1
|
Zhou H, Liu X, Gao X, Wang Y, Ye L, Wu J, Xiang M. Soil pH and total phosphorus regulate bacterial community assembly in slope restoration areas of the Tibetan Plateau's metal mining areas. ENVIRONMENTAL RESEARCH 2025; 275:121432. [PMID: 40113060 DOI: 10.1016/j.envres.2025.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microbial community development is a crucial aspect of soil restoration. The employment of frame beams in conjunction with external soil has demonstrated efficacy in the rehabilitation of degraded roadside ecosystems within mining regions. Nonetheless, the effects of frame beams on the composition and stability of soil bacterial communities remain inadequately comprehended. We conducted a one-time soil sampling on a three-year restored slope in a large-scale metal mining area on the Tibetan Plateau, providing a snapshot of the current conditions and evaluating the restoration progress. Frame beams with external soil covers were applied at three different altitudes: A1 (4800-5000 m), A2 (4500-4700 m), and A3 (4200-4400 m). Restoration significantly altered bacterial community composition compared with controls. Proteobacteria had a higher relative abundance in the restoration area (average: 31.16 %), whereas Acidobacteriota were more abundant in the control area (average: 24.68 %). In the restoration area, soil bacterial α-diversity increased as elevation decreased, with the Shannon index rising from 5.34 (A1) to 5.82 (A3), suggesting that bacterial communities at higher altitudes are more sensitive to environmental conditions. Species turnover was the primary driving factor of β-diversity, accounting for 96.26 % under A1, 94.71 % under A2, and 91.94 % under A3, respectively. The nearest taxon index of bacterial communities shifted from negative to positive along the elevation gradient (-0.25 to 1.14), indicating an increasing trend toward community clustering. Within the bacterial co-occurrence network, soil pH and total phosphorus contribute significantly to network strength, closeness, and betweenness. Concluding, soil pH and total phosphorus were identified as key factors shaping bacterial diversity and assembly mechanisms. Our research contributes to the development of effective soil restoration strategies for alpine mining regions, providing insights into microbial community assembly and stability mechanisms.
Collapse
Affiliation(s)
- Huanyu Zhou
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotong Liu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xianlei Gao
- School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet, China
| | - Yan Wang
- Lhasa Plateau Biological Research Institute, Lhasa, 850000, Tibet, China
| | - Lanlan Ye
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Junxi Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Mingxue Xiang
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Headwaters Region, Qinghai University, Xining, 810018, China.
| |
Collapse
|
2
|
Du Y, Yu C, Sun Z, Liu Y, Liu X, Feng Y, Wang H, Zhou J, Li X. Soil resource availability regulates the response of micro-food web multitrophic interactions to heavy metal contamination. ENVIRONMENTAL RESEARCH 2025; 273:121222. [PMID: 40010424 DOI: 10.1016/j.envres.2025.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The effects of heavy metal contamination on soil biomes have been of considerable interest. However, the effects of heavy metal pollution on the interactions between soil multi-trophic biota in soil food webs and the regulatory mechanisms still need more research, especially in different soil situations. This study examined the impact of heavy metal contamination on soil micro-food web in two distinct soil resource availability situations. Under low soil resources availability situation, heavy metals mainly affected the community structure of soil bacteria and nematodes, with the number of edges of the bacterial network and network complexity reduced by 60.5% and 187%, respectively. In addition, the presence of heavy metals led to a significant reduction in the energy flow from soil resources to bacterivores in the nematode food web. For micro-food webs, heavy metal contamination increased the network average degree by 18.8% and 11.56% in the low and high resource availability situations, respectively. However, in high soil resource availability, heavy metal contamination decreased micro-food web stability and eased competitive relationships among multitrophic organisms and increased microbial carbon limitation and mitigates nitrogen limitation. In low soil resource availability, it increased network stability and shifted relationships among micro-food web organisms from cooperative to competitive and decreased microbial carbon limitation and aggravated nitrogen limitation. This study offers new research insights into the feedback discrepancy between resource availability and pollution stress from the perspective of multitrophic level interactions and further deepens the understanding of the environmental impacts of heavy metal pollution at the ecosystem level.
Collapse
Affiliation(s)
- Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| | - Zhanghan Sun
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Yijia Liu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - XiaoXia Liu
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Yang Feng
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Hongting Wang
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Jie Zhou
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
| |
Collapse
|
3
|
Chuong M, Phan K, Irgum K, Skyllberg U, Björn E. Occurrence and controlling factors of methylmercury in non-contaminated Cambodian rice paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138560. [PMID: 40373408 DOI: 10.1016/j.jhazmat.2025.138560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Methylmercury (MeHg) can form through the microbial transformation of divalent inorganic mercury (HgII). However, it remains unknown whether the total concentration of HgII is a main controlling factor for this methylation process in paddy soils unaffected by local Hg point sources. Here we study the occurrence and controlling factors for MeHg levels in non-contaminated rice paddy soil in Cambodia using 164 soil and 100 overlying water samples from different provinces in wet and dry seasons. Paddy soils were characterized with respect to particle size classes, nutrients, and biogeochemical parameters expected to influence Hg processes. Total mercury (THg) and MeHg concentrations in the soils were not related to geographical location or sampling season but to soil physical and chemical properties. We observed significant positive relationships between the concentrations of divalent inorganic Hg (HgII) and MeHg, suggesting that the concentration of HgII is the main factor determining the net formation of MeHg in non-contaminated rice paddy soils. The %MeHg of THg was used as a proxy of the potential for MeHg formation and was significantly, and inversely, correlated with the redox conditions of the soils, as approximated by the oxidation state of sulfur. The study elucidates critical factors driving MeHg levels in rice paddy soil, enhances the understanding of the MeHg formation process and provides a refined basis for soil quality regulation regarding Hg. The results suggest that reducing Hg inputs to paddies will be effective to lower MeHg concentrations in the soil, ultimately reducing its presence in rice grains.
