1
|
Song K, Gao SH, Pan Y, Gao R, Li T, Xiao F, Zhang W, Fan L, Guo J, Wang A. Ecological and Health Risk Mediated by Micro(nano)plastics Aging Process: Perspectives and Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5878-5896. [PMID: 40108891 DOI: 10.1021/acs.est.4c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Aged micro(nano)plastics (MNPs) are normally the ultimate state of plastics in the environment after aging. The changes in the physical and chemical characteristics of aged MNPs significantly influence their environmental behavior by releasing additives, forming byproducts, and adsorbing contaminants. However, a systematic review is lacking on the effects of aged MNPs on ecological and human health regarding the increasing but scattered studies and results. This Review first summarizes the unique characteristics of aged MNPs and methods for quantifying their aging degree. Then we focused on the potential impacts on organisms, ecosystems, and human health, including the "Trojan horse" under real environmental conditions. Through combining meta-analysis and analytic hierarchy process (AHP) model, we demonstrated that, compared to virgin MNPs, aged MNPs would result in biomass decrease and oxidative stress increase on organisms and lead to total N/P decrease and greenhouse gas emissions increase on ecosystems while causing cell apoptosis, antioxidant system reaction, and inflammation in human health. Within the framework of ecological and human health risk assessment, we used the risk quotient (RQ) and physiologically based pharmacokinetic (PBK) models as examples to illustrate the importance of considering aging characteristics and the degree of MNPs in the process of data acquisition, model building, and formula evaluation. Given the ecological and health risks of aged MNPs, our urgent call for more studies of aged MNPs is to understand the potential hazards of MNPs in real-world environments.
Collapse
Affiliation(s)
- Kexiao Song
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yusheng Pan
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Rui Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Li
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fan Xiao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wanying Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
2
|
Liu X, Jin Y, Yin C, Yue O, Wang X, Li J, Jiang H. Fabrication of microplastic-free biomass-based masks: Enhanced multi-functionality with all-natural fibers. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136801. [PMID: 39644846 DOI: 10.1016/j.jhazmat.2024.136801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
With the coronavirus-2019 epidemic, disposable surgical masks have become a common personal protective necessity. However, off-the-shelf masks have low filtration efficiency and short service life and can only physically isolate pathogens, easily leading to secondary infection and cross-infection between users. Additionally, they produce debris and microplastics, which can be inhaled by the human body and cause serious diseases. To address this, this study introduced a brand-new, microplastic-free, long-life, biodegradable, self-disinfecting, and gas-sensitive mask made of basal dialdehyde-chitosan crosslinked animal-collagen/plant composite fibers (CP-Mask) with an asymmetric bilayer structure using scalable paper-processing technology. The CP-Mask demonstrated outstanding filtration performance (95.9 %) for particulate matter with various sizes and constantly maintained filtration efficiency even after 20 friction cycles. The CP-Mask also exhibited stable and lasting antibacterial properties, with significant inhibition rates of 99.21 % for Staphylococcus aureus and 98.86 % for Escherichia coli and could effectively filter bacterial aerosols. In addition, CP-Mask realized the real-time detection of respiratory ammonia concentration and timely identified the ammonia level. The average response value was 68.26 %, and the average response time was 159.3 s, presenting good circulatory stability and is suitable for early diagnosis of ammonia-related diseases. Breakthrough, the origin of natural ingredients, fundamentally makes CP-Mask less likely to emit microplastics than commercially available masks and endows it with complete biodegradability in soil within three months, eliminating the risk of microplastic inhalation from the source. The proposed CP-Mask provides a new idea to facilitate personal health monitoring and portability of medical protection equipment regarding biocompatibility, biodegradability, self-disinfection, and ammonia sensing ability.
Collapse
Affiliation(s)
- Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China.
| | - Yujie Jin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Changyu Yin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Ouyang Yue
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xuechuan Wang
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China.
| | - Huie Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Kang A, Luo Y, Luo Q, Li S, Tang Y, Yi F, Zhang H, Chen Y, Jia M, Xiong W, Yang Z, Xu H. An investigation into the aging mechanism of disposable face masks and the interaction between different influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135308. [PMID: 39053070 DOI: 10.1016/j.jhazmat.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 μg/g (Pb) to 29.01 ± 1.83 μg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 μg/g), chromium (VI) (4.20 μg/g), thallium (I) (0.92 μg/g), tetracycline (0.51 μg/g), and acenaphthene (1.73 μg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.
