e- oxygen reduction and direct valence band (VB) oxidation. Persistent free radicals (PFRs) on biochar helped generate H2O2. Biochar as electron shutter facilitated Fe3+/Fe2+ redox cycling and triggered more efficient photo-Fenton reaction. Biochar-derived dissolved organic matter (DOM) helped generate 3DOM*, a reactive intermediate to produce H2O2, •OH, and 1O2. Hem/BC composites have excellent photoactivity for the degradation of TC in different water matrixes under visible light irradiation. The degradation pathway was proposed based on theoretical calculation and detected degradation intermediates. These findings contribute to the development of biochar-based catalysts for organic pollutants removal.
Collapse
Affiliation(s)
- Qian Liu
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Zhuoyue Wang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Ting Chang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Tingxin Wang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Yafeng Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, China
| | - Zhilei Zhao
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Meifeng Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G2R3, Canada
| | - Jue Liu
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Guo Q, Xu Z, Chu W, Zhang J, Qi H, Lu C, Wang X. Unraveling the synergistic mechanisms of coagulation combined with oxidation for the treatment of sewer overflow: The interaction between iron species and NaClO. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135871. [PMID: 39293168 DOI: 10.1016/j.jhazmat.2024.135871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
During wet weather, sewer overflow pollution can pose a serious threat to surface water. In order to reduce the impact of overflow discharge on receiving waters, ferric chloride (Fe(Ⅲ))/potassium ferrate (Fe(Ⅵ))/polyacrylamide (PAM) coagulation (Fe(Ⅲ)/Fe(Ⅵ)/PAM) combined with sodium hypochlorite (NaClO) oxidation was proposed. Different combinations were constructed, including pre-oxidation coagulation (NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM), pre-coagulation oxidation (Fe(Ⅲ)/Fe(Ⅵ)/PAM-NaClO), and synchronous coagulation oxidation (NaClO+Fe(Ⅲ)/Fe(Ⅵ)/PAM). The combined processes achieved efficient removal of conventional contaminants, and the produced byproducts were controlled, especially in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM. The obvious discrepancy in the sulfamethoxazole (SMX) removal was observed in different processes. NaClO affected the distribution of hydrolyzed iron species, and the proportion of active iron in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM significantly increased. More complexation sites were generated in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM, which can complex with the coagulant and then effectively transfer to the flocs. The composition of the flocs further confirmed the differences in coagulation characteristics. The generated·OH played a crucial role in SMX removal in the NaClO+Fe(Ⅲ)/Fe(Ⅵ)/PAM, and ClO·was responsible for partial removal of ammonia nitrogen (NH4+-N). The contribution of high-valent iron species was confirmed, and the introduction of NaClO promoted the generation of iron species. This study may provide an ideal for overflow treatment to improve the urban water environment.
Collapse
Affiliation(s)
- Qian Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haiyue Qi
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Gao Y, Chen Q, Shen X, Yao S, Jiang Z, Ma S, Yang H, Li J, Lin Z, Liu X. UiO-66(Zr)-2OH-Supported Pd 0 NP Catalysts Accelerated a Fenton-Like Reaction: Iron Cycling and Hydrogen Peroxide Generation Achieved Simultaneously. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62171-62184. [PMID: 39472458 DOI: 10.1021/acsami.4c13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Both the sluggish kinetics of Fe(II) regeneration and usage restriction of H2O2 have severely hindered the scientific progress of the Fenton reaction toward practical applications. Herein, a reduction strategy of activated hydrogen, which was used to simultaneously generate H2O2 and accelerate the regeneration of ferrous in a Fenton-like reaction based on the reduction of activated hydrogen derived from H2, was proposed. Two types of composite catalysts, namely, Pd/UiO-66(Zr)-2OH and Pd@UiO-66(Zr)-2OH, were successfully prepared by loading nano-Pd particles onto the outer and inner pores of UiO-66(Zr)-2OH in different loading modes, respectively. They were used to enhance the reduction of activated hydrogen. The characterization results based on the analysis of scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that the materials were successfully prepared. By using a trace amount of ferrous iron and without adding H2O2, trimethoprim (C0 = 20 mg·L-1), as a target pollutant, could be nearly 100% degraded within 180 min in the reaction system composed of these two materials. The cycle of iron and the self-generation of H2O2 were verified by the detection of ferrous H2O2 in the system. Density functional theory calculation results further confirmed that the pore-filled Pd0 NPs, as the main catalytic site for Pd@UiO-66(Zr)-2OH, could produce H2O2 under the combined action of hydrogen and oxygen. The Pd@UiO-66(Zr)-2OH system had excellent stability after multiple applications (at least 6 cycles), all of which resulted in 100% removal of trimethoprim. The degradation efficiency of the Pd/UiO-66(Zr)-2OH system for TMP gradually decreased from 97 to 80% after six cycles. The results of electron paramagnetic resonance combined with classical radical burst experiments revealed the degradation pathways in the reaction system with hydroxyl radicals and singlet oxygen as the main reactive oxygen particles.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Qinqin Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Xinhao Shen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Shuang Yao