Collapse
Affiliation(s)
- Mary Chuong
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden; Graduate School of Science, Royal University of Phnom Penh, Phnom Penh 12150, Cambodia
| | - Kongkea Phan
- Faculty of Science and Technology, International University, Phnom Penh 120801, Cambodia
| | - Knut Irgum
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
4
|
Bo H, Li Z, Wang H, Zhang H, Xu R, Xue D, Li H, Wang W, Zhang W, Zhang Q, Xu M, Jin D. Long-term exposure to fly ash leachate enhances the bioavailability of potentially toxic metals and decreases bacterial community diversity in sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:123428. [PMID: 39970653 DOI: 10.1016/j.jenvman.2024.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 02/21/2025]
Abstract
The interaction between microorganisms and the physicochemical properties of sediments is the key to maintaining the stability of the ecological environment. However, the effect of fly ash stockpiling on the relationship between sediment bacterial communities and their physicochemical properties remains unclear. In this study, the interactions between geophysical and chemical factors, morphological distribution of potentially toxic metals (PTMs), and bacterial community diversity in sediments affected by long-term ash water seepage were examined. The results showed that (1) Ash water seepage markedly lowered the pH and elevated the electrical conductance; available potassium, available phosphorus, organic carbon contents; small particle size (<0.25 mm), and concentrations of eight PTMs, including nickel (P < 0.05); (2) Ash water seepage considerably raised the relative abundance of Proteobacteria in the sediments, reduced bacterial community α-diversity, and altered the community structure; (3) Bacterial communities in sediments were strongly correlated with the contents of available potassium organic carbon, selenium, arsenic (oxidizable and reducible), antimony (extractable with weak acids), and chromium (extractable with weak acids); and (4) Fly ash perturbation reduced the connectivity and cohesion in the molecular ecological network of sediment bacteria and increased the abundance of pollution-degrading metabolic pathways, such as low-toxicity and organic classes, as well as coupled stimulus-response and chemotaxis-avoidance defense mechanisms. In summary, the results of this study reveal the changes in bacterial communities, major physicochemical factors, and the morphological distribution of PTMs in sediments affected by long-term ash water leakage of fly ash landfills and provides a theoretical basis for ecological environmental management.
Collapse
Affiliation(s)
- Huijuan Bo
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Key Laboratory for Farmland Fertility Improvement of Eastern Loess Plateau (Jointly-founded By MARA and Shanxi Province), Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory for Soil Environment and Nutrient Resources, Shanxi Province, PR China
| | - Zejin Li
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Key Laboratory for Farmland Fertility Improvement of Eastern Loess Plateau (Jointly-founded By MARA and Shanxi Province), Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory for Soil Environment and Nutrient Resources, Shanxi Province, PR China
| | - Haibo Wang
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Key Laboratory for Soil Environment and Nutrient Resources, Shanxi Province, PR China
| | - Huofeng Zhang
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Key Laboratory for Farmland Fertility Improvement of Eastern Loess Plateau (Jointly-founded By MARA and Shanxi Province), Ministry of Agriculture and Rural Affairs, PR China
| | - Runan Xu
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Key Laboratory for Soil Environment and Nutrient Resources, Shanxi Province, PR China
| | - Donghe Xue
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Key Laboratory for Farmland Fertility Improvement of Eastern Loess Plateau (Jointly-founded By MARA and Shanxi Province), Ministry of Agriculture and Rural Affairs, PR China
| | - Haodong Li
- Shanxi Dongda Kexing New Material Co., LTD, PR China
| | - Wei Wang
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Joint Engineering and Technology Innovation Center for Ecological Preservation and Restoration of Midstream Area of Yellow River, Ministry of Nature Resources, PR China
| | - Wenjing Zhang
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China; Joint Engineering and Technology Innovation Center for Ecological Preservation and Restoration of Midstream Area of Yellow River, Ministry of Nature Resources, PR China
| | - Qiang Zhang
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China
| | - Minggang Xu
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China
| | - Dongsheng Jin
- Shanxi Agricultural University, Taiyuan, 030031, Shanxi, PR China.
| |
Collapse
|
5
|
Yang S, Liu B, Wang L, Duran R. Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125376. [PMID: 39581369 DOI: 10.1016/j.envpol.2024.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phytostabilization is an important way for the remediation of mine tailings, but the associated microbial processes and community succession remain largely unknown. In this study, we investigated the assembly mechanisms maintaining the core and satellite subcommunities diversity during phytostabilizaion of a mercury-rich mine tailings. The contents of total Hg and methylmercury decreased with a concomitant increase of total and available phosphorus content along the successive remediation stages. Microbial community composition, profiled by 16S rRNA gene sequencing, revealed amplicon sequence variants (ASVs) that were separated according to their abundance within either the core community or the satellite community. Community dynamics analysis showed that alpha diversity indices increased for the core community while decreased for the satellite community. Both satellite and core communities were mainly driven by stochastic drift process, and homogeneous selection was relatively higher in shaping the core community organization. The core community included ASVs affiliated to Proteobacteria, Crenarchaeota, Bacteroidota, Verrucomicrobiota, Acidobacteriota, and Myxococcota phyla, which were driven primarily by heterogeneous selection and drift. The satellite community included ASVs affiliated to Acidobacteriota, Ktedonobacteria, Anaerolineae and Verrucomicrobiota phyla, which were mainly influenced by heterogeneous selection. Nineteen taxa and one taxon were identified as keystone taxa for the satellite and core communities respectively. This study provides important insights on the assemble rules within the core and satellite communities, and theoretical guidance for further ecological restoration and management during microbial remediation of metal-mined derelict land.
Collapse
Affiliation(s)
- Shengxiang Yang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | - Lu Wang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
6
|
Pu Q, Zhang K, Liu J, Zhang Q, Abdelhafiz MA, Meng B, Feng X. Key active mercury methylating microorganisms and their synergistic effects on methylmercury production in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136481. [PMID: 39536346 DOI: 10.1016/j.jhazmat.2024.136481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils. In this study, active Hg-methylating microorganisms in paddy soils were identified using a combination of DNA-SIP, Hg isotope labelling, and Hg methylation gene sequencing techniques. Our findings revealed that Geobacter and Anaerolinea are pivotal active Hg-methylating microorganisms across a contamination gradient in paddy soils. Transcriptomic analysis of soils from major rice-producing provinces in China confirmed the widespread and synergistic involvement of these microorganisms. Microbial incubation further validated their interaction significantly enhances Hg methylation, with Me198Hg concentrations increasing 2.8-fold compared to Geobacter alone and 5.2-fold compared to Anaerolinea alone. These findings enhance our understanding of microbial Hg methylation in paddy soils, providing critical insights for accurately predicting soil MeHg load, rice grain MeHg contamination, and human MeHg exposure risks.