Collapse
Affiliation(s)
- Anqi Kang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuanling Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Qiao Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siyu Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yalin Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Meiying Jia
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haiyin Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
4
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
5
|
Zhang Y, Jiang F, Li F, Lu S, Liu Z, Wang Y, Chi Y, Jiang C, Zhang L, Chen Q, He Z, Zhao X, Qiao J, Xu X, Leung KMY, Liu X, Wu F. Global daily mask use estimation in the pandemic and its post environmental health risks: Analysis based on a validated dynamic mathematical model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134572. [PMID: 38772106 DOI: 10.1016/j.jhazmat.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.
Collapse
Affiliation(s)
- Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fei Jiang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zihao Liu
- School of information science and engineering, Shandong Normal University, Jinan 250358, China
| | - Yuwen Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Yiming Chi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenchen Jiang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Zhipeng He
- Shandong Freshwater Fisheries Research Institude, Jinan 250013, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianmin Qiao
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaohui Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Meng X, Ge L, Zhang J, Xue J, Gonzalez-Gil G, Vrouwenvelder JS, Guo S, Li Z. Nanoplastics induced health risk: Insights into intestinal barrier homeostasis and potential remediation strategy by dietary intervention. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134509. [PMID: 38704907 DOI: 10.1016/j.jhazmat.2024.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Aged nanoplastics (aged-NPs) have unique characteristics endowed by environmental actions, such as rough surface, high oxygen content. Although studies have highlighted the potential hazards of aged-NPs, limited research has provided strategies for aged-NPs pollution remediation. The dietary intervention of quercetin is a novel insight to address the health risks of aged-NPs. This study explored the impact of aged-NPs on intestinal barrier homeostasis at the environmentally relevant dose and investigated the alleviating effects of quercetin on aged-NPs toxicity through transcriptomics and molecular biology analysis. It indicated that aged-NPs induced intestinal barrier dysfunction, which was characterized by higher permeability, increased inflammation, and loss of epithelial integrity, while quercetin restored it. Aged-NPs disrupted redox homeostasis, upregulated inflammatory genes controlled by AP-1, and led to Bax-dependent mitochondrial apoptosis. Quercetin intervention effectively mitigated inflammation and apoptosis by activating the Nrf2. Thus, quercetin decreased intestinal free radical levels, inhibiting the phosphorylation of p38 and JNK. This study unveiled the harmful effects of aged-NPs on intestinal homeostasis and the practicability of dietary intervention against aged-NPs toxicity. These findings broaden the understanding of the NPs toxicity and provide an effective dietary strategy to relieve the health risks of NPs. ENVIRONMENTAL IMPLICATIONS: Growing levels of NPs pollution have represented severe health hazards to the population. This study focuses on the toxic mechanism of aged-NPs on the intestinal barrier and the alleviating effect of quercetin dietary intervention, which considers the environmental action and relevant dose. It revealed the harmful effects of aged-NPs on intestinal inflammation with the key point of free radical generation. Furthermore, a quercetin-rich diet holds significant promise for addressing and reversing intestinal damage caused by aged-NPs by maintaining intracellular redox homeostasis. These findings provide an effective dietary strategy to remediate human health risks caused by NPs.
Collapse
Affiliation(s)
- Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China; School of Food Science and Engineering, Ningxia University, Ningxia, Yinchuan 750021, PR China
| | - Lei Ge
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China
| | - Jiawei Zhang
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Graciela Gonzalez-Gil
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shaomin Guo
- Northwest A&F University Hospital, Northwest A&F University Shaanxi, Yangling 712100, PR China.
| | - Zhenyu Li
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China; Water Technologies Innovation Institute & Research advancement (WTIIRA), Saline Water Conversion Corporation (SWCC), P.O. Box 8328, Al-Jubail 31951, Saudi Arabia.
| |
Collapse
|
7
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
8
|
Bihannic I, Gley R, Gallo L, Badura A, Razafitianamaharavo A, Beuret M, Billet D, Bojic C, Caillet C, Morlot P, Zaffino M, Jouni F, George B, Boulet P, Noûs C, Danger M, Felten V, Pagnout C, Duval JFL. Photodegradation of disposable polypropylene face masks: Physicochemical properties of debris and implications for the toxicity of mask-carried river biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133067. [PMID: 38039813 DOI: 10.1016/j.jhazmat.2023.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.