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Zhiwen Jiang
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Sanjian Ma
- Suzhou Kete Environmental Protection Co., Ltd., Suzhou 215156, Jiangsu, China
| | - Hailiang Yang
- Suzhou Kete Environmental Protection Co., Ltd., Suzhou 215156, Jiangsu, China
| | - Juanhong Li
- Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| |
Collapse
|
4
|
Bai C, Zhang Y, Liu Q, Zhu C, Li J, Chen R. Interfacial complexation between Fe 3+ and Bi 2MoO 6 promote efficient persulfate activation via Fe 3+/Fe 2+ cycle for organic contaminates degradation upon visible light irradiation. J Colloid Interface Sci 2024; 664:238-250. [PMID: 38461790 DOI: 10.1016/j.jcis.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
To address the observed decrease in efficiency during Fe2+-mediated persulfate (PDS) activation caused by slow electron transfer rates and challenges in cycling between Fe3+/Fe2+ states, we devised a strategy to establish interfacial complexation between Fe3+ and Bi2MoO6 in the presence of PDS. The proposed approach facilitates more efficient capture of photogenerated electrons, thereby accelerating the rate-limiting reduction process of the Fe3+/Fe2+ cycle under visible light irradiation and promoting PDS activation. The Bi2MoO6/Fe3+/PDS/Vis system demonstrates complete degradation of organic pollutants, including Atrazine (ATZ), carbamazepine (CBZ), bisphenol A (BPA), and 2,4-dichlorophenol (DCP) at a concentration of 10 mg/L within a rapid reaction time of 30 min. Radical scavenging experiments and electron paramagnetic resonance spectra (EPR) confirm that the sulfate radical (•SO4-) is the dominant species responsible for organic contaminant degradation. The real-time conversion process between Fe3+ and Fe2+ was monitored by observing changes in iron species forms and concentrations within the reaction system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy verify the formation of a complexation between Fe3+ and Bi2MoO6, facilitating anchoring of Fe3+ onto material surface. Based on these findings, we propose a reliable mechanism for the activation reaction. This work presents a promising heterogeneous PDS activation method based on Fe3+/Fe2+ cycle for water treatment.
Collapse
Affiliation(s)
- Chengbo Bai
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yuhan Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Qiong Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Chengxin Zhu
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Rong Chen
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China.
| |
Collapse
|
5
|
Nie C, Hou Y, Liu F, Dong Q, Li Z, Han P, Tong M. Efficient peroxymonosulfate activation by magnetic MoS 2@Fe 3O 4 for rapid degradation of free DNA bases and antibiotic resistance genes. WATER RESEARCH 2023; 239:120026. [PMID: 37182307 DOI: 10.1016/j.watres.2023.120026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have become as emerging contaminant with great concerns worldwide due to their threats to human health. It is thus urgent to develop techniques to degrade ARGs in water. In this study, MoS2@Fe3O4 (MF) particles were fabricated and used to activate peroxymonosulfate (PMS) for the degradation of four types of free DNA bases (T, A, C, and G, major components of ARGs) and ARGs. We found that MF/PMS system could effectively degrade all four DNA bases (T within 10 min, A within 30 min, C within 5 min, and G within 5 min) in very short time. During the reaction process, MF could activate PMS to form the reactive radicals such as ·OH, SO4·-, O2·-, and 1O2, contributing to the degradation of DNA bases. Due to the low adsorption energy, high charge transfer, and great capability for PMS cleavage, MF exhibited excellent PMS adsorption and activation performances. MoS2 in MF could enhance the cycle of Fe(III)/Fe(II), improving the catalytic performance. Excellent catalytic performances of MF/PMS system were achieved in complex water matrix (including different solution pH, coexisting of anions and natural organic matter) as well as in real water samples (including tap water, river water, sea water, and sewage) especially under high salinity conditions due to the generation of Cl· radicals and HClO species. MF/PMS system could also efficiently degrade ARGs (chromosomal kanR and plasmid gmrA) and DNA extracted from antibiotic resistant bacteria (ARB) in super-short time. Moreover, complete disinfection of two types of model ARB (E. coli K-12 MG 1655 and E. coli S17-1) could also be achieved in MF/PMS system. The high degradation performances of MF/PMS system achieved in the reused experiments and the 14-day continuous flow reactor experiments indicated the stability of MF particles. Due to the magnetic property, it would be convenient to separate MF particles from water after use via using magnet, facilitating their reuse of MF and avoiding potential water contamination by catalysts. Overall, this study not only provided a deep insight on Fe/Mo-triggered PMS activation process, but also provided an effective and reliable approach for the treatment of DNA bases, ARGs, DNA, and ARB in water.