Collapse
Affiliation(s)
- Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianshuo Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Gao H, Chen J, Wang C, Wang P, Wang R, Feng B. Long-term contamination of decabromodiphenyl ether reduces sediment multifunctionality: Insights from nutrient cycling, microbial ecological clusters, and microbial co-occurrence patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135792. [PMID: 39265393 DOI: 10.1016/j.jhazmat.2024.135792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Despite the widespread detection of polybrominated diphenyl ethers in aquatic ecosystems, their long-term effects on sediment multifunctionality remain unclear. Herein, a 360-day microcosm experiment was conducted to investigate how decabromodiphenyl ether (BDE-209) contamination at different levels (0.2, 2, and 20 mg/kg dry weight) affects sediment multifunctionality, focusing on carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling. Results showed that BDE-209 significantly increased sediment total organic carbon, nitrate, ammonium, available phosphorus, and sulfide concentrations, but decreased sulfate. Additionally, BDE-209 significantly altered key enzyme activities related to nutrient cycling. Bacterial community dissimilarity was positively correlated with nutrient variability. Long-term BDE-209 exposure inhibited C degradation, P transport and regulation, and most N metabolic pathways, but enhanced C fixation, methanogenesis, organic P mineralization, inorganic P solubilization, and dissimilatory sulfate reduction pathways. These changes were mainly regulated by microbial ecological clusters and keystone taxa. Overall, sediment multifunctionality declined under BDE-209 stress, primarily related to microbial co-occurrence network complexity and ecological cluster diversity. Interestingly, sediment C and N cycling had greater impacts on multifunctionality than P and S cycling. This study provides crucial insights into the key factors altering multifunctionality in contaminated sediments, which will aid pollution control and mitigation in aquatic ecosystems.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
8
|
Shi J, Qian W, Zhou Z, Jin Z. Response of bacterial communities in desert grassland soil profiles to acid mine drainage pollution. CHEMOSPHERE 2024; 369:143831. [PMID: 39608651 DOI: 10.1016/j.chemosphere.2024.143831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Acid mine drainage (AMD) causes serious environmental pollution, which imposes stresses on soil ecosystems. Therefore, it is critical to study the responses of soil bacterial communities to AMD pollution in ecologically fragile desert grasslands. Here, the bacterial community composition, structure, and assembly processes in vertical soil profiles of an AMD contaminated desert grassland were explored using 16S rRNA high-throughput sequencing. The results showed that the surface layers of the profiles exhibited lower pH and higher heavy metals (HMs) content due to AMD influence. The AMD contamination led to reduced bacterial diversity in the surface soil layer of the profiles and significantly changed the bacterial community composition and structure. Gradients in pH, TK, TN, and HMs were the main factors driving bacterial community variability. In contrast to the uncontaminated profile, deterministic processes were important in shaping soil bacterial community in the AMD contaminated profiles. These findings will enhance understanding about the responses of soil bacteria in desert grassland soil to the environmental changes caused by AMD contamination and will improve the remediation of AMD contaminated soil.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Public Technology Service Center, Urumqi, 830011, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China; Taklimakan Desert Ecosystem Field Observation and Research Station of Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
9
|
Jin J, Zhao D, Wang J, Wang Y, Zhu H, Wu Y, Fang L, Bing H. Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135438. [PMID: 39116750 DOI: 10.1016/j.jhazmat.2024.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microorganisms are pivotal in sustaining soil functions, yet the specific contributions of bacterial and fungal succession on the functions during vegetation restoration in metallic tailing reservoirs remains elusive. Here, we explored bacterial and fungal succession and their impacts on soil multifunctionality along a ∼50-year vegetation restoration chronosequence in China's largest vanadium titano-magnetite tailing reservoir. We found a significant increase in soil multifunctionality, an index comprising factors pertinent to soil fertility and microbially mediated nutrient cycling, along the chronosequence. Despite increasing heavy metal levels, both bacterial and fungal communities exhibited significant increase in richness and network complexity over time. However, fungi demonstrated a slower succession rate and more consistent composition than bacteria, indicating their relatively higher resilience to environmental changes. Soil multifunctionality was intimately linked to bacterial and fungal richness or complexity. Nevertheless, when scrutinizing both richness and complexity concurrently, the correlations disappeared for bacteria but remained robust for fungi. This persistence reveals the critical role of the fungal community resilience in sustaining soil multifunctionality, particularly through their stable interactions with powerful core taxa. Our findings highlight the importance of fungal succession in enhancing soil multifunctionality during vegetation restoration in metallic tailing reservoirs, and manipulating fungal community may expedite ecological recovery of areas polluted with heavy metals.
Collapse
Affiliation(s)
- Jiyuan Jin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Dongyan Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jipeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuhan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
10
|
Aslam MW, Meng B, Ali W, Abrar MM, Abdelhafiz MA, Feng X. Low mercury risks in paddy soils across the Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173879. [PMID: 38857798 DOI: 10.1016/j.scitotenv.2024.173879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Mercury (Hg) is a globally distributed heavy metal. Here, we study Hg concentration and isotopic composition to understand the status of Hg pollution and its sources in Pakistan's paddy soil. The collected paddy soils (n = 500) across the country have an average THg concentration of 22.30 ± 21.74 ng/g. This low mean concentration suggests Hg pollution in Pakistan was not as severe as previously thought. Meanwhile, samples collected near brick kilns and industrial areas were significantly higher in THg than others, suggesting the influence of Hg emitted from point sources in certain areas. Soil physicochemical properties showed typical characteristic of mineral soils due to the study area's arid to semi-arid climate. Hg stable isotopes analysis, depicted mean Δ199Hg of -0.05 ± 0.12‰ and mean δ202Hg -0.45 ± 0.35‰, respectively, for contaminated sites, depicting Hg was primarily sourced from coal combustion by local anthropogenic sources. While uncontaminated sites show mean Δ199Hg of 0.15 ± 0.08‰, mean Δ200Hg of 0.06 ± 0.07‰ and mean δ202Hg of -0.32 ± 0.28‰, implying long-range transboundry Hg transport through wet Hg(II) deposition as a dominant Hg source. This study fills a significant knowledge gap regarding the Hg pollution status in Pakistan and suggests that the Hg risk in Pakistan paddies is generally low.
Collapse
Affiliation(s)
- Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Muhammad Mohsin Abrar
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, China; Engineering and Technology Research Center for Agricultural Land Pollution and Integrated Prevention, Guangzhou, China
| | - Mahmoud A Abdelhafiz
- Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
11
|
Liang H, Wang S, Xu P, Wang M, Liang P, Wu S, Zhang J, Wong MH. Converting flooded rice to dry farming can alleviate MeHg accumulation in grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116817. [PMID: 39083863 DOI: 10.1016/j.ecoenv.2024.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The study explored the impact of water management on rice cultivation in mercury-contaminated paddy soil. The objective was to analyze the characteristics of mercury translocation by converting flooded soils to dry farming (non-flooded) to alleviate mercury accumulation in rice grains. The experiment was conducted over three consecutive rice-growing seasons, employing two distinct water management models: a continuously flooded rice cultivation mode and a flooded rice planting mode in the first season, followed by a non-flooded rice farming mode in the second and third seasons. The results showed that the change from flooded to non-flooded rice cultivation patterns presented extremely excellent environmental potential for inhibiting the uptake of both methylmercury and total mercury in rice. When transitioning from flooded cultivation to dry farming, the concentration of methylmercury and total mercury in the grains of non-flooded rice decreased by 87.15 % and 9.57 %, respectively, compared to that in the grains of flooded rice. In the third season, the methylmercury and total mercury in the grains of non-flooded rice decreased further by 95.03 % and 69.45 %, respectively. This study verified that the conversion of rice cultivation from flooded to non-flooded is an efficient strategy for suppressing the accumulation of methylmercury in rice grains, and it might offer a promising solution for managing soil mercury risks and ensuring the safety of rice for human consumption.
