1
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
2
|
Kareem A, Thenmozhi K, Hari S, Ponnusamy VK, Senthilkumar S. Metal-free carbon-based anode for electrochemical degradation of tetracycline and metronidazole in wastewater. CHEMOSPHERE 2024; 351:141219. [PMID: 38224750 DOI: 10.1016/j.chemosphere.2024.141219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Degradation of antibiotics through electrocatalytic oxidation has recently been comprehended as a promising strategy in wastewater treatment. Herein, nitrogen and sulphur doped graphene oxide (N,S-rGO) nanosheets were synthesized and employed as metal-free anodic material for electrochemical degradation of antibiotics, viz. metronidazole (MNZ) and tetracycline (TC). The synthesized anodic material was characterized using various spectral techniques and further the electrochemical behaviour of N,S-rGO was thoroughly examined. Thereafter, the N,S-rGO material was then employed as the anode material towards the electrocatalytic degradation of antibiotics. Parameters such as initial concentration of the antibiotics and current densities were varied and their effect towards the degradation of MNZ and TC were probed. Notably, the N,S-rGO based anode has shown impressive removal efficiency of 99% and 98.5%, after 120 min of reaction time for MNZ and TC, respectively, under optimized conditions. The obtained results including the kinetic parameters, removal efficiency and electrical efficiency ensure that the prepared anodic material has huge prospective towards real-time application for removal of antibiotics from water.
Collapse
Affiliation(s)
- Abdul Kareem
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Shankar Hari
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore, 641407, Tamil Nadu, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Han Y, Chao M, Luo C, Yan L. Self-assembled B-doped flower-like graphitic carbon nitride with high specific surface area for enhanced photocatalytic performance. J Colloid Interface Sci 2024; 657:309-319. [PMID: 38043232 DOI: 10.1016/j.jcis.2023.11.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a promising nonmetallic photocatalyst. In this manuscript, B-doped 3D flower-like g-C3N4 mesoporous nanospheres (BMNS) were successfully prepared by self-assembly method. The doping of B element promotes the internal growth of hollow flower-like g-C3N4 without changing the surface roughness structure, resulting in a porous floc structure, which enhances the light absorption and light reflection ability, thereby improving the light utilization rate. In addition, B element provides lower band gap, which stimulates the carrier movement and increases the activity of photogenerated carriers. The photocatalytic mechanism and process of BMNS were investigated in depth by structural characterization and performance testing. BMNS-10 % shows good degradation for four different pollutants, among which the degradation effect on Rhodamine B (RhB) reaches 97 % in 30 min. The apparent rate constant of RhB degradation by BMNS-10 % is 0.125 min-1, which is 46 times faster compared to bulk g-C3N4 (BCN). And the photocatalyst also exhibits excellent H2O2 production rate under visible light. Under λ > 420 nm, the H2O2 yield of BMNS-10 % (779.9 μM) in 1 h is 15.9 times higher than that of BCN (48.98 μM). Finally, the photocatalytic mechanism is proposed from the results of free radical trapping experiments.
Collapse
Affiliation(s)
- Yi Han
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China
| | - Min Chao
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China.
| | - Chunjia Luo
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China.
| |
Collapse
|
4
|
Muthukumar Sathya P, Mohan H, Park JH, Seralathan KK, Oh BT. Applied potential assisted biodegradation of amoxicillin (AMX) using bacterial consortium isolated from a waste dump site. CHEMOSPHERE 2023; 343:140230. [PMID: 37734496 DOI: 10.1016/j.chemosphere.2023.140230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Antibiotics have revolutionized modern day living with their ability to effectively treat infectious diseases in humans and animals. However, the release of antibiotic compounds into the environment has led to toxic consequences. To reduce this environmental impact, it is important to employ an inexpensive and rational technology to reduce the amount of antibiotics released into the ecosystem. This study aims to explore the potential of using a bio-electrochemical system (BES) to remove Amoxicillin (AMX) from artificially contaminated soil using a microbial consortium and pure culture isolates. Under desired conditions, including an initial AMX concentration of 150 mg/L, 5 mg/L tryptone as the nitrogen source, pH of 7, temperature of 29 °C, an applied potential of 0.8 V, and an inoculum dose of 1% w/v, the BES showed a maximum degradation of 97.9% of AMX with the microbial consortium (HP03, HP09, and HP10). High performance liquid chromatography-mass spectrometry was used to analyse the intermediates formed during the degradation process, and the pathway elucidated revealed complete degradation of AMX. Phytotoxicity studies and degradation efficiency against multiple antibiotics confirmed the environmental significance of the BES with microbial consortium. Overall, this study highlights the potential of BES as a cost-effective and efficient method for reducing the release of antibiotics into the environment and provides valuable insights into the mechanisms and pathways of antibiotic degradation.
