1
|
Hua P, Huang Q, Wang Z, Jiang S, Gao F, Zhang J, Ying GG. Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach. WATER RESEARCH 2025; 273:123001. [PMID: 39733531 DOI: 10.1016/j.watres.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions. The results showed that the planktonic and suspended particle-associated bacteria in tap water mainly originated from bacteria in the treated water. Protein- and tryptophan-like fluorescence components were identified, illustrating their contribution to DBP formation cannot be ignored. The microbial abundance of Actinobacteria, Bacilli, and Bacteroidia is significantly related to the formation of trihalomethanes, haloacetic acids, and N-nitrosamines. These findings highlight the necessity for prioritizing management policies to control biofilm formation and minimize DBP formation in DWDSs.
Collapse
Affiliation(s)
- Pei Hua
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Qiuyun Huang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhenyu Wang
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Shanshan Jiang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fangzhou Gao
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Guang-Guo Ying
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
2
|
Yan J, Zhang X, Shi X, Wu J, Zhou Z, Tang Y, Bao Z, Luo N, Zhang D, Chen J, Zhang H. Metagenomic insights into the rapid recovery mechanisms of prokaryotic community and spread of antibiotic resistance genes after seawater disinfection. WATER RESEARCH 2025; 271:122887. [PMID: 39637691 DOI: 10.1016/j.watres.2024.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Disinfectants, such as bleaching powder, are widely employed in marine aquaculture worldwide to control the bacterial pathogens and eliminate antibiotic resistance genes (ARGs). Nevertheless, the rapid recovery of prokaryotic community compositions (PCCs) after disinfection may significantly influence the overall efficacy of disinfection. Presently, little is known about the rapid recovery mechanisms of PCCs and its impact on the removal of ARGs in seawater. In this study, 16S rRNA gene sequencing and metagenomic analysis were used to address the above concerns through simulating the disinfection process in aquaculture. The results showed that recovery of PCCs began within 16 h. The underlying mechanisms of the rapid recovery of PCCs were the synergistic interactions between microbes and the residues of disinfection-resistant bacteria (DRB). Disinfection resistance genes (DRGs) related to efflux pump serve as the primary molecular foundation providing DRB to resist disinfection. Among the 78 annotated ARGs, only 10 ARGs exhibited a significant decrease (P < 0.05) after 72 h, implying the ineffective removal of ARGs by bleaching powder. Furthermore, bacterial co-resistance to disinfectants and antibiotics was observed. Genome analysis of two highly resistant DRB from Pseudomonadaceae revealed that both DRB carried 16 DRGs, aiding the recovery of PCCs and the spread of ARGs. These findings provide novel insights in the mechanisms of the rapid recovery of PCCs and bacterial co-resistance to disinfectants and antibiotics, which can be crucial for the management of pathogens and antibiotic resistance in seawater.
Collapse
Affiliation(s)
- Jiaojiao Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Shanghai Treatgut Biotechnology Co., Ltd., Shanghai, 200441, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinxu Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinyong Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jialin Wu
- Ningbo Haiwei Ecological Technology Co., Ltd., Ningbo, 315141, China
| | - Ziang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yawen Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhen Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Nan Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Gao Y, Li J, Wang S, Jia J, Wu F, Yu G. Global inland water greenhouse gas (GHG) geographical patterns and escape mechanisms under different water level. WATER RESEARCH 2025; 269:122808. [PMID: 39571522 DOI: 10.1016/j.watres.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024]
Abstract
Inland water ecosystems are unique, whereby water level changes can lead to variance in greenhouse gas (GHG) emissions. The GHG circulation intensity of inland waterbodies is high, so different water depths affect the temperature sensitivity of greenhouse gases, and have different cooling effects on CO2 storage and warming effects on CH4 emissions, being a typical GHG conversion channel. This study systematically reveals geographical GHG emission patterns from inland waterbodies and GHG impact mechanisms from regional waterbodies. Special emphasis is also paid to compounded environmental impact changes on GHG emissions under water level regulations. Additionally, we explore how increases in primary productivity can convert aquatic ecosystems from CO2 sources to CO2 sinks. However, GHG formation and emissions under ecological reservoir water level fluctuations in flood-ebb zones, intertidal tidal zones, wetlands, and lacustrine systems remain uncertain compared with those under natural hydrological conditions. Therefore, mechanisms that control GHG exchange and production processes under water level changes must first be determined, especially regarding post flood hydrological-based drying effects on GHG flux at the water-air interface. Finally, we recommend instituting environmental management and water-level control measures to reduce GHG emissions, which are favorable for minimizing GHG flux while protecting ecosystem functions and biodiversity.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jiajia Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fan Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Han M, Huang S, Zhang X, Zhang K. A convenient reduction method for the detection of low concentration free available chlorine--utilizing sodium sulfite as a quencher. CHEMOSPHERE 2024; 367:143631. [PMID: 39461435 DOI: 10.1016/j.chemosphere.2024.143631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Chlorine, serving as the mainstream disinfectant, can react with dissolved organic matter (DOM) to form undeserved disinfection by-products (DBPs). Free available chlorine (FAC) concentration is crucial to ensure effective disinfection while minimizing the formation of toxic DBPs. In this study, we propose a convenient method using sodium sulfite (Na2SO3) to reduce oxidized chlorine in FAC. The molar concentration of reduced chloride ion (Cl-) was quantified directly by ion chromatography to reflect FAC concentration. Compared with common FAC detection techniques including DPD colorimetry, iodometry, and UV methods, this novel reduction method exhibits a lower detection limit and is more resistant to interference. Common water matrices, such as DOM and anions did not affect the method accuracy (< 3.6%). Furthermore, carbonaceous DBPs (C-DBPs) like regulated trihalomethanes and halogenacetic acids, unregulated aromatic chlorophenols, did not interfere with the determination of FAC by using this reduction method. This lack of interference can be attributed to the low redox potential of Na2SO3, which does not readily react with these C-DBPs. However, nitrogenated DBPs (N-DBPs) like dichloroacetonitrile displayed slight interference (the effect of common dichloroacetonitrile concentration in water on FAC was less than 0.0007 μM). This suggests that this method is well-suited for determining FAC in chlorination processes where the C-DBPs predominated. Overall, the reduction method enables precise determination of FAC and proves valuable in assessing residual chlorine levels in both laboratory and real disinfected water samples dominated by C-DBPs.