Collapse
Affiliation(s)
- Huang Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shan Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; School of Geography and Resource Science, Neijiang Normal University, Neijiang 641100, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou 311401, China
| | - Minyan Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| | - Jin Zhang
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
12
|
Boie F, Ducey TF, Xing Y, Wang J, Rinklebe J. Field-aged rice hull biochar stimulated the methylation of mercury and altered the microbial community in a paddy soil under controlled redox condition changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134446. [PMID: 38696958 DOI: 10.1016/j.jhazmat.2024.134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Mercury (Hg) contaminated paddy soils are hot spots for methylmercury (MeHg) which can enter the food chain via rice plants causing high risks for human health. Biochar can immobilize Hg and reduce plant uptake of MeHg. However, the effects of biochar on the microbial community and Hg (de)methylation under dynamic redox conditions in paddy soils are unclear. Therefore, we determined the microbial community in an Hg contaminated paddy soil non-treated and treated with rice hull biochar under controlled redox conditions (< 0 mV to 600 mV) using a biogeochemical microcosm system. Hg methylation exceeded demethylation in the biochar-treated soil. The aromatic hydrocarbon degraders Phenylobacterium and Novosphingobium provided electron donors stimulating Hg methylation. MeHg demethylation exceeded methylation in the non-treated soil and was associated with lower available organic matter. Actinobacteria were involved in MeHg demethylation and interlinked with nitrifying bacteria and nitrogen-fixing genus Hyphomicrobium. Microbial assemblages seem more important than single species in Hg transformation. For future directions, the demethylation potential of Hyphomicrobium assemblages and other nitrogen-fixing bacteria should be elucidated. Additionally, different organic matter inputs on paddy soils under constant and dynamic redox conditions could unravel the relationship between Hg (de)methylation, microbial carbon utilization and nitrogen cycling.
Collapse
Affiliation(s)
- Felizitas Boie
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Thomas F Ducey
- US Department of Agriculture, Coastal Plains Soil, Water, Plant Research Center, 2611 West Lucas Street, Florence, SC, USA
| | - Ying Xing
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| | - Jianxu Wang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
13
|
Zou M, Zhang Q, Li F, Chen L, Qiu Y, Yin Q, Zhou S. Impacts of multiple environmental factors on soil bacterial community assembly in heavy metal polluted paddy fields. Sci Rep 2024; 14:14696. [PMID: 38926471 PMCID: PMC11208537 DOI: 10.1038/s41598-024-65678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Soil microorganisms play pivotal roles in driving essential biogeochemical processes in terrestrial ecosystems, and they are sensitive to heavy metal pollution. However, our understanding of multiple environmental factors interaction in heavy metal polluted paddy fields to shape microbial community assembly remain limited. In the current study, we used 16S rRNA amplicon sequencing to characterize the microbial community composition in paddy soils collected from a typical industry town in Taihu region, eastern China. The results revealed that Cd and Pb were the major pollutant, and Proteobacteria, Acidobacteria and Chloroflexi were the dominate indigenous bacterial phyla. Linear regression and random forest analysis demonstrated that soil pH was the most important predictor of bacterial diversity. Mantel analysis showed that bacterial community structure was mainly driven by pH, CEC, silt, sand, AK, total Cd and DTPA-Cd. The constructed bacterial co-occurrence network, utilizing a random matrix theory-based approach, exhibited non-random with scale-free and modularity features. The major modules within the networks also showed significant correlations with soil pH. Overall, our study indicated that soil physiochemical properties made predominant contribution to bacterial community diversity, structure and their association in Cd/Pb polluted paddy fields. These findings expand our knowledge of the key environmental drivers and co-occurrence patterns of bacterial community in polluted paddy fields.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Qi Zhang
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Fengchun Li
- Testing Center of Shandong Bureau of China Metallurgy and Geology, Jinan, 250014, People's Republic of China
| | - Long Chen
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Qiqi Yin
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China.
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China.
| |
Collapse
|
14
|
Zhang Q, Pu Q, Hao Z, Liu J, Zhang K, Meng B, Feng X. Warming inhibits Hg II methylation but stimulates methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172832. [PMID: 38688367 DOI: 10.1016/j.scitotenv.2024.172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Inorganic mercury (HgII) can be transformed into neurotoxic methylmercury (MeHg) by microorganisms in paddy soils, and the subsequent accumulation in rice grains poses an exposure risk for human health. Warming as an important manifestation of climate change, changes the composition and structure of microbial communities, and regulates the biogeochemical cycles of Hg in natural environments. However, the response of specific HgII methylation/demethylation to the changes in microbial communities caused by warming remain unclear. Here, nationwide sampling of rice paddy soils and a temperature-adjusted incubation experiment coupled with isotope labeling technique (202HgII and Me198Hg) were conducted to investigate the effects of temperature on HgII methylation, MeHg demethylation, and microbial mechanisms in paddy soils along Hg gradients. We showed that increasing temperature significantly inhibited HgII methylation but promoted MeHg demethylation. The reduction in the relative abundance of Hg-methylating microorganisms and increase in the relative abundance of MeHg-demethylating microorganisms are the likely reasons. Consequently, the net Hg methylation production potential in rice paddy soils was largely inhibited under the increasing temperature. Collectively, our findings offer insights into the decrease in net MeHg production potential associated with increasing temperature and highlight the need for further evaluation of climate change for its potential effect on Hg transformation in Hg-sensitive ecosystems.
