1
|
Li S, Li Y, Xie X, Li Z, Yuan K, Chen X, Ci Z, Lin L, Hu L, Yin Y, Shi J, Luan T, Chen B. Unveiling in situ methylmercury production and degradation in aquaculture sediments: Transformation rates, functional genes and microbial methylators. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137659. [PMID: 39978200 DOI: 10.1016/j.jhazmat.2025.137659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Methylmercury (MeHg) is recognized as a deleterious neurotoxin with the traits of biomagnification through the food chain and accumulation in edible aquatic products. However, the in situ production of MeHg in aquaculture environments has not been well understood. Herein, the sediments were collected from aquaculture ponds with different rearing operations. Isotope-based tracer analysis showed that Hg methylation and MeHg demethylation rate constants in the aquaculture sediments were 0.001-0.022 d-1 and 0.11-0.40 d-1, respectively. Most of bacterial Hg methylators (> 97.0 %) in aquaculture sediments were assigned to Firmicutes and Actinobacteria phyla. Four functional genes responsible for Hg transformation (hgcAB and merAB) could be detected in the aquaculture sediments. In particular, Hg methylation rate constants were positively and significantly correlated with the levels of hgcAB genes (p < 0.05). Inhibitive reagent addition assays and correlation analysis consistently demonstrated that sulfate-reducing bacteria (SRB) were the main methylators in aquaculture sediments, and antibiotic use could fortify the resistance of Hg methylators to antibiotics. These findings suggest that the in situ production of MeHg in aquaculture sediments may be effectively reduced via inhibiting SRB activities, and both hgcAB genes are useful markers of MeHg production in aquaculture environments.
Collapse
Affiliation(s)
- Songzhang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Xin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhijia Ci
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Li Lin
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
2
|
Santos JP, Garcia-Calleja J, Tessier E, Le Faucheur S, Pedrero Z, Amouroux D, Slaveykova VI. Transformations of aquatic mercury species by the diatom Cyclotella meneghiniana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126248. [PMID: 40228730 DOI: 10.1016/j.envpol.2025.126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Phytoplankton are traditionally viewed as simple bioaccumulators and key entry points for mercury (Hg) into aquatic trophic chain. However the more recent findings suggest that they can function as dynamic biological systems capable of enhancing Hg cycling reactivity and altering its speciation. Nevertheless, the role of phytoplankton species in mercury transformations remains largely overlooked. The present study examined inorganic mercury (Hg(II)) methylation, monomethylmercury (MeHg) demethylation, and the production of dissolved gaseous mercury (Hg(0)) following exposure to sub-nanomolar concentrations Hg(II) or MeHg, representative of contaminated environments. Diatom Cyclotella meneghiniana was selected as a representative phytoplankton species due to its widespread presence in diverse aquatic ecosystems. To track transformation pathways, isotopically labeled Hg species were used to distinguish between methylation and demethylation processes. The results demonstrated rapid accumulation of both Hg(II) and MeHg in the diatom cells. A cellular demethylation of MeHg into Hg(II), primarily occurring within the cell debris fraction, but no detectable Hg(II) methylation was observed. The reduction of Hg(II) to Hg(0) was found to be biologically mediated and independent of the photosynthetic system. No significant production of Hg(0) after MeHg exposure was determined. Overall, these findings imply that phytoplankton species could actively contribute to mercury cycling in aquatic environments through cellular transformation processes, including MeHg demethylation and Hg(II) reduction.
Collapse
Affiliation(s)
- João P Santos
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH, 1205, Geneva, Switzerland
| | - Javier Garcia-Calleja
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, 64000, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, 64000, France
| | - Séverine Le Faucheur
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, 64000, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, 64000, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, 64000, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH, 1205, Geneva, Switzerland.