Collapse
Affiliation(s)
| | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Lucas Gallo
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | | | | | - David Billet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Clément Bojic
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Fatina Jouni
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Béatrice George
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France
| | - Pascal Boulet
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | - Michael Danger
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | | |
Collapse
|
9
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Harikrishnan T, Sivakumar P, Sivakumar S, Arumugam S, Raman T, Singaram G, Thangavelu M, Kim W, Muthusamy G. Effect of microfibers induced toxicity in marine sedentary polychaete Hydroides elegans: Insight from embryogenesis axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167579. [PMID: 37797759 DOI: 10.1016/j.scitotenv.2023.167579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Presence of surgical face masks in the environment are more than ever before after the COVID-19 pandemic, and it poses a newer threat to aquatic habitats around the world due to microfibers (MFs) and other contaminants that get discharged when these masks deteriorate. The mechanism behind the developmental toxicity of MFs, especially released from surgical masks, on the early life stages of aquatic organisms are not well understood. Toxicity test were developed to examine the effects of MFs released from surgical facemask upon deterioration using the early gametes and early life stages of marine sedentary polychaete Hydroides elegans. For MFs release, cut pieces of face masks were allowed to degrade in seawater for different time points (1 day, 30 days and 120 days) after which the fibers were obtained for further toxicity studies. The gametes of H. elegans were exposed to the MFs (length < 20 μm) separately for 20 min at a concentration of 50 MFs/ml before fertilization. In addition, we also analyzed the experimental samples for heavy metals and organic substances released from face masks. Our findings demonstrated that gametes exposed to MFs affected the percentage of successful development, considerably slowed down the mitotic cell division and significantly postponed the time of larval hatching and also produced an adverse effect during embryogenesis. When the sperm were exposed fertilization rate was decreased drastically, whereas when the eggs were exposed to MFs fertilization was not inhibited but a delay in early embryonic development observed. In addition the release of heavy metals and other volatile organics from the degrading face masks could also contribute to overall toxicity of these materials in environment. Our study thus shows that inappropriately discarded face masks and MFs and other pollutants released from such face masks could pose long-term hazard to coastal ecosystems.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Priya Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Swetha Sivakumar
- Department of Biotechnology, Prince Venkateswara Arts and Science College, Chennai 600 073, India
| | - Sriramajayam Arumugam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai 600106, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech, Dept PolymerNano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
11
|
Chen F, Zhang Z, Li Y, Jiang H, Zhou Y, Liu H, Pan K, Ma J. Impact of facemask debris on marine diatoms: Physiology, surface properties, sinking rate, and copepod ingestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167222. [PMID: 37734605 DOI: 10.1016/j.scitotenv.2023.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Discarded surgical masks have become a new source of plastic waste in seawater capable of releasing numerous micro and nano plastic fragments. However, little information is available about how this waste impacts the ecological state of marine phytoplankton. Here, we exposed two model marine diatoms (Phaeodactylum tricornutum and Thalassiosira weissflogii) to mask-released debris (MD) that is characterized by various differently-charged functional groups. Although MD could only bind loosely to diatoms, it still inhibited their growth and significantly altered cell surface physicochemical properties. At the nanoscale, MD-exposed cell walls showed enhanced roughness and modulus, besides declined electrical potential, adhesion, and proportion of oxygen-containing compounds. As a result, diatom ingestion by copepods was reduced, and the sinking rate of the carbon pool consisting of MD plus diatoms decreased as well. Our study indicated that MD effects on diatoms have the potential to slow down carbon export from surface seawater to the deep sea. Since oxidation and generation of functional groups are common during the aging process of microplastics (MPs) in nature, the interactions between the diatom cell surface and MD have important environmental significance.