Collapse
Affiliation(s)
- Qianshuo Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhong H, Su Y, Wu X, Nunes L, Li C, Hao Y, Liu YR, Tang W. Mercury supply limits methylmercury production in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172335. [PMID: 38604369 DOI: 10.1016/j.scitotenv.2024.172335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The neurotoxic methylmercury (MeHg) is a product of inorganic mercury (IHg) after microbial transformation. Yet it remains unclear whether microbial activity or IHg supply dominates Hg methylation in paddies, hotspots of MeHg formation. Here, we quantified the response of MeHg production to changes in microbial activity and Hg supply using 63 paddy soils under the common scenario of straw amendment, a globally prevalent agricultural practice. We demonstrate that the IHg supply is the limiting factor for Hg methylation in paddies. This is because IHg supply is generally low in soils and can largely be facilitated (by 336-747 %) by straw amendment. The generally high activities of sulfate-reducing bacteria (SRB) do not limit Hg methylation, even though SRB have been validated as the predominant microbial Hg methylators in paddies in this study. These findings caution against the mobilization of legacy Hg triggered by human activities and climate change, resulting in increased MeHg production and the subsequent flux of this potent neurotoxin to our dining tables.
Collapse
Affiliation(s)
- Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Yao Su
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Xinda Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Yunyun Hao
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wenli Tang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China.
| |
Collapse
|
16
|
Cui J, Zhou F, Li J, Shen Z, Zhou J, Yang J, Jia Z, Zhang Z, Du F, Yao D. Amendment-driven soil health restoration through soil pH and microbial robustness in a Cd/Cu-combined acidic soil: A ten-year in-situ field experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133109. [PMID: 38071771 DOI: 10.1016/j.jhazmat.2023.133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
Soil health arguably depends on biodiversity and has received wide attention in heavy-metal (HM) contaminated farmland remediation in recent years. However, long-term effects and mechanisms of soil amendment remain poorly understood with respect to soil microbal community. In this in-situ field study, four soil amendments (attapulgite-At, apatite-Ap, montmorillonite-M, lime-L) at three rates were applied once only for ten years in a cadmium (Cd)-copper (Cu) contaminated paddy soil deprecated for over five years. Results showed that after ten years and in compared with CK (no amendment), total Cd concentration and its risk in plot soils were not altered by amendments (p > 0.05), but total Cu concentration and its risk were significantly increased by both Ap and L, especially the former, rather than At and M (p < 0.05), through increased soil pH and enhanced bacterial alpha diversity as well as plant community. Soil microbial communities were more affected by amendment type (30%) than dosage (11%), microbial network characteristics were dominated by rare taxa, and soil multifunctionality was improved in Ap- and L-amended soils. A structural equation model (SEM) indicated that 57.3% of soil multifunctionality variances were accounted for by soil pH (+0.696) and microbial network robustness (-0.301). Moreover, microbial robustness could be potentially used as an indicator of soil multifunctionality, and Ap could be optimized to improve soil health in combined with biomass removal. These findings would advance the understanding of soil microbial roles, especially its network robustness, on soil multifunctionality for the remediation of metal contaminated soils and metal control management strategies in acidic soils. ENVIRONMENTAL IMPLICATION: Farmland soil contamination by heavy metals (HMs) has been becoming a serious global environmental challenge. However, most studies have been conducted over the short term, leading to a gap in the long-term remediation efficiency and ecological benefits of soil amendments. For the successful deployment of immobilization technologies, it is critical to understand the long-term stability of the immobilized HMs and soil health. Our study, to the best of our knowlege, is the first to state the long-term effects and mechanisms of soil amendments on soil health and optimize an effective and eco-friendly amendment for long-term Cd/Cu immobilization.
Collapse
Affiliation(s)
- Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fengwu Zhou
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ziyao Shen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - John Yang
- Department of Agriculture and Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
17
|
Cardona GI, Escobar MC, Acosta-González A, Díaz-Ruíz N, Niño-García JP, Vasquez Y, Marrugo-Negrete J, Marqués S. Microbial diversity and abundance of Hg related genes from water, sediment and soil the Colombian amazon ecosystems impacted by artisanal and small-scale gold mining. CHEMOSPHERE 2024; 352:141348. [PMID: 38340998 DOI: 10.1016/j.chemosphere.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia.
| | - Maria Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia; Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Natalie Díaz-Ruíz
- Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Yaneth Vasquez
- Chemistry Department, Universidad de Córdoba, Montería, Colombia
| | - José Marrugo-Negrete
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Silvia Marqués
- Department of Biotechnology and Environmental Protection. Estación Experimental Del Zaidín. Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
18
|
Chen M, Kong Y, Zheng W, Liu J, Wang Y, Wang Y. Accumulation and risk assessment of mercury in soil as influenced by mercury mining/smelting in Tongren, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:83. [PMID: 38367093 DOI: 10.1007/s10653-024-01860-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
To investigate the influence of mercury (Hg) mining/smelting on the surrounding soil environment, ninety soil samples were collected around Hg mining/smelting areas in Tongren city, Guizhou Province, Southwest China. The total mercury (THg), methylmercury (MeHg), bioavailability and fractions of Hg in the soil and their potential risk were evaluated. The results showed that Hg mining/smelting significantly increased the soil pH and decreased the soil organic matter content (p < 0.05). The THg content in the surrounding soil was much higher than that at the control site, with almost all the samples exceeding the national standard in China (3.4 mg/kg, GB15618-2018). Similarly, the concentrations of MeHg (0.09-2.74 μg/kg) and bioavailable Hg (0.64-62.94 μg/kg) in these soil samples were also significantly higher than those in the control site. However, the MeHg/THg ratio was significantly lower in mining/smelting influenced soils (0.01-0.68%) than in control soils (0.60-3.72%). Fraction analysis revealed that residual (RES-Hg) and organic matter-bounded (OM-Hg) Hg accounted for more than 50% of the THg. Ecological risk assessment revealed that the potential ecological risk for most of the Hg mining/smelting-influenced soils (30.16 ≤ Er ≤ 2280.02) were higher than those at the control site (15.12 ≤ Er ≤ 27.1). In addition, these Hg mining/smelting-influenced soils posed acceptable noncarcinogenic risks to adults (except for two soil samples), with hazard indices (HIs) ranging from 0.04 to 1.11 and a mean HI of 0.44. However, children suffer serious noncarcinogenic risks, with HIs ranging from 0.34 to 7.43 and a mean HI of 3.10.
Collapse
Affiliation(s)
- Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Wenxiu Zheng
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
19
|
Austin D, Jahan K, Feng X, Carney J, Hensley DK, Chen J, Altidor BE, Guo Z, Michaelis E, Kebaso MK, Yue Y. Sulfur functionalized biocarbon sorbents for low-concentration mercury isolation. Dalton Trans 2024; 53:2098-2107. [PMID: 38180386 DOI: 10.1039/d3dt02625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Sulfur functionalized biocarbons were prepared from naturally abundant lignin alkali with sodium thiocyanate as an activation agent and a sulfur source. The resultant biocarbon sorbents showed a high mercury isolation ability from aqueous solutions, where high surface area and doping of sulfur significantly aid the uptake of mercury, i.e., 0.05 g of biocarbon sorbent removed 99% of mercury from 250 mL of simulated wastewater with an initial concentration of mercury of 10 mg L-1.