Collapse
Affiliation(s)
- Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
5
|
Lu W, Chen N, Feng C, An N, Dong Y. Peracetic acid-based electrochemical treatment of sulfamethoxazole and real antibiotic wastewater: Different role of anode and cathode. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132819. [PMID: 39491988 DOI: 10.1016/j.jhazmat.2023.132819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Although has high oxidation capacity and low toxic by-product formation potential, the feasibility, mechanism, and antibiotic treatment performance of peracetic acid (PAA)-based electrochemical system remains unknown. This work systematically studied the electro-activation process of PAA, and distinguished the different mechanisms of anode and cathode. In the PAA-based electrochemical system, the anode mainly produces BDD(•OH), and the cathode is mainly the R-O• (especially CH3CO3•). These differences lead to different degradation pathway and toxicity evolution of sulfamethoxazole (SMX). The anode transformation products (TPs) show negative toxicity and are difficult to be further removed, while TPs from PAA-dominated cathode posed electron-donating effect and a tapering ecological risk. The BDD(•OH) can well mineralize the TPs produced from cathode. Moreover, the active chlorine produced by the anode can effectively avoid the accumulation of NH4+- N released by antibiotic degradation. In an undivided cell, PAA-based treatment for real antibiotic wastewater achieved 73.9%, 59.4%, 76.9%, and 31.7% of COD, TOC, NH4+- N, and TN removal, respectively. More importantly, when PAA existed in this system, the active chlorine and AOCl accumulation are inhibited (inhibition ratio 83.5% and 82.7%, respectively). This study provides theoretical and technical support for the practical application of PAA-based electrochemical system.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Yanyan Dong
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| |
Collapse
|
6
|
Stokes K, Sun Y, Passaretti P, White H, Goldberg Oppenheimer P. Optimisation of GraPhage13 macro-dispersibility via understanding the pH-dependent ionisation during self-assembly: towards the manufacture of graphene-based nanodevices. NANOSCALE 2023; 15:13304-13312. [PMID: 37519099 PMCID: PMC10433945 DOI: 10.1039/d3nr00778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
GraPhage13 aerogels (GPAs) are micro-porous structures generated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. As GPA fabrication involves the aggregation of GO and M13 in aqueous solution, we aim to understand its dispersibility across a wide pH range. Herein, a novel technique has been developed to relate the ionisation of functional groups to the surface charge, offering insights into the conditions required for GPA fabrication and the mechanism behind its self-assembly. The aggregation of GO and M13 was observed between pH 2-6 and exhibited dependence on the surface charge of the resulting aggregate with the M13 bacteriophage identified as the primary factor contributing to this, whilst originating from the ionisation of its functional groups. In contrast, GO exhibited a lesser impact on the surface charge due to the deprotonation of its carboxylic, enolic and phenolic functional groups at pH 6 and above, which falls outside the required pH range for aggregation. These results enhance our understanding of the GPA self-assembly mechanism, the conditions required for their fabrication and the optimal processability, laying the foundation towards its broad range of applications and the subsequent manufacture of graphene-based nanodevices.