Collapse
Affiliation(s)
- Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei Province, China
| | - Yanfei Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei Province, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
12
|
Paço A, Oliveira AM, Ferreira-Filipe DA, Rodrigues ACM, Rocha RJM, Soares AMVM, Duarte AC, Patrício Silva AL, Rocha-Santos T. Facemasks: An insight into their abundance in wetlands, degradation, and potential ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166232. [PMID: 37574074 DOI: 10.1016/j.scitotenv.2023.166232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.
Collapse
Affiliation(s)
- Ana Paço
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Wang H, Zhu Z, Zhang L, Liu X, Sun W, Yan F, Zhou Y, Wang Z, Wang X, Wei C, Lai J, Chen Q, Zhu D, Zhang Y. The hind information: Exploring the impact of physical damage on mask microbial composition in the aquatic environment. ENVIRONMENTAL RESEARCH 2023; 237:116917. [PMID: 37611784 DOI: 10.1016/j.envres.2023.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Due to poor management and the lack of environmental awareness, lots of masks (an emerging form of plastic pollution) are discarded into the environment during the COVID-19, thereby jeopardizing the health of humans and the environment. Our study introduces a novel perspective by examining the impact of physical damage on the microbial composition of masks in the water environment. We focus on the variations in biofilm formation on each layer of both damaged and undamaged masks, which allows us to understand more about the biofilm on each layer and the significant changes that occur when masks are physically damaged. Research has shown that the community structure of microorganisms on discarded masks can be altered in just ten days, showing an evolution from undifferentiated pioneer colonizing species ("non-picky") to adaptive dominant species ("picky"). Especially, considering that discarded masks were inevitably damaged, we found that the biomass on the damaged samples is 1.62-2.38 times higher than that of the undamaged samples, respectively. Moreover, the microbial community structure on it was also significantly different. Genes involved in biogeochemical cycles of nutrients are more enriched in damaged masks. When damaged, the colonization process and community structure in the middle layer significantly differ from those in the inner and outer layers and even enrich more pathogenic bacteria. Based on the above, it is evident that the environmental risk of masks cannot be assessed as a whole, and the middle layer carries a higher risk.
Collapse
Affiliation(s)
- Hu Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zixian Zhu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xiaohui Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Weihong Sun
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Feifei Yan
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yuxin Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, Hubei, PR China
| | - Xiaofeng Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Chunyan Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jie Lai
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China.
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
14
|
Wang L, Li S, Ahmad IM, Zhang G, Sun Y, Wang Y, Sun C, Jiang C, Cui P, Li D. Global face mask pollution: threats to the environment and wildlife, and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164055. [PMID: 37178835 PMCID: PMC10174332 DOI: 10.1016/j.scitotenv.2023.164055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Face masks are an indispensable low-cost public healthcare necessity for containing viral transmission. After the coronavirus disease (COVID-19) became a pandemic, there was an unprecedented demand for, and subsequent increase in face mask production and use, leading to global ecological challenges, including excessive resource consumption and significant environmental pollution. Here, we review the global demand volume for face masks and the associated energy consumption and pollution potential throughout their life cycle. First, the production and distribution processes consume petroleum-based raw materials and other energy sources and release greenhouse gases. Second, most methods of mask waste disposal result in secondary microplastic pollution and the release of toxic gases and organic substances. Third, face masks discarded in outdoor environments represent a new plastic pollutant and pose significant challenges to the environment and wildlife in various ecosystems. Therefore, the long-term impacts on environmental and wildlife health aspects related to the production, use, and disposal of face masks should be considered and urgently investigated. Here, we propose five reasonable countermeasures to alleviate these global-scale ecological crises induced by mask use during and following the COVID-19 pandemic era: increasing public awareness; improving mask waste management; innovating waste disposal methods; developing biodegradable masks; and formulating relevant policies and regulations. Implementation of these measures will help address the pollution caused by face masks.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxuan Li
- School of Languages and Culture, Hebei GEO University; Shijiazhuang 050031, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Guiying Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuan Jiang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
15
|