Collapse
Affiliation(s)
- Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
6
|
Cai Z, Lei S, Hu Y, Chen Y, Shen M, Lei M. Iron doped BiOBr loaded on carbon spheres for improved visible-light-driven detoxification of 2-chloroethyl sulfide. Dalton Trans 2023; 52:3040-3051. [PMID: 36779551 DOI: 10.1039/d2dt03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, flower-like porous iron doped bismuth oxybromide on porous activated carbon visible light catalysts (BiOBr/Fe@AC) were prepared by a reactive imidazole ionic liquid surfactant assisted solvothermal process. The morphologies, structures, optical properties and photocatalytic properties were investigated in detail. The morphology of the synthesized Fe doped BiOBr composites gradually changed from a regular spherical shape to a non-specific shape with the increase of the alkyl chain length of the ionic liquid surfactants. The photocurrent of BiOBr/Fe@AC composites is greatly influenced by the content of Fe, the type of carbon sphere and the size of the composites. The photocatalytic activity of the obtained BiOBr/Fe@AC composites was evaluated by the degradation of 2-chloroethyl sulfide (CEES) under visible light. The BiOBr/Fe@AC composites exhibited significantly enhanced photocatalytic performance compared to that of pure BiOBr and the 10.0% Fe doped BiOBr/Fe@AC composite displayed the highest photocatalytic activity. The main active species were determined to be holes and superoxide radicals by electron spin resonance (ESR) analysis and free radical trapping experiments. The introduction of iron can improve the separation and transfer rate of photoinduced charges. Carbon spheres can enhance light harvesting, improve electron transfer and increase the number of catalytic active sites. Iron and carbon embellishment is an effective strategy to enhance the photocatalytic efficiency of BiOBr. Finally, a possible photocatalytic mechanism of BiOBr/Fe@AC has been proposed.
Collapse
Affiliation(s)
- Zixian Cai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China. .,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Shaoan Lei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yimin Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Ming Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Meiling Lei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China.
| |
Collapse
|
7
|
Application of BiOX Photocatalyst to Activate Peroxydisulfate Ion-Investigation of a Combined Process for the Removal of Organic Pollutants from Water. Catalysts 2023. [DOI: 10.3390/catal13030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The persulfate-based advanced oxidation processes employing heterogeneous photocatalysts to generate sulfate radicals (SO4•−) from peroxydisulfate ion (PDS, S2O82−) have been extensively investigated to remove organic pollutants. In this work, BiOX (X = Cl, Br, and I) photocatalysts were investigated to activate PDS and enhance the transformation rate of various organic substances under UV (398 nm) and Vis (400–700 nm) radiation. For BiOCl and BiOBr, in addition to excitability, the light-induced oxygen vacancies are decisive in the activity. Although without organic substances, the BiOI efficiency highly exceeds that of BiOBr and BiOCl for PDS activation (for BiOI, 15–20%, while for BiOBr and BiOCl, only 3–4% of the PDS transformed); each BiOX catalyst showed enhanced activity for 1,4-hydroquinone (HQ) transformation due to the semiquinone radical-initiated PDS activation. For sulfamethoxypyridazine (SMP), the transformation is driven by direct charge transfer, and the effect of PDS was less manifested. BiOI proved efficient for transforming various organic substances even under Vis radiation. The efficiency was enhanced by PDS addition (HQ is wholly transformed within 20 min, and SMP conversion increased from 40% to 90%) without damaging the catalyst; its activity did change over three consecutive cycles. Results related to the well-adsorbed trimethoprim (TRIM) and application of biologically treated domestic wastewater as a matrix highlighted the limiting factors of the method and visible light active photocatalyst, BiOI.