| |
Collapse
|
3
|
Gao M, Ning Y, Liu C, Song X, Xu J, Cui L, Liu J. The "Fe-S wheel": A new perspective on methylmercury production dynamics in subalpine peatlands. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138401. [PMID: 40306242 DOI: 10.1016/j.jhazmat.2025.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/18/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
The cycling of iron (Fe) and sulfur (S) in peatland ecosystems plays a pivotal role in modulating methylmercury (MeHg) formation. This study integrates data on Fe and S fractions, geochemical factors, microbial communities, and statistical modeling to propose the novel "Fe-S wheel" conceptual framework. This framework explores the coupled cycling of Fe, S, and Hg in the Dajiuhu peatland (DJH), an exemplary natural laboratory in central China. Through this framework, we demonstrate that the "Fe-S wheel" exerts a strong direct inhibitory effect on MeHg formation. However, when the S/Fe molar ratio is less than 0.25, the "Fe-S wheel", influenced by microbial communities, can indirectly enhance MeHg generation by promoting humic acid-bound Hg. Conversely, when the S/Fe molar ratio exceeds 0.25, the "Fe-S wheel", under the influence of dissolved oxygen, suppresses MeHg formation by inhibiting strong-complexed Hg and sulfide-bound Hg. Global peatland data corroborate these findings, showing a significant negative correlation between the S/Fe ratio and MeHg concentrations. Given the uncertainties in the interaction and transformation mechanisms between Fe and S, the S/Fe molar ratio is likely to serve as a key parameter reflecting their coupled effects on MeHg. This study highlights the critical role of Fe and S interactions in regulating MeHg generation within peatland ecosystems.
Collapse
Affiliation(s)
- Mingyuan Gao
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yongqiang Ning
- Kunming General Survey of Natural Resources Center, China
| | - Chutong Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiannong Song
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jiale Xu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Zhao Y, Zhao S, Shi X, Lu J, Cui Z, Zhang F, Zhang H, Zhang J, Han Y. Distribution of mercury and methylmercury in ice-water-sediments in lakes during the freezing period under the influence of ice cover. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125183. [PMID: 39454815 DOI: 10.1016/j.envpol.2024.125183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The presence of lake ice cover alters the subglacial water environment, thereby influencing the migration and transformation of mercury (Hg) and methylmercury (MeHg) within the ice-water-sediment media of lakes. This study investigated the occurrence characteristics of mercury and methylmercury in various environmental compartments within lakes located at high latitudes in cold regions during the freezing period. To this end, Wuliangsuhai Lake, the largest freshwater lake situated at 40°N in China, was selected as the study site. The contents of mercury and methylmercury in lake ice were determined for the first time. The percentage of methylmercury (MeHg%) and ice-water partition coefficient were analyzed. The pollution situation and health risk were evaluated by single factor pollution index. The results show that the ice body and water body of Wuliangsuhai are not polluted by mercury and methylmercury, but some sampling points in the sediment are slightly polluted. The mercury content in sediment is negatively correlated with the ice thickness, and the methylmercury content in water is positively correlated with the methylmercury content in sediment, but negatively correlated with the ice thickness. The migration ability of methylmercury in ice-water system is stronger than that of mercury. The MeHg% of water in ice period is higher than that in non-freezing period, which is different from other lakes without ice sheet. The results show that in the dynamic equilibrium of methylation and demethylation in the high-latitude lake water, the methylation is higher in the ice period than in the non-freezing period due to the influence of light intensity, while the mercury in the non-freezing period is more susceptible to the demethylation.
Collapse
Affiliation(s)
- Yunxi Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot, 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot, 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur, 014404, China.
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot, 010018, China.