Liu YJ, Yang HY, Hu YY, Li ZH, Yin H, He YT, Zhong KQ, Yuan L, Zheng X, Sheng GP. Face mask derived micro(nano)plastics and organic compounds potentially induce threat to aquatic ecosystem security revealed by toxicogenomics-based assay. WATER RESEARCH 2023; 242:120251. [PMID: 37356160 DOI: 10.1016/j.watres.2023.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Micro(nano)plastics widely detected in aquatic environments have caused serious threat to water quality security. However, as a potential important source of micro(nano)plastics in surface water during the COVID-19 pandemic, the ecological risks of face mask waste to aquatic environments remain poorly understood. Herein, we comprehensively characterized the micro(nano)plastics and organic compounds released from four daily used face masks in aqueous environments and further evaluated their potential impacts on aquatic ecosystem safety by quantitative genotoxicity assay. Results from spectroscopy and high-resolution mass spectrum showed that plastic microfibers/particles (∼11%-83%) and leachable organic compounds (∼15%-87%) were dominantly emitted pollutants, which were significantly higher than nanoplastics (< ∼5%) based on mass of carbon. Additionally, a toxicogenomics approach using green fluorescence protein-fused whole-cell array revealed that membrane stress was the primary response upon the exposure to micro(nano)plastics, whereas the emitted organic chemicals were mainly responsible for DNA damage involving most of the DNA repair pathways (e.g., base/nucleotide excision repair, mismatch repair, double-strand break repair), implying their severe threat to membrane structure and DNA replication of microorganisms. Therefore, the persistent release of discarded face masks derived pollutants might exacerbate water quality and even adversely affect aquatic microbial functions. These findings would contribute to unraveling the potential effects of face mask waste on aquatic ecosystem security and highlight the necessity for more developed management regulations in face mask disposal.
Collapse
Affiliation(s)
- Yan-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - He-Yun Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yan-Yun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Hao Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yun-Tian He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Keng-Qiang Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Kim L, Il Kwak J, Kim SA, An YJ. Potential effects of natural aging process on the characteristics and toxicity of facial masks: A zebrafish-based study. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131425. [PMID: 37084512 DOI: 10.1016/j.jhazmat.2023.131425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The use of facial masks has increased and is therefore being recognized as a large source of environmental microplastics. Herein, we naturally aged disposable masks in a lake for eight weeks and compared the toxicity of mask-derived microplastics depending on the aging process using zebrafish (Danio rerio). Zebrafish were exposed to virgin and aged mask fragments (VF and AF, respectively) for eight weeks. The aging process induced cracks on the surface of mask fragments and chemical adsorption. Both VF and AFs damaged the zebrafish's liver, gills, and intestine and adversely affected their digestive ability, and their movement-aggression was decreased. These observations highlight the consequences of indiscriminately discarding masks or AFs following consumption. In conclusion, personal protective equipment waste in the environment should be appropriately managed to prevent negative impacts on aquatic organisms and, consequently, on humans via the food chain.
Collapse
Affiliation(s)
- Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea
| | - Sang A Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea.
| |
Collapse
|
17
|
Ma J, Chen F, Chen CC, Zhang Z, Zhong Z, Jiang H, Pu J, Li Y, Pan K. Comparison between discarded facemask and common plastic waste on microbial colonization and physiochemical properties during aging in seawater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131583. [PMID: 37201275 DOI: 10.1016/j.jhazmat.2023.131583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Facemasks are indispensable for preventing the spread of COVID-19. However, improper disposal of discarded facemasks has led to their contamination in the marine environment. To understand the environmental risk of this emerging plastic pollution, it's important to clarify the features that distinguish discarded facemasks from common plastic waste during aging. This study compared the microbial colonization, degradation-related enzymes, and physicochemical properties among surgical masks, polystyrene cups, polycarbonate bottles, and polyethylene terephthalate bottles in their aging processes in natural seawater. Compared to the other plastic wastes, surgical masks were colonized by the most diverse microorganisms, reaching 1521 unique prokaryotic OTUs after 21-day exposure in seawater. Moreover, the activity of eukaryotic enzymes associated with plastic degradation was 80-fold higher than that in seawater, indicating that the colonized eukaryotes would be the major microorganisms degrading the surgical masks. Meanwhile, the nano-sized defects (depth between 8 and 61 nm) would evolve into cracks of bigger sizes and result in the breakage of the microfibers and releasing microplastics into the ocean. Overall, our study demonstrated a distinctive plastisphere occurred in surgical masks from both microbial and physiochemical aspects. This work provides new insights for assessing the potential risk of plastic pollution caused by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, Guangdong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Zihan Zhong
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Junbao Pu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China.