Collapse
|
8
|
Mao Z, Hao W, Wang W, Ma F, Ma C, Chen S. BiOI@CeO 2@Ti 3C 2 MXene composite S-scheme photocatalyst with excellent bacteriostatic properties. J Colloid Interface Sci 2023; 633:836-850. [PMID: 36495806 DOI: 10.1016/j.jcis.2022.11.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
As an influential antifouling material, photocatalytic materials have drawn attention increasingly over recent years owing to their potential bacteriostatic property in the domain of marine antifouling. Herein, a flower-like BiOI@CeO2@Ti3C2 S-scheme photocatalyst was contrived and prepared by hydrothermal method. The innovative combination of Ti3C2 and narrow band gap semiconductor BiOI was implemented to modify CeO2 and the photocatalytic bacteriostatic mechanism of BiOI@CeO2@Ti3C2 was elucidated. Schottky junction was formed between CeO2 and Ti3C2, and a p-n junction was formed between CeO2 and BiOI. By photoelectrochemical characterization, BCT-10 exhibits the best photoelectrochemical performance of which photogenerated carrier transport can be performed more readily at 10 % CeO2@Ti3C2 addition. 99.76 % and 99.89 % of photocatalytic bacteriostatic efficiency of BCT-10 against Escherichia coli and Staphylococcus aureus were implemented respectively, which were 2.98 and 3.07 times higher than that of pure CeO2. The ternary heterojunction can suppress photogenerated electron-hole complexes more effectively and enhance the photocatalytic bacteriostatic effect of CeO2, which also provided a new concept to the further broadened application of CeO2 in the marine bacteriostatic and antifouling field.
Collapse
Affiliation(s)
- Zhipeng Mao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Wei Hao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| | - Fubin Ma
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao, 266237, P. R. China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000, P. R. China
| | - Chengcheng Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
| |
Collapse
|
9
|
Wang M, Li T, Hou Q, Hao Y, Wang Z. Facile one-step preparation of Co and Ce doped TiO 2 in visible light PMS activation for PAHs degradation. CHEMOSPHERE 2022; 308:136360. [PMID: 36115476 DOI: 10.1016/j.chemosphere.2022.136360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In this work, Co and Ce doped TiO2 (CoCeTi) with low content of Co and Ce was successfully prepared by a facile one-step sol-gel solvothermal process for activating Peroxymonosulfate (PMS) to degrade Polycyclic aromatic hydrocarbons (PAHs). The phenanthrene degradation rate was 98.2% effectively in 15 min by CoCeTi (50.0 mg/L) activation PMS (0.50 mmol/L) under visible light. SO4•-, O2•-, h+ and 1O2 were verified as the dominant reactive species for PAHs degradation. The collective effect of CoCeTi, PMS and visible light irradiation has been discussed. The possible phenanthrene degradation pathway was proposed through intermediates analysis. CoCeTi composed of Co3O4, CeO2 and TiO2 was confirmed. Outstandingly, CoCeTi/PMS/visible light system has very low cobalt (0.036 mg/L) and cerium (0.27 mg/L) leaching. Due to CoCeTi having good activated PMS properties and other excellent characteristics, it has potential application for PAHs or other organic pollutants degradation.
Collapse
Affiliation(s)
- Mingyong Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China
| | - Taiguang Li
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China
| | - Qingzheng Hou
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China
| | - Yongmei Hao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19(A) Yu Quan Road, Beijing, 100049, China.
| | - Zhongming Wang
- Faculty of Science, Beijing University of Chemical Technology, No. 15 of North 3rd Ring East Road, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
10
|
Wang J, Deng J, Du E, Guo H. Reevaluation of radical-induced differentiation in UV-based advanced oxidation processes (UV/hydrogen peroxide, UV/peroxydisulfate, and UV/chlorine) for metronidazole removal: Kinetics, mechanism, toxicity variation, and DFT studies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Liu Y, Zhu Y, Wang Y, Mu B, Wang X, Wang A. Eco-friendly superabsorbent composites based on calcined semicoke and polydimethylourea phosphate: Synthesis, swelling behavior, degradability and their impact on cabbage growth. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|