Collapse
Affiliation(s)
- Douglas Austin
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Kousar Jahan
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Xu Feng
- Surface Analysis Facility, University of Delaware, Newark, DE 19716, USA
| | - Jared Carney
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Dale K Hensley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Brianna E Altidor
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China.
| | - Elizabeth Michaelis
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Mariana K Kebaso
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| |
Collapse
|
20
|
Huang Y, Yi J, Huang Y, Zhong S, Zhao B, Zhou J, Wang Y, Zhu Y, Du Y, Li F. Insights into the reduction of methylmercury accumulation in rice grains through biochar application: Hg transformation, isotope fractionation, and transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122863. [PMID: 37925005 DOI: 10.1016/j.envpol.2023.122863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, easily moves from the soil into rice plants and subsequently accumulates within the grains. Although biochar can reduce MeHg accumulation in rice grains, the precise mechanism underlying biochar-mediated responses to mercury (Hg) stress, specifically regarding MeHg accumulation in rice, remains poorly understood. In the current study, we employed a 4% biochar amendment to remediate Hg-contaminated paddy soil, elucidate the impacts of biochar on MeHg accumulation through a comprehensive analysis involving Hg isotopic fractionation and transcriptomic analyses. The results demonstrated that biochar effectively lowered the levels of MeHg in paddy soils by decreasing bioavailable Hg and microbial Hg methylation. Furthermore, biochar reduced the uptake and translocation of MeHg in rice plants, ultimately leading to a reduction MeHg accumulation in rice grains. During the process of total mercury (THg) uptake, biochar induced a more pronounced negative isotope fractionation magnitude, whereas the effect was less pronounced during the upward transport of THg. Conversely, biochar caused a more pronounced positive isotope fractionation magnitude during the upward transport of MeHg. Transcriptomics analyses revealed that biochar altered the expression levels of genes associated with the metabolism of cysteine, glutathione, and metallothionein, cell wall biogenesis, and transport, which possibly enhance the sequestration of MeHg in rice roots. These findings provide novel insights into the effects of biochar application on Hg transformation and transport, highlighting its role in mitigating MeHg accumulation in rice.
Collapse
Affiliation(s)
- Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Bin Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Norwegian University of Life Sciences, Department of Environmental Sciences, 5003, N-1432 Ås, Norway
| | - Jing Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yuxuan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yiwen Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
21
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhang D, Hu Q, Wang B, Wang J, Li C, You P, Zhou R, Zeng W, Liu X, Li Q. Effects of single and combined contamination of total petroleum hydrocarbons and heavy metals on soil microecosystems: Insights into bacterial diversity, assembly, and ecological function. CHEMOSPHERE 2023; 345:140288. [PMID: 37783354 DOI: 10.1016/j.chemosphere.2023.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Deciphering the impact of single and combined contamination of total petroleum hydrocarbons (TPH) and heavy metals on soil microecosystems is essential for the remediation of contaminated habitats, yet it remains incompletely understood. In this study, we employed high-throughput sequencing to investigate the impact of single TPH contamination, single metal contamination, and their co-contamination on soil microbial diversity, assembly mechanisms, composition, ecological function, and resistome. Our results revealed that contamination led to a reduction in alpha diversity, with single contamination displaying lower diversity compared to co-contamination, depending on the concentration of pollutants. Community beta diversity was primarily driven by turnover rather than nestedness, and narrower ecological niches were detected under pollution conditions. The neutral community model suggested that homogenizing dispersal played a significant role in the community assembly process under single TPH or co-contamination, while homogeneous selection dominated under heavy metals pollution. Procrustes analysis demonstrated a correlation between community composition and functional divergence, while Mantel tests linked this divergence to concentrations of Cr, Cr6+, Pb, and TPH. Interestingly, soils co-polluted with TPH and heavy metals exhibited similar genera, community functions, and resistomes as soils contaminated with only metals, highlighting the significant impact of heavy metals. Ecological functions related to carbon (C), nitrogen (N), and sulfur (S) cycles were enhanced under TPH pollution but impaired under heavy metals stress. These findings enhance our understanding of soil microecosystems subjected to TPH, heavy metals, and their co-contamination, and carry significant implications for environmental microecology and pollutant risk assessment.
Collapse
Affiliation(s)
- Du Zhang
- Central South University, Changsha, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qi Hu
- NEOMICS Institute, Shenzhen, China
| | - Bing Wang
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, China
| | | | - Can Li
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, China
| | - Ping You
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, China
| | - Rui Zhou
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, China
| | | | | | - Qian Li
- Central South University, Changsha, China; Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha, China.
| |
Collapse
|
23
|
Pardhe BD, Lee MJ, Lee JH, Do H, Oh TJ. Biochemical and structural basis of mercuric reductase, GbsMerA, from Gelidibacter salicanalis PAMC21136. Sci Rep 2023; 13:17854. [PMID: 37857791 PMCID: PMC10587081 DOI: 10.1038/s41598-023-44968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Heavy metals, including mercury, are non-biodegradable and highly toxic to microorganisms even at low concentrations. Understanding the mechanisms underlying the environmental adaptability of microorganisms with Hg resistance holds promise for their use in Hg bioremediation. We characterized GbsMerA, a mercury reductase belonging to the mercury-resistant operon of Gelidibacter salicanalis PAMC21136, and found its maximum activity of 474.7 µmol/min/mg in reducing Hg+2. In the presence of Ag and Mn, the enzyme exhibited moderate activity as 236.5 µmol/min/mg and 69 µmol/min/mg, respectively. GbsMerA exhibited optimal activity at pH 7.0 and a temperature of 60 °C. Moreover, the crystal structure of GbsMerA and structural comparison with homologues indicated that GbsMerA contains residues, Tyr437´ and Asp47, which may be responsible for metal transfer at the si-face by providing a hydroxyl group (-OH) to abstract a proton from the thiol group of cysteine. The complex structure with NADPH indicated that Y174 in the re-face can change its side chain direction upon NADPH binding, indicating that Y174 may have a role as a gate for NADPH binding. Moreover, the heterologous host expressing GbsMerA (pGbsMerA) is more resistant to Hg toxicity when compared to the host lacking GbsMerA. Overall, this study provides a background for understanding the catalytic mechanism and Hg detoxification by GbsMerA and suggests the application of genetically engineered E. coli strains for environmental Hg removal.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea
| | - Min Ju Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.