Collapse
Affiliation(s)
- Meiyao Han
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, China
| | - Shiyue Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, China
| | - Xiaoxiao Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China.
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, China.
| |
Collapse
|
5
|
Xin C, Khu ST, Wang T, Zuo X, Zhang Y. Effect of flow fluctuation on water pollution in drinking water distribution systems. ENVIRONMENTAL RESEARCH 2024; 246:118142. [PMID: 38218524 DOI: 10.1016/j.envres.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The detachment of biofilm caused by changes in hydraulic conditions is an essential reason for the pollution of water in the drinking water distribution system (DWDS). In this research, the effect of flow fluctuation on bulk water quality was studied. The turbidity, iron concentration, manganese concentration, the total number of bacteria, biodegradable dissolved organic carbon (BDOC), bacterial community structure, and pathogenic genes in bacteria of bulk water were analyzed. The results indicate that the detachment of biofilm caused by fluctuant flow and reverse flow (especially instant reverse flow) can lead to the pollution of water. Throughout the entire experimental period, the turbidity under fluctuant flow velocity is 4.92%∼49.44% higher than that under other flow velocities. BDOC concentration is 5.68%∼53.99% higher than that under low and high flow velocities. The flow fluctuation increases bacterial regrowth potential (BRP) and reduces the biological stability of the bulk water. Low flow velocity is more conducive to the expression of pathogenic functional genes. In the short term, the water quality under low flow velocity is the best. Nevertheless, in a long-term operation (about seven days later), the water quality under high flow velocity is better than that under other flow velocities. This research brings new knowledge about the fluctuant hydraulic conditions on the bulk water quality within the DWDS and provides data support for stable drinking water distribution.
Collapse
Affiliation(s)
- Changchun Xin
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; Engineering Research Center of City Intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Zuo
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Xu YQ, Wu YH, Luo LW, Huang BH, Chen Z, Wang HB, Liu H, Ikuno N, Koji N, Hu HY. Inactivation of chlorine-resistant bacteria (CRB) via various disinfection methods: Resistance mechanism and relation with carbon source metabolism. WATER RESEARCH 2023; 244:120531. [PMID: 37659185 DOI: 10.1016/j.watres.2023.120531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm2 UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl2/L chlorine (0.67 log), 2 mg-Cl2/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.
Collapse
Affiliation(s)
- Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Bang-Hao Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Han Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, PR China
| |
Collapse
|
7
|
Wang M, Zhang Y, Niu Z, Miao Q, Fu W. Study on the distribution characteristics and metabolic mechanism of chlorine-resistant bacteria in indoor water supply networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121640. [PMID: 37059174 DOI: 10.1016/j.envpol.2023.121640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
The presence and attachment of chlorine-resistant bacteria on the surface of water distribution network will deteriorate water quality and threaten human health. Chlorination is critical in drinking water treatment to ensure the biosafety of drinking water. However, how disinfectants affect the structures of dominant flora during biofilm development and whether the changes are consistent with the free flora remain unclear. Therefore, we investigated changes in species diversity and relative abundance of different bacterial communities in planktonic and biofilm samples at different chlorine residual concentrations (blank, 0.3 mg/L, 0.8 mg/L, 2.0 mg/L and 4.0 mg/L), and the main reasons for the development of chlorine resistance in bacteria was also discussed. The results showed that the richness of microbial species in the biofilm was higher than that in planktonic microbial samples. In the planktonic samples, Proteobacteria and Actinobacteria were the dominant groups regardless of the chlorine residual concentration. For biofilm samples, the dominant position of Proteobacteria bacteria was gradually replaced by actinobacteria bacteria with the increase of chlorine residual concentration. In addition, at higher chlorine residual concentration, Gram-positive bacteria were more concentrated to form biofilms. There are three main reasons for the generation of chlorine resistance of bacteria: enhanced function of efflux system, activated bacterial self-repair system, and enhanced nutrient uptake capacity.
Collapse
Affiliation(s)
- Mengyuan Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; The International Joint Institute of Tianjin University, Fuzhou, 350207, China
| | - Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Fu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|