| |
Collapse
|
18
|
Baysal A, Saygin H. Multispectroscopic Characterization of Surface Interaction between Antibiotics and Micro(nano)-sized Plastics from Surgical Masks and Plastic Bottles. ACS OMEGA 2023; 8:12739-12751. [PMID: 37065040 PMCID: PMC10099137 DOI: 10.1021/acsomega.2c07927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Recent studies have shown that plastic particles can sorb antibiotics, and these sorption properties have been examined in various studies; however, the possible mechanism responsible for the interactions requires a deeper investigation in terms of further interaction with living systems. Moreover, the usage of disposable surgical masks and plastic bottles has increased the plastic pollution risk for living systems like humans. Therefore, this study aimed to examine the sorption characteristics between antibiotics (amoxicillin and spiramycin) and plastic particles from surgical masks and plastic bottles through batch sorption experiments. In the study, their surface interactions were characterized using multispectroscopic approaches including FTIR, Raman spectrometry, and SEM-EDX, and various surface indicators (e.g., surface oxidation, deformation, and biological potential) were examined. The sorption results showed that adsorption kinetics and the isotherm of amoxicillin and spiramycin on micro(nano)plastics from surgical masks and plastic bottles closely fit the pseudo-second-order kinetic model and Langmiur isotherm. These results indicated that the evidence for the antibiotic interaction with particles was changes in the surface functional group intensities and up-shifting, and this correlated with the sorption of antibiotics on micro(nano)-sized plastics. The C/N ratio of the plastic particles before and after antibiotic treatment was used as an indicator for the surface biological interaction, and the results showed that C/N ratios of surgical mask particles increased with both types of antibiotic sorption. However, the C/N of the particles from plastic bottles showed antibiotic type-dependence. The surface deformation indicators (e.g., O/C, C=O, C=C, and O-H indices) showed that the O/C ratios of micro(nano)plastics from surgical masks were higher with the amoxicillin and spiramycin sorption, and the C=O indices were positively linked with the amoxicillin sorption stages, whereas the C=C and O-H had a negative correlation with the amoxicillin sorption stages. Moreover, amoxicillin sorption influenced the O/C ratio and indices of O-H and C=C of micro(nano)plastics from plastic bottles in a limited manner. The C=O groups of the micro(nano)plastics from plastic bottles were positively influenced by the spiramycin sorption stages, whereas it was negatively linked with amoxicillin sorption stages. Overall, the findings from surface indicators indicated that the micro(nano)plastics from surgical masks can be more influenced with antibiotic sorption compared to plastic bottles.
Collapse
Affiliation(s)
- Asli Baysal
- Istanbul
Technical University, Science and Letters
Faculty, Chemistry Department, Maslak, Sariyer, Istanbul 34467, Turkey
| | - Hasan Saygin
- Istanbul
Aydin University, Application and
Research Center for Advanced Studies, Sefakoy, Kucukcekmece, Istanbul 34295, Turkey
| |
Collapse
|
19
|
An investigation into the aging of disposable face masks in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130671. [PMCID: PMC9789546 DOI: 10.1016/j.jhazmat.2022.130671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 09/26/2023]
Abstract
Due to the excessive use of disposable face masks during the COVID-19 pandemic, their accumulation has posed a great threat to the environment. In this study, we explored the fate of masks after being disposed in landfill. We simulated the possible process that masks would experience, including the exposure to sunlight before being covered and the contact with landfill leachate. After exposure to UV radiation, all three mask layers exhibited abrasions and fractures on the surface and became unstable with the increased UV radiation duration showed aging process. The alterations in chemical groups of masks as well as the lower mechanical strength of masks after UV weathering were detected to prove the happened aging process. Then it was found that the aging of masks in landfill leachate was further accelerated compared to these processes occurring in deionized water. Furthermore, the carbonyl index and isotacticity of the mask samples after aging for 30 days in leachate were higher than those of pristine materials, especially for those endured longer UV radiation. Similarly, the weight and tensile strength of the aged masks were also found lower than the original samples. Masks were likely to release more microparticles and high concentration of metal elements into leachate than deionized water after UV radiation and aging. After being exposed to UV radiation for 48 h, the concentration of released particles in leachate was 39.45 μL/L after 1 day and then grew to 309.45 μL/L after 30 days of aging. Seven elements (Al, Cr, Cu, Zn, Cd, Sb and Pb) were detected in leachate and the concentration of this metal elements increased with the longer aging time. The findings of this study can advance our understanding of the fate of disposable masks in the landfill and develop the strategy to address this challenge in waste management.