- Genome-Based BioIT Convergence Institute, Asan, 31460, Republic of Korea.
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
24
|
Chen J, Hu G, Liu J, Poulain AJ, Pu Q, Huang R, Meng B, Feng X. The divergent effects of nitrate and ammonium application on mercury methylation, demethylation, and reduction in flooded paddy slurries. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132457. [PMID: 37669605 DOI: 10.1016/j.jhazmat.2023.132457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The production of methylmercury (MeHg) in flooded paddy fields determines its accumulation in rice grains; this, in turn, results in MeHg exposure risks for not only rice-eating humans but also wildlife. Nitrogen (N) fertilizers have been widely applied in rice cultivation fields to supply essential nutrients. However, the effects of N fertilizer addition on mercury (Hg) transformations are not unclear. This limits our understanding of MeHg formation in rice paddy ecosystems. In this study, we spiked three Hg tracers (200HgII, Me198Hg, and 202Hg0) in paddy slurries fertilized with urea, ammonium, and nitrate. The influences of N fertilization on Hg methylation, demethylation, and reduction and the underlying mechanisms were elucidated. The results revealed that dissimilatory nitrate reduction was the dominant process in the incubated paddy slurries. Nitrate addition inhibited HgII reduction, HgII methylation, and MeHg demethylation. Competition between nitrates and other electron acceptors (e.g., HgII, sulfate, or carbon dioxide) under dark conditions was the mechanism underlying nitrate-regulated Hg transformation. Ammonium and urea additions promoted HgII reduction, and anaerobic ammonium oxidation coupled with HgII reduction (Hgammox) was likely the reason. This work highlighted that nitrate addition not only inhibited HgII methylation but also reduced the demethylation of MeHg and therefore may generate more accumulation of MeHg in the incubated paddy slurries. Findings from this study link the biogeochemical cycling of N and Hg and provide crucial knowledge for assessing Hg risks in intermittently flooded wetland ecosystems.
Collapse
Affiliation(s)
- Ji Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
25
|
Yu C, Zhu Z, Meng K, Zhang H, Xu M. Unveiling the impact and mechanisms of Cd-driven ecological assembly and coexistence of bacterial communities in coastal sediments of Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132309. [PMID: 37639798 DOI: 10.1016/j.jhazmat.2023.132309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The microbial community assembly processes and underlying mechanisms in response to heavy metal accumulation in coastal sediments remain underexplored. In this study, the heavy metal concentration in samples were found below the marine sediment quality standards. Through partial Mantel tests and linear regression analysis, Cd was identified as the major influencing factor, displaying strongest correlation with the bacterial community in the sediments. The class Desulfuromonadia was identified as a biomarker which showed enrichment in the sediments with high Cd content. Additionally, the results of null model and the neutral community model demonstrated the prominent role of stochastic processes in the assembly of bacterial community. However, with the increase in Cd concentration, the influence of selection processes intensified, resulting in a decline in species migration rate and subsequent reduction in ecological niche width. Furthermore, the intensified competition and an increase in keystone species among bacterial populations further enhanced the stability of the microbial co-occurrence network in response to high Cd concentration. This study offers an insight into the effects of heavy metal on microbial assembly and coexistence, which are conducive to marine ecosystem management and conservation.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
26
|
Zhang R, Aris-Brosou S, Storck V, Liu J, Abdelhafiz MA, Feng X, Meng B, Poulain AJ. Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation. ISME COMMUNICATIONS 2023; 3:74. [PMID: 37454192 PMCID: PMC10349881 DOI: 10.1038/s43705-023-00277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21-513 mg kg-1 dry wt. soil; MeHg: 1.21-6.82 ng g-1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes, were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally, assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation between Archaea and Bacteria.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Veronika Storck
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | | |
Collapse
|
27
|
Liu J, Chen J, Poulain AJ, Pu Q, Hao Z, Meng B, Feng X. Mercury and Sulfur Redox Cycling Affect Methylmercury Levels in Rice Paddy Soils across a Contamination Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8149-8160. [PMID: 37194595 PMCID: PMC10234277 DOI: 10.1021/acs.est.3c02676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Methylmercury (MeHg) contamination in rice via paddy soils is an emerging global environmental issue. An understanding of mercury (Hg) transformation processes in paddy soils is urgently needed in order to control Hg contamination of human food and related health impacts. Sulfur (S)-regulated Hg transformation is one important process that controls Hg cycling in agricultural fields. In this study, Hg transformation processes, such as methylation, demethylation, oxidation, and reduction, and their responses to S input (sulfate and thiosulfate) in paddy soils with a Hg contamination gradient were elucidated simultaneously using a multi-compound-specific isotope labeling technique (200HgII, Me198Hg, and 202Hg0). In addition to HgII methylation and MeHg demethylation, this study revealed that microbially mediated reduction of HgII, methylation of Hg0, and oxidative demethylation-reduction of MeHg occurred under dark conditions; these processes served to transform Hg between different species (Hg0, HgII, and MeHg) in flooded paddy soils. Rapid redox recycling of Hg species contributed to Hg speciation resetting, which promoted the transformation between Hg0 and MeHg by generating bioavailable HgII for fuel methylation. Sulfur input also likely affected the microbial community structure and functional profile of HgII methylators and, therefore, influenced HgII methylation. The findings of this study contribute to our understanding of Hg transformation processes in paddy soils and provide much-needed knowledge for assessing Hg risks in hydrological fluctuation-regulated ecosystems.
Collapse
Affiliation(s)
- Jiang Liu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Ji Chen
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- College
of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Alexandre J. Poulain
- Biology
Department, University of Ottawa, 30 Marie Curie, Ottawa ON K1N 6N5, Canada
| | - Qiang Pu
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhengdong Hao
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xinbin Feng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
28
|
Pan WS, Zou Q, Hu M, Li WC, Xiong XR, Qi YT, Wu C. Microbial community composition and cooccurrence patterns driven by co-contamination of arsenic and antimony in antimony-mining area. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131535. [PMID: 37148793 DOI: 10.1016/j.jhazmat.2023.131535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
In the current study, a typical Sb mine was selected to explore the microbial community composition and assembly driven by the cocontamination of As/Sb with geographic distance. Our results showed that environmental parameters, especially pH, TOC, nitrate, total and bioavailable As/Sb contents largely affected the microbial community diversity and composition. The total and bioavailable As/Sb levels were significantly positively correlated with the relative abundance of Zavarzinella, Thermosporothrix and Holophaga, while the pH presented a significant negative correlation with the three genera, potentially implying they are important taxonomic groups in acid-mining soils. The cooccurrence network analysis indicated the environmental stress dominated by pH and As/Sb co-contamination affected the microbial modularity and interaction. Meanwhile, Homogeneous selection (HoS, 26.4-49.3%), and drift and others (DR, 27.1∼40.2%) were the most important assembly processes for soil bacterial, and the importance of HoS decreased and the DR increased with geographic distance to the contamination source respectively. Soil pH, nutrient availability, total and bioavailable As/Sb contents significantly affected the HoS and DR processes. This study provides theoretical support for microbial remediation in metal(loid)-contaminated soils.