| | - Zhimou Cui
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Fan Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Hui Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Jinda Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Yue Han
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
5
|
Fang F, Ding L, Zhang Y, Huang Z, He N, Zhang L, Hung Wong M, Pi B, Xu N, Tao H, Zhang L. Quinolone antibiotics stimulate bacterial mercury methylation by Geobacter metallireducens GS-15. BIORESOURCE TECHNOLOGY 2024; 413:131465. [PMID: 39260732 DOI: 10.1016/j.biortech.2024.131465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bacterial mercury (Hg) methylation is critical for bioremediating Hg pollution, but the impact of emerging antibiotics on this process has rarely been reported. This study innovatively investigated the interactions between Hg-methylating bacteria of Geobacter metallireducens GS-15 and two quinolone antibiotics: lomefloxacin (LOM) and ciprofloxacin (CIP) at 5 μg/L. Short-term LOM exposure increased methylmercury (MeHg) yield by 36 % compared to antibiotic-free conditions, caused by hormesis to alter bioactivities of single GS-15 cells. Long-term CIP exposure led to more antibiotic resistance and mercury tolerance in GS-15 cells, doubling MeHg productivity and significantly increasing expression of Hg methylation (hgcA by 95 folds) and antibiotic resistance (gyrA by 54 folds) genes, while mercury resistance gene merA only increased by 2.5 folds than without selective pressure. These results suggest quinolone antibiotics at environmentally contaminated concentrations stimulate bacterial Hg methylation to form highly toxic MeHg, raising considerable concern for the Hg-antibiotic complex in contaminated environments.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yaoyu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhishan Huang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ningning He
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lele Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-on-Don, Russia; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Bin Pi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510700, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, Wang R, Liu Z, Zhang Q, Bai S, Fu M, Zhang Y. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. TOXICS 2024; 12:715. [PMID: 39453135 PMCID: PMC11511217 DOI: 10.3390/toxics12100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Mercury, particularly in its methylated form, poses a significant environmental and health risk in aquatic ecosystems. While the toxicity and bioaccumulation of mercury are well documented, there remains a critical gap in our understanding of the mechanisms governing mercury methylation and demethylation in aquatic environments. This review systematically examines the complex interplay of chemical, biological, and physical factors that influence mercury speciation and transformation in natural water systems. We provide a comprehensive analysis of methylation and demethylation processes, specifically focusing on the dominant role of methanogenic bacteria. Our study highlights the crucial function of hgcAB genes in facilitating mercury methylation by anaerobic microorganisms, an area that represents a frontier in current research. By synthesizing the existing knowledge and identifying key research priorities, this review offers novel insights into the intricate dynamics of mercury cycling in aquatic ecosystems. Our findings provide a theoretical framework to inform future studies and guide pollution management strategies for mercury and its compounds in aquatic environments.
Collapse
Affiliation(s)
- Wenyu Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Runjie Gan
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning 530025, China
| | - Bensen Xian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Tong Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Guoping Wu
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Shixin Huang
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Ronghua Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin 541100, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Wu D, Chen L, Zong X, Jiang F, Wang X, Xu M, Ai F, Du W, Yin Y, Guo H. Elevated CO 2 exacerbates the risk of methylmercury exposure in consuming aquatic products: Evidence from a complex paddy wetland ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124095. [PMID: 38703984 DOI: 10.1016/j.envpol.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362046, China.
| |
Collapse
|
8
|
Jeong H, Byeon E, Lee JS, Kim HS, Sayed AEDH, Bo J, Wang M, Wang DZ, Park HG, Lee JS. Single and combined effects of increased temperature and methylmercury on different stages of the marine rotifer Brachionus plicatilis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133448. [PMID: 38244454 DOI: 10.1016/j.jhazmat.2024.133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Rapid, anthropogenic activity-induced global warming is a severe problem that not only raises water temperatures but also shifts aquatic environments by increasing the bioavailability of heavy metals (HMs), with potentially complicated effects on aquatic organisms, including small aquatic invertebrates. For this paper, we investigated the combined effects of temperature (23 and 28 °C) and methylmercury (MeHg) by measuring physiological changes, bioaccumulation, oxidative stress, antioxidants, and the mitogen-activated protein kinase signaling pathway in the marine rotifer Brachionus plicatilis. High temperature and MeHg adversely affected the survival rate, lifespan, and population of rotifers, and bioaccumulation, oxidative stress, and biochemical reactions depended on the developmental stage, with neonates showing higher