Collapse
|
20
|
Ma J, Chen F, Zhang Z, Li Y, Liu J, Chen CC, Pan K. Eukaryotic community succession on discarded face masks in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158552. [PMID: 36087664 PMCID: PMC9448716 DOI: 10.1016/j.scitotenv.2022.158552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
Wearing facemasks remains an essential strategy for combating the COVID-19 pandemic. However, used masks are becoming plastic wastes that are widespread in the oceans, which is raising concerns about the potential impacts of these novel plastic niches on marine organisms. To delve into this issue, we exposed surgical masks to coastal waters for 30 days. Valuable information was recorded weekly in regard to the succession of the eukaryotic community inhabiting the masks via high-throughput 18S rRNA gene sequencing. Generally, the community on masks was significantly distinct from that in the surrounding seawater. With 1150 different eukaryotic taxa identified, the diversity of the vigorous colonizers of masks peaked at the beginning and decreased over time. A hallmark of initial colonization was the aggregation of diatoms, which formed biofilms on masks, followed by dinoflagellates that acted as a turning point for subsequent development of calcified species and other predators. This study provides insight into the eukaryotic community dynamics on discarded masks in the marine environment and highlights that the potential mask-mediated harmful species clustering may threaten the marine ecosystem.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ciara Chun Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
21
|
Wang Q, Huang R, Li R. Impact of the COVID-19 pandemic on research on marine plastic pollution - A bibliometric-based assessment. MARINE POLICY 2022; 146:105285. [PMID: 36120086 PMCID: PMC9464599 DOI: 10.1016/j.marpol.2022.105285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 05/05/2023]
Abstract
Fighting the COVID-19 pandemic has led to a dramatic increase in plastic waste, which has had a huge impact on the environment, including the marine environment. This work aims to evaluate the pattern of national research cooperation, research hotspots, and research evolution before and during the epidemic by systematically reviewing the publications on marine plastic pollution during 2015-2019 (before the pandemic) 2020-2022 (during the pandemic) using the systematic literature review and latent semantic analysis. The results show (i) Compared to pre-pandemic, publications on marine pollution during the COVID-19 pandemic declined briefly and then increased sharply. (ii) Compared with before the pandemic, the national cooperation model has changed during the pandemic, and four major research centers have been formed: Central European countries centered on Italy; Nordic countries centered on United Kingdom; South Korea, India and other developing countries in Asia and Africa and a Pacific Rim country centered on United States and China. (iii) The knowledge map of keyword clustering does not change significantly before and during the COVID-19: ecosystem, spatial distribution, environmental governance and biodegradation. However, there are differences in the sub-category research of the four types of keywords. (iv) The impact of marine plastic on organisms and the governance of marine plastic pollution have become a branch of knowledge that have evolved rapidly during the pandemic. The governance of marine plastic pollution and microplastics are expected to become an important research direction.
Collapse
Affiliation(s)
- Qiang Wang
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- School of Economics and Management, Xinjiang University, Wulumuqi, Xinjiang, 830046, People's Republic of China
- Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Rui Huang
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Rongrong Li
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- School of Economics and Management, Xinjiang University, Wulumuqi, Xinjiang, 830046, People's Republic of China
- Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| |
Collapse
|
22
|
Rivas ML, Albion I, Bernal B, Handcock RN, Heatwole SJ, Parrott ML, Piazza KA, Deschaseaux E. The plastic pandemic: COVID-19 has accelerated plastic pollution, but there is a cure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157555. [PMID: 35878850 PMCID: PMC9304335 DOI: 10.1016/j.scitotenv.2022.157555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 05/10/2023]
Abstract
Plastic pollution is now present in all areas of our planet, including its last wilderness, Antarctica, and the plastic crisis has further escalated because of COVID-19. The pandemic has caused a significant increase in the global consumption of single-use protective items such as masks and gloves. These and other plastic items add to the suite of plastic pollution issues, from entanglement of wildlife to microplastic bioaccumulation. Given plastics are a major threat facing humans and wildlife, swift action to reduce plastic pollution is urgently needed. Solutions to plastic pollution are within reach. With collective, impactful action we will ensure a better future for our planet and ourselves. Here, we propose several measures for decision-makers to implement to achieve a solution and tackle plastic pollution as a united, global community.