Collapse
Affiliation(s)
- Wei-Song Pan
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Qi Zou
- South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510520, China
| | - Wai-Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Administrative Region, Hong Kong, China
| | - Xiao-Ran Xiong
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Yan-Ting Qi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
29
|
Abdelhafiz MA, Liu J, Jiang T, Pu Q, Aslam MW, Zhang K, Meng B, Feng X. DOM influences Hg methylation in paddy soils across a Hg contamination gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121237. [PMID: 36758923 DOI: 10.1016/j.envpol.2023.121237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Rice paddies provide optimum conditions for Hg methylation, and paddy soil is a hot spot for Hg methylation and the predominant source of methylmercury (MeHg) accumulated in rice grains. The role of dissolved organic matter (DOM) in controlling Hg bioavailability and methylation in rice paddy systems remains unclear. Paddy soils from eight various cultivation sites in China were chosen to investigate the variations in soil DOM and the influence of DOM concentration and optical characteristics on Hg methylation in rice paddy systems. In the present study, 151 rhizosphere soil samples were collected, and UV-Vis absorption and fluorescent spectroscopy were used to identify the optical properties of DOM. The relationship between MeHg and DOM's optical property indices revealed the production of MeHg consumes lower molecular weight DOM. Moreover, the correlation between DOM concentration and its optical characteristics highlighted the significant role of humic components on MeHg variability in paddy soil. Variation and correlation results demonstrated the allochthonous origin of DOM in the Hg-contaminated soil, with a higher molecular weight and humic character of DOM, as well as the dominant role of autochthonous DOM in promoting Hg methylation in uncontaminated soil. The current study indicated that soil organic matter and its dissolved fractions tend to limit Hg bioavailability and subsequently diminish MeHg production in contaminated paddy soils. Furthermore, the leading roles of allochthonous DOM in protecting MeHg from degradation and autochthonous DOM signatures in enhancing MeHg production in paddy soils. Overall, these findings provide insight into the correlative distributions of DOM and Hg along a Hg concentration gradient in paddy soil, thereby highlighting their potential role in controlling Hg bioavailability and regulating Hg methylation in the soil ecosystems.
Collapse
Affiliation(s)
- Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Tao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
30
|
Xu C, Feng Y, Li H, Jiang S, Ma R, Yao Y, Liu M, Yang Y, Xue Z. Non-photosynthetic chemoautotrophic CO 2 assimilation microorganisms carbon fixation efficiency and control factors in deep-sea hydrothermal vent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160805. [PMID: 36502982 DOI: 10.1016/j.scitotenv.2022.160805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Non-photosynthetic chemoautotrophic microorganisms in deep-sea hydrothermal vent can obtain energy by oxidation reducing substances and synthesize CO2 into organic carbon, and the development and utilization of microbial resources in this environment for CO2 fixation under ordinary environmental conditions is of great significance to understand the carbon cycle and microbial carbon fixation in deep-sea hydrothermal vent. In this study, a set of spiral-stirred bioreactor (SSB) was developed to cultivate a group of non-photosynthetic chemoautotrophic CO2 assimilation microorganisms (NPCAM), mainly Sphingomonadaceae (unclassified, the mean of which was 31.16 %), from deep-sea hydrothermal vent sediments, which have the characteristics of halophilic, acid-base and heavy metal resistant. The maximum carbon fixation efficiency (calculated by CO2) was 6.209 mg·CO2/(L·h) after 96 h of incubation in the presence of mixed electron donors (MEDs, 0.46 % NaNO2, 0.50 % Na2S2O3 and 1.25 % Na2S, w/v), mixed inorganic carbon sources (CO2, Na2CO3 and NaHCO3) and aerobic conditions. The detection of NPCAM synthetic organic fraction in SSB system, the study of single bacteria culturability and carbon fixation efficiency, the analysis of CO2 fixation pathway and the development of coupled carbon fixation technology are the prospective works that need to be further developed.
Collapse
Affiliation(s)
- Chenglong Xu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shiwei Jiang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruiyu Ma
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yisong Yao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhonghua Xue
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Wang M, Zhang W, Dong Z, Yang Z, Zhao J, Guo X. Distinct mediating patterns between metal filtering and species coexistence of rare and abundant subcommunities in heavily polluted river sediments. ENVIRONMENT INTERNATIONAL 2023; 172:107747. [PMID: 36693298 DOI: 10.1016/j.envint.2023.107747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It is unknown how anthropogenic pollutants released into freshwater ecosystems affect the assembly processes of microbial communities in river sediment. We used high-throughput sequencing to examine the assembly of rare and abundant subcommunities in a heavily polluted urban river: the Beiyun River in Beijing, China. Although deterministic processes overrode stochastic processes in shaping local rare and abundant subcommunities, there were distinctly different assembly mechanisms of rare and abundant subcommunities. Rare subcommunity assembly was governed more by interspecificinteractions, and environmental selection and dispersal limitation explained only a small fraction of the variation. However, both factors seemed to govern the assembly of abundant subcommunities. Our results implied that microbial co-occurrence associations tended to be higher when rare subcommunities were less driven by community assembly, and that these associations tended to be lower when abundant subcommunities were more driven by community assembly. A balance between the community assembly and species coexistence was exhibited atthesubcommunitylevel. Importantly, we tried to disentangle the assembly process of abundant subcommunities into introduction and colonization processes characterized by the presence/absence and relative abundance datasets. Interestingly, metals explained the highest percentage of spatial variation in the species introduction process. By affecting nutrient availability, metals also shaped the abundant subcommunity in the species colonization process, but this did not surpass nutrient availability. Therefore, disentangling the introduction and colonization processes enhances our understanding of the assembly mechanisms of microbial communities in heavily polluted running water ecosystems at fine geographical scales.
Collapse
Affiliation(s)
- Min Wang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Wei Zhang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Zhi Dong
- School of Life Sciences, Peking University, Beijing 100871, PR China
| | - Zirou Yang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Junying Zhao
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China.
| |
Collapse
|