Collapse
Affiliation(s)
- Kate Stokes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Yiwei Sun
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK
| | - Henry White
- BAE-Systems, Air Sector, Buckingham House, FPC 267, Filton, Bristol, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
7
|
Zhang C, Wang C, Zhao X, Hakizimana I. Effect of resistance difference on distribution of antibiotics in bacterial cell and conjugative gene transfer risks during electrochemical flow through reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163142. [PMID: 36996977 DOI: 10.1016/j.scitotenv.2023.163142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
The occurrences and spread of antibiotic resistance (AR) mediated by horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) in aquatic environment have been aggravated because of the abuse of antibiotics. While the pressure of different antibiotics is known to induce the spread of AR in bacteria, whether distribution of different antibiotics in cell structure could affect HGT risks is not clear. Here, a significant difference between the distribution of tetracycline hydrochloride (Tet) and sulfamethoxazole (Sul) in cell structure during electrochemical flow through reaction (EFTR) process was firstly reported. Meanwhile, EFTR treatment possessed excellent disinfection performance and consequently controlled the HGT risks. The intracellular Tet (iTet) was discharged through efflux pumps to increase the content of extracellular Tet (eTet) due to the resistance of donor E. coli DH5α under the selective pressure of Tet, declining the damage of donor and plasmid RP4. The HGT frequency was 8.18-fold increase compared with that by EFTR treatment alone. While the secretion of intracellular Sul (iSul) was inhibited by blocking the formation of efflux pumps to inactivate the donor under the Sul pressure, and the total content of iSul and adsorbed Sul (aSul) to be 1.36-fold higher than that of eSul. Therefore, the reactive oxygen species (ROS) generation and cell membrane permeability were improved to release ARGs, and •OH attacked plasmid RP4 in the EFTR process, inhibiting the HGT risks. This study advances the awareness of the interaction between distribution of different antibiotics in cell structure and the HGT risks in the EFTR process.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Xu H, Zhu K, Alharbi NS, Rabah SO, Chen C. Mechanisms and degradation pathways of doxycycline hydrochloride by Fe 3O 4 nanoparticles anchored nitrogen-doped porous carbon microspheres activated peroxymonosulfate. CHEMOSPHERE 2023; 333:138917. [PMID: 37196793 DOI: 10.1016/j.chemosphere.2023.138917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Peroxymonosulfate (PMS) based advanced oxidation processes have gained widespread attention in refractory antibiotics treatment. In this study, Fe3O4 nanoparticles anchored nitrogen-doped porous carbon microspheres (Fe3O4/NCMS) were synthesized and applied to PMS heterogeneous activation for doxycycline hydrochloride (DOX-H) degradation. Benefitting from synergy effects of porous carbon structure, nitrogen doping, and fine dispersion of Fe3O4 nanoparticles, Fe3O4/NCMS showed excellent DOX-H degradation efficiency within 20 min via PMS activation. Further reaction mechanisms revealed that the reactive oxygen species including hydroxyl radicals (•OH) and singlet oxygen (1O2) played the dominant role for DOX-H degradation. Moreover, Fe(II)/Fe(III) redox cycle also participated in the radical generation, and nitrogen-doped carbonaceous structures served as the highly active centers for non-radical pathways. The possible degradation pathways and intermediate products accompanying DOX-H degradation were also analyzed in detail. This study provides key insights into the further development of heterogeneous metallic oxides-carbon catalysts for antibiotic-containing wastewater treatment.
Collapse
Affiliation(s)
- Huan Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Kairuo Zhu
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Njud S Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Samar O Rabah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Changlun Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
9
|
Tran TV, Jalil AA, Nguyen DTC, Nguyen TM, Alhassan M, Nabgan W, Rajendran S, Firmansyah ML. Novel ZIF-67-derived Co@CNTs nanocomposites as effective adsorbents for removal of tetracycline and sulfadiazine antibiotics. ENVIRONMENTAL RESEARCH 2023; 225:115516. [PMID: 36805897 DOI: 10.1016/j.envres.2023.115516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Tetracycline (TCC) and sulfadiazine (SDZ) are two of the most consumed antibiotics for human therapies and bacterial infection treatments in aquafarming fields, but their accumulative residues can result in negative effects on water and aquatic microorganisms. Removal techniques are therefore required to purify water before use. Herein, we concentrate on adsorptive removal of TCC and SDZ using cobalt@carbon nanotubes (Co@CNTs) derived from Co-ZIF-67. The presence of CNTs on the edge of nanocomposites was observed. Taguchi orthogonal array was designed with four variables including initial concentration (5-20 mg L-1), dosage (0.05-0.2 g L-1), time (60-240 min), and pH (2-10). Concentration and pH were found to be main contributors to adsorption of tetracycline and sulfadiazine, respectively. The optimum condition was found at concentration 5 mg L-1, dosage 0.2 g L-1, contact time 240 min, and pH 7 for both TCC and SDZ removals. Confirmation tests showed that Co@CNTs-700 removed 99.6% of TCC and 97.3% of SDZ with small errors (3-5.5%). Moreover, the kinetic and isotherm were studied, which kinetic and isotherm data were best fitted with pseudo second-order model and Langmuir. Maximum adsorption capacity values for TCC and SDZ were determined at 118.4-174.1 mg g-1 for 180 min. We also proposed the main role of interactions such as hydrogen bonding, π-π stacking, and electrostatic attraction in the adsorption of antibiotics. With high adsorption performance, Co@CNTs-700 is expected to remove antibiotics efficiently from wastewater.