Collapse
Affiliation(s)
- Marga L Rivas
- Biology Department, Campus of Excellence of Marine Science (CEIMAR), University of Cádiz, Spain.
| | - Ingrid Albion
- Australian Association for Environmental Education, PO Box 926, Cannington, WA 6987, Australia
| | - Blanca Bernal
- GreenCollar US, International Projects. Chicago IL, USA
| | - Rebecca N Handcock
- Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Siobhan J Heatwole
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marissa L Parrott
- Wildlife Conservation and Science, Zoos Victoria, Parkville, VIC 3052, Australia
| | - Kathryn A Piazza
- Department of Chemistry, State University of New York at Oswego, Oswego, NY, USA
| | - Elisabeth Deschaseaux
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
23
|
Dioses-Salinas DC, Pizarro-Ortega CI, Dobaradaran S, Ben-Haddad M, De-la-Torre GE. Face masks invading protected areas: Risks and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157636. [PMID: 35905957 PMCID: PMC9316628 DOI: 10.1016/j.scitotenv.2022.157636] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 05/05/2023]
Abstract
Among the indirect environmental impacts generated by the global COVID-19 pandemic, contamination with personal protective equipment (PPE), like face masks, may be one of the most relevant ones. PPE has been found in multiple aquatic, marine, and terrestrial environments, including places of absolute relevancy to biodiversity conservation, such as protected areas (PAs). Here, a brief report of the presence of PPE in six PAs of Peru is presented. PPE pollution in PAs consisted mainly of single-use and reusable face masks, as well as plastics associated with PAs, such as KN95 respirator wrappings. The mean PPE density was estimated as 1.32 × 10-3 PPE/m2. FTIR spectroscopy confirmed that face masks and wrappers mainly consisted of polypropylene and polyethylene, two of the most commonly available synthetic polymers. The material was poorly degraded according to their FTIR spectra, possibly suggesting that they were discarded recently. The recent ban on single-use plastic in Peruvian PAs is regarded as a great step forward toward the efforts made to preserve these invaluable places. However, these measures seemed insufficient to prevent PPE and other types of litter from contaminating areas of ecological importance. Considering the current scenario, several recommendations were proposed to be implemented in PAs in order to prevent PPE from becoming a new plastic issue to tackle. These recommendations are expected to also serve for future events where the use of single-use plastics becomes inevitable, like global pandemics.
Collapse
Affiliation(s)
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
24
|
Zuo Z, Wang Q, Zhang C, Zou J. Single and combined effects of microplastics and cadmium on juvenile grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109424. [PMID: 35918021 DOI: 10.1016/j.cbpc.2022.109424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) have received extensive attention as a new type of environmental pollutants with potential ecological risks. However, there are still few studies on the physiological stress response of aquatic organisms under the interaction of MPs and heavy metals. In this study, grass carp (Ctenopharyngodon idellus) were chosen as experimental fish and were exposed to 5 μm polystyrene microplastics (PS - MPs, 700 μg/L) and cadmium (Cd, 100 μg/L) individually or in combination. The results indicated that the presence of Cd didn't affect the accumulation of MPs in the intestines of grass carp. On the contrary, the concentration of Cd in the intestines of grass carp was higher in the MPs - Cd combined exposure group than in the Cd alone exposure group. Histological analysis revealed multiple abnormalities in the intestines after acute exposure, and the damage in the MPs - Cd combined exposure group was particularly severe. After 24 h of exposure, the expression of pro-inflammatory cytokines was significantly up-regulated in all exposed groups. However, after 48 h of exposure, the expression of inflammatory cytokines was significantly down-regulated, which may be related to intestinal damage. Our results deepen the significance of toxicological studies of MPs exposure, highlight their interaction with heavy metal toxicants, and provide important data for assessing the risk of MPs and heavy metals to grass carp.
Collapse
Affiliation(s)
- Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chaonan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310000, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|