susceptibility than adults. These findings demonstrate that increased temperature enhances potentially toxic effects from MeHg, and susceptibility differs with the developmental stage. This study provides a comprehensive understanding of the combined effects of elevated temperature and MeHg on rotifers. ENVIRONMENTAL IMPLICATION: Methylmercury (MeHg) is a widespread and harmful heavy metal that can induce lethal effects on aquatic organisms in even trace amounts. The toxicity of metals can vary depending on various environmental conditions. In particular, rising temperatures are considered a major factor affecting bioavailability and toxicity by changing the sensitivity of organisms. However, there are few studies on the combinational effects of high temperatures and MeHg on aquatic animals, especially invertebrates. Our research would contribute to understanding the actual responses of aquatic organisms to complex aquatic environments.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Wu Z, Li Z, Shao B, Chen J, Cui X, Cui X, Liu X, Zhao YX, Pu Q, Liu J, He W, Liu Y, Liu Y, Wang X, Meng B, Tong Y. Differential response of Hg-methylating and MeHg-demethylating microbiomes to dissolved organic matter components in eutrophic lake water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133298. [PMID: 38141310 DOI: 10.1016/j.jhazmat.2023.133298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Methylmercury (MeHg) production in aquatic ecosystems is a global concern because of its neurotoxic effect. Dissolved organic matter (DOM) plays a crucial role in biogeochemical cycling of Hg. However, owing to its complex composition, the effects of DOM on net MeHg production have not been fully understood. Here, the Hg isotope tracer technique combined with different DOM treatments was employed to explore the influences of DOM with divergent compositions on Hg methylation/demethylation and its microbial mechanisms in eutrophic lake waters. Our results showed that algae-derived DOM treatments enhanced MeHg concentrations by 1.42-1.53 times compared with terrestrial-derived DOM. Algae-derived DOM had largely increased the methylation rate constants by approximately 1-2 orders of magnitude compared to terrestrial-derived DOM, but its effects on demethylation rate constants were less pronounced, resulting in the enhancement of net MeHg formation. The abundance of hgcA and merB genes suggested that Hg-methylating and MeHg-demethylating microbiomes responded differently to DOM treatments. Specific DOM components (e.g., aromatic proteins and soluble microbial byproducts) were positively correlated with both methylation rate constants and the abundance of Hg-methylating microbiomes. Our results highlight that the DOM composition influences the Hg methylation and MeHg demethylation differently and should be incorporated into future Hg risk assessments in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ying Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei He
- School of Water Resource and Environment, China University of Geoscience (Beijing), Beijing 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
10
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
11
|
Li Z, Wu Z, Shao B, Tanentzap AJ, Chi J, He W, Liu Y, Wang X, Zhao Y, Tong Y. Biodegradability of algal-derived dissolved organic matter and its influence on methylmercury uptake by phytoplankton. WATER RESEARCH 2023; 242:120175. [PMID: 37301000 DOI: 10.1016/j.watres.2023.120175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) uptake by phytoplankton represents a key step in determining the exposure risks of aquatic organisms and human beings to this potent neurotoxin. Phytoplankton uptake is believed to be negatively related to dissolved organic matter (DOM) concentration in water. However, microorganisms can rapidly change DOM concentration and composition and subsequent impact on MeHg uptake by phytoplankton has rarely been tested. Here, we explored the influences of microbial degradation on the concentrations and molecular compositions of DOM derived from three common algal sources and tested their subsequent impacts on MeHg uptake by the widespread phytoplankton species Microcystis elabens. Our results indicated that dissolved organic carbon was degraded by 64.3‒74.1% within 28 days of incubating water with microbial consortia from a natural meso‑eutrophic river. Protein-like components in DOM were more readily degraded, while the numbers of molecular formula for peptides-like compounds had increased after 28 days' incubation, probably due to the production and release of bacterial metabolites. Microbial degradation made DOM more humic-like which was consistent with the positive correlations between changes in proportions of Peaks A and C and bacterial abundance in bacterial community structures as illustrated by 16S rRNA gene sequencing. Despite rapid losses of the bulk DOM during the incubation, we found that DOM degraded after 28 days still reduced the MeHg uptake by Microcystis elabens by 32.7‒52.7% relative to a control without microbial decomposers. Our findings emphasize that microbial degradation of DOM would not necessarily enhance the MeHg uptakes by phytoplankton and may become more powerful in inhibiting MeHg uptakes by phytoplankton. The potential roles of microbes in degrading DOM and changing the uptakes of MeHg at the base of food webs should now be incorporated into future risk assessments of aquatic Hg cycling.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
12
|
Gojkovic Z, Simansky S, Sanabria A, Márová I, Garbayo I, Vílchez C. Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health. Microorganisms 2023; 11:2034. [PMID: 37630594 PMCID: PMC10458190 DOI: 10.3390/microorganisms11082034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios.