Collapse
Affiliation(s)
- Thuan Van Tran
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto - Nigeria
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Saravanan Rajendran
- Departamento de Ingeniería Mec'anica, Facultad de Ingeniería, Universidad de Tarapac'a, Avda. General Vel'asquez 1775, Arica, Chile
| | - M L Firmansyah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Jl. Dr. Ir. H. Soekarno, Surabaya 60115, Indonesia
| |
Collapse
|
10
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
11
|
An omniphobic membrane with macro-corrugation for the treatment of real pharmaceutical wastewater via membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Jiang M, Huang J, Yang G, Wang H, Wang HF, Peng F, Cao Y, Yu H. In-Situ Regeneration of Carbon Monoliths as an Environmental-Benign Adsorbent for Environmental Remediation via a Flow-through Model. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
13
|
Szopińska M, Ryl J, Pierpaoli M. Closing the loop: Upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals. CHEMOSPHERE 2023; 313:137631. [PMID: 36565758 DOI: 10.1016/j.chemosphere.2022.137631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In this study, we demonstrated the application of electrochemical oxidation as a safer and cleaner technology for minimizing the impact of pharmaceuticals in wastewaters, simultaneously mediated by upcycled secondary waste materials (SWMs)-derived electrodes, to further reduce their environmental impact. The modularity, scalability, ease of operation and reliability make electrochemical oxidation an ideal process for the destruction of emerging persistent pollutants; however, their full-scale application is hindered by energy efficiency and the potential release of toxic by-products. Thus, the answer to these issues can be found in the design of tailored multifunctional electrode material. For the first time, SWMs derived from combustion and industrial processes have been employed with the simultaneous dual function of functional fillers, in a polyacrylonitrile fibrous matrix, and as a catalyst for the growth of carbon nanofeatures over the fiber surface, to increase the surface area and charge transfer. Next, the tailored composites were employed as anodes for the electrochemical oxidation of acetaminophen, both in phosphate buffer and in a real wastewater sample. The results suggest that SWMs can substitute costly engineered fillers in carbon-based electrodes and that the absence of reaction by-products (monitored by UHPLC-ESI-MS/MS), together with the low energy consumption, make the tailored fibrous composite electrodes good candidates for the development of safer and cleaner technologies with reduced environmental impact.
Collapse
Affiliation(s)
- Małgorzata Szopińska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Environmental Engineering Technology, 11/12 Narutowicza St., Gdańsk 80-233, Poland
| | - Jacek Ryl
- Gdańsk University of Technology, Institute of Nanotechnology and Materials Engineering, Division of Electrochemistry and Surface Physical Chemistry, 11/12 Narutowicza St., Gdańsk 80-233, Poland
| | - Mattia Pierpaoli
- Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Department of Metrology and Optoelectronics, 11/12 Narutowicza St., Gdańsk 80-233, Poland.
| |
Collapse
|
14
|
Liu A, Liu J, He S, Zhang J, Shao W. Bimetallic MOFs loaded cellulose as an environment friendly bioadsorbent for highly efficient tetracycline removal. Int J Biol Macromol 2023; 225:40-50. [PMID: 36473529 DOI: 10.1016/j.ijbiomac.2022.11.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Due to the increasingly serious antibiotic-related pollution, it is crucial to develop novel green bioadsorbents to effectively remove antibiotics from aqueous solutions. In this study, Fe doped zeolitic imidazolate frameworks-8 loaded cellulose (Fe/ZIF-8@cellulose) aerogels were prepared. The synthesized Fe/ZIF-8@cellulose aerogels were characterized experimentally including morphology observation and chemical compositions determination. The effects of bioadsorbent dosage, solution pH, adsorption time, initial TC concentration and adsorption temperature on the TC adsorption behaviors were systematically studied. Due to the introduction of Fe in the ZIF-8, the maximum adsorption capacity of Fe/ZIF-8@cellulose for TC could reach as high as 1359.2 mg/g, which is higher than the reported ZIF-8 loaded polysaccharide based adsorbents. The adsorption kinetics and isotherm of TC adsorption were also determined. With the cellulose as the matrix to load Fe/ZIF-8, the obtained Fe/ZIF-8@cellulose aerogels exhibited good reusability. Most importantly, the TC adsorption mechanism was proposed. The results of our finding suggest that the Fe doping into MOFs is an effective strategy to improve the antibiotics adsorption performance and the application of cellulose as the matrix is a valuable method to increase the cyclic utilization. This study highlights the potentials of applying the Fe/ZIF-8@cellulose aerogels in the antibiotics removal for practical wastewater.
Collapse
Affiliation(s)
- An Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Jia Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Shu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Jie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing.
| |
Collapse
|
15
|
Sciscenko I, Mora M, Micó P, Escudero-Oñate C, Oller I, Arques A. EEM-PARAFAC as a convenient methodology to study fluorescent emerging pollutants degradation: (fluoro)quinolones oxidation in different water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158338. [PMID: 36041605 DOI: 10.1016/j.scitotenv.2022.158338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Commercial (fluoro)quinolones ((F)Qs), ciprofloxacin (CIP), enrofloxacin (ENR), ofloxacin (OFL), oxolinic acid (OA) and flumequine (FLU) (3 μM each), were degraded with solar-photo-Fenton in a compound parabolic concentrator photoreactor (total volume 5 L) in ultra-pure water at pH = 5.0, salty water at pH = 5.0, and simulated wastewater at pH = 5.0 and 7.5. Iron speciation (its hydrolysis and the complexation with (F)Qs 15 μM and/or chlorides 0.5 M) was calculated at pH 5.0, observing, negligible formation of Fe(III)-chloride complexes, and that >99 % of the total (F)Qs are forming complexes stoichiometry 1:1 with Fe(III) (which also increases the percentage of Fe(OH)2+), being minoritarian the free antibiotic form. On the other hand, EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) was employed to simultaneously study the behaviour of: i) 4 structure-related groups corresponding to parent pollutants and slightly oxidised by-products, ENR-like (including CIP), OFL-like, OA-like, FLU-like; ii) intermediates still showing (F)Q characteristics (exhibiting analogous fluorescent fingerprint to ENR-like one, but shifted to shorter wavelengths); iii) humic-like substances. The scores from the 4 PARAFAC components corresponding to the parent pollutants were plotted vs. accumulated energy, exhibiting slower decay than their individual removals (measured with HPLC-UV/vis) due to the contribution of the aforementioned by-products to the overall fluorescence. Moreover, thiabendazole (TBZ) 3 μM was added as fluorescence interference. The presence of (F)Qs greatly enhanced TBZ degradation due to (F)Q-Fe(III) complex formation, keeping iron active at pH = 5.0 for Fenton process. The EEM-PARAFAC model was able to recognise the former six components plus an additional one attributable to TBZ-like.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain.