Collapse
Affiliation(s)
- Zivan Gojkovic
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Samuel Simansky
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Alain Sanabria
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic; (S.S.); (I.M.)
| | - Inés Garbayo
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| | - Carlos Vílchez
- Algae Biotechnology Group, CIDERTA, University of Huelva, 21007 Huelva, Spain; (A.S.); (I.G.); (C.V.)
| |
Collapse
|
13
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
14
|
Gutensohn M, Schaefer JK, Yunda E, Skyllberg U, Björn E. The Combined Effect of Hg(II) Speciation, Thiol Metabolism, and Cell Physiology on Methylmercury Formation by Geobacter sulfurreducens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7185-7195. [PMID: 37098211 PMCID: PMC10173453 DOI: 10.1021/acs.est.3c00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by Geobacter sulfurreducens. We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations. Cysteine additions initially (0-2 h) enhanced MeHg formation by two mechanisms: (i) altering the Hg(II) partitioning from the cellular to the dissolved phase and/or (ii) shifting the chemical speciation of dissolved Hg(II) in favor of the Hg(Cys)2 complex. Nutrient additions increased MeHg formation by enhancing cell metabolism. These two effects were, however, not additive since cysteine was largely metabolized to penicillamine (PEN) over time at a rate that increased with nutrient addition. These processes shifted the speciation of dissolved Hg(II) from complexes with relatively high availability, Hg(Cys)2, to complexes with lower availability, Hg(PEN)2, for methylation. This thiol conversion by the cells thereby contributed to stalled MeHg formation after 2-6 h Hg(II) exposure. Overall, our results showed a complex influence of thiol metabolism on microbial MeHg formation and suggest that the conversion of cysteine to penicillamine may partly suppress MeHg formation in cysteine-rich environments like natural biofilms.
Collapse
Affiliation(s)
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Elena Yunda
- Department of Chemistry, Umeå University, SE- 90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE- 90187 Umeå, Sweden
| |
Collapse
|
15
|
Qin F, Amyot M, Bertolo A. The relationship between zooplankton vertical distribution and the concentration of aqueous Hg in boreal lakes: A comparative field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159793. [PMID: 36374726 DOI: 10.1016/j.scitotenv.2022.159793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The production of the highly toxic monomethylmercury (MeHg) is heterogenous throughout the water column. Multiple factors have been identified to significantly affect this process, such as an extended anoxic water layer and a deep-water phytoplankton maximum. However, the role of water column heterogeneity on mercury (Hg) cycling is still poorly known, especially concerning the role of zooplankton grazers. Here, four boreal lakes with contrasting characteristics were sampled (i.e., transparency and the presence/absence of fish) at both day and night in order to maximize the heterogeneity in zooplankton abundance both among and within lakes, and to investigate their potential links with Hg vertical heterogeneity. Diel variation of the concentrations of both dissolved total Hg (DTHg) and total Hg (THg) were observed, with night samples significantly higher than day samples. Although this pattern was not related to diel changes in the vertical distribution of zooplankton, results showed that the presence of large copepods (>1.2 mm) and medium-sized (0.6 to 1.2 mm) cladocerans was significantly associated with lower concentrations of DTHg in the water at a given depth, whereas the presence of medium-sized copepods was significantly associated with the concentration of THg. The presence of cladocerans was significantly associated with the ratio between the dissolved MeHg and DTHg (conventionally used as a proxy of methylation potential). Phytoplankton biomass was directly correlated with the concentration of both dissolved and total MeHg and the methylation potential. At the same time, phytoplankton biomass was inversely related to the fraction of DTHg. These results suggest a potential key role of the heterogeneity of biotic factors in the water column, especially of phytoplankton and zooplankton, in the cycling of total Hg and MeHg in boreal lakes.
Collapse
Affiliation(s)
- Fan Qin
- Centre de recherche sur les interactions bassins versants-écosystèmes aquatiques (RIVE) et Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, C.P. 500, Trois-Rivières, QC G8Z 4M3, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université de Montréal, Campus MIL, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.
| | - Marc Amyot
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université de Montréal, Campus MIL, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Département de sciences biologiques (GRIL), Université de Montréal, Campus MIL, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Andrea Bertolo
- Centre de recherche sur les interactions bassins versants-écosystèmes aquatiques (RIVE) et Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 Boul. des Forges, C.P. 500, Trois-Rivières, QC G8Z 4M3, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université de Montréal, Campus MIL, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|