| | - Margarita Mora
- Departamento de Matemática Aplicada, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain
| | - Pau Micó
- Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain
| | | | - Isabel Oller
- CIEMAT-Plataforma Solar de Almería, Carretera de Senés km 4, 04200 Tabernas, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Antonio Arques
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain
| |
Collapse
|
16
|
Huang Y, Yan X, He Q, Qiu J, Zhang Y, Han L. Ceria and gold co-decorated porous MoS2@graphene nanocomposite electrochemical electrode integrated with smartphone-controlled microstation for simultaneous dual metal ions detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Smaali A, Berkani M, Benmatti H, Lakhdari N, Al Obaid S, Alharbi SA, Fakhreddine B, Ines A, Marouane F, Rezania S, Lakhdari N. Degradation of Azithromycin from aqueous solution using Chlorine-ferrous- oxidation: ANN-GA modeling and Daphnia magna biotoxicity test assessment. ENVIRONMENTAL RESEARCH 2022; 214:114026. [PMID: 35977588 DOI: 10.1016/j.envres.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZM), an antibacterial considered one of the most consumed drugs, especially during the period against the Covid 19 pandemic, and it is one of the persistent contaminants that can be released into aquatic ecosystems. The purpose of this study is to determine the efficacy of a Fenton-like process (chlorine/iron) for the degradation of AZM in an aqueous medium by determining the impact of several factors (the initial concentration of (FeSO4, NaClO, pollutant), and the initial pH) on the degradation rate. The Response Surface Methodology (RSM) based on the Box-Wilson design as well as the Artificial Neural Network (ANN) modeling combined with a genetic algorithm (GA) approaches were used to determine the optimal levels of the selected variables and the optimal rate of degradation. The quadratic model of multi-linear regression developed indicated that the optimal conditions were a concentration of chlorine of 600 μM, the concentration of AZM is 32.8 mg/L, the mass of the catalyst FeSO4 is 3.5 mg and a pH of 2.5, these optimal values gave a predicted and experimental yield of 64.05% and 70% respectively, the lack of fit test in RSM modeling (F0 = 3.31 which is inferior to Fcritic (0.05, 10.4) = 5.96) indicates that the true regression function is not linear therefore, the ANN-GA modeling as non-linear regression indicated that the optimal conditions were a concentration of chlorine of 256 μM, the concentration of AZM is 5 mg/L, the mass of the catalyst FeSO4 is 9.5 mg and a pH of 2.8, these optimal values gave a predicted and experimental yield of 79.69% and close to 80% respectively, Furthermore, biotoxicity tests were conducted to confirm the performance of our process using bio-indicators called daphnia (Daphnia magna), which demonstrated the efficacy of the like-Fenton process after 4 h of degradation.
Collapse
Affiliation(s)
- Anfel Smaali
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Hadjer Benmatti
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Belhadef Fakhreddine
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole université des frères Mentouri Constantine 1, Ain Bey, 25000, Constantine, Algeria
| | - Amri Ines
- Laboratoire SARL HupPharma 25100, Constantine, Algeria
| | - Fateh Marouane
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| |
Collapse
|
18
|
Xu SJ, Chen XY, Wang XF, Sun HZ, Hou ZJ, Cheng JS, Yuan YJ. Artificial microbial consortium producing oxidases enhanced the biotransformation efficiencies of multi-antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129674. [PMID: 36104903 DOI: 10.1016/j.jhazmat.2022.129674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic mixtures in the environment result in the development of bacterial strains with resistance against multiple antibiotics. Oxidases are versatile that can bio-remove antibiotics. Various laccases (LACs), manganese peroxidases (MNPs), and versatile peroxidase (VP) were reconstructed in Pichia pastoris. For the single antibiotics, over 95.0% sulfamethoxazole within 48 h, tetracycline, oxytetracycline, and norfloxacin within 96 h were bio-removed by recombinant VP with α-signal peptide, respectively. In a mixture of the four antibiotics, 80.2% tetracycline and 95.6% oxytetracycline were bio-removed by recombinant MNP2 with native signal peptide (NSP) within 8 h, whereas < 80.0% sulfamethoxazole was bio-removed within 72 h, indicating that signal peptides significantly impacted removal efficiencies of antibiotic mixtures. Regarding mediators for LACs, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) resulted in better removal efficiencies of multi-antibiotic mixtures than 1-hydroxybenzotriazole or syringaldehyde. Furthermore, artificial microbial consortia (AMC) producing LAC2 and MNP2 with NSP significantly improved bio-removal efficiency of sulfamethoxazole (95.5%) in four-antibiotic mixtures within 48 h. Tetracycline and oxytetracycline were completely bio-removed by AMC within 48 and 72 h, respectively, indicating that AMC accelerated sulfamethoxazole, tetracycline, and oxytetracycline bio-removals. Additionally, transformation pathways of each antibiotic by recombinant oxidases were proposed. Taken together, this work provides a new strategy to simultaneously remove antibiotic mixtures by AMC.
Collapse
Affiliation(s)
- Shu-Jing Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Xin-Yue Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Xiao-Feng Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|