1
|
Buss W, Cooper C, Rahbari A, Khanna N, Bryant B. Novel technique to enhance phosphorus availability in sewage sludge biochar using wood ash extract to produce an effective circular economy product. ENVIRONMENTAL RESEARCH 2025; 275:121382. [PMID: 40086569 DOI: 10.1016/j.envres.2025.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Sewage sludge (or biosolids) produced during wastewater treatment contain significant amounts of phosphorus. Pyrolysis treatment can produce a safe material while sequestering carbon; however, it underutilises the phosphorus in the resulting biochar, leaving it partially inaccessible to plants. Here the effect of doping calcium-rich sewage sludge (14 % calcium) with potassium acetate, combustion wood ash and its water-extract on phosphorus availability, and carbon and nitrogen release during pyrolysis are investigated at 500 and 700 °C. The aim was to produce an effective circular economy material with superior P release properties. Potassium acetate addition increased the amount of water-extractable phosphorus in sewage sludge biochar produced at 500 °C by three-fold (to 3.6 % of the total phosphorus content) but had no effect in biochar produced at 700 °C. As hypothesised, potassium doping was less effective in increasing phosphorus availability than reported previously due to the high calcium content in sewage sludge that locked up phosphorus. In a wheat pot trial, doped biochar (500 °C) still resulted in 28 % higher stem biomass and 29 % grain phosphorus uptake compared to biochar without potassium acetate and the water-extractable P content in thermally treated sewage sludge correlated with phosphorus uptake and plant biomass. Replacement of potassium acetate with combustion wood ash did not improve phosphorus availability in biochar. However, extracting wood ash with water first and using this extract for sewage sludge doping added 2.5 % potassium and doubled the water-extractable phosphorus content in the resulting 500°C-biochar. This proof-of-concept highlights suitability of waste-derived wood ash extract as dopant to boost the potassium content and phosphorus availability in sewage sludge biochar. This innovative circular economy process produces enhanced sewage sludge biochar fertilisers from two waste materials with significant economic and environmental benefits, including diversion of waste from landfill and emission reductions.
Collapse
Affiliation(s)
- Wolfram Buss
- Research School of Biology, Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| | - Christopher Cooper
- School of Engineering, Australian National University, 31 North Road, Canberra, ACT, 2601, Australia
| | - Alireza Rahbari
- School of Engineering, Australian National University, 31 North Road, Canberra, ACT, 2601, Australia
| | - Nupur Khanna
- Icon Water, 12 Hoskins Street, Mitchell, ACT, 2911, Australia
| | - Benjamin Bryant
- Icon Water, 12 Hoskins Street, Mitchell, ACT, 2911, Australia; Faculty of Science and Technology, University of Canberra, 11 Kirinari Street, Bruce, ACT, 2601, Australia
| |
Collapse
|
2
|
Yeshiwas AG, Bayeh GM, Tsega TD, Tsega SS, Gebeyehu AA, Alamrie Asmare Z, Anteneh RM, Ejigu AG, Ahmed AF, Yigzaw ZA, Temesgen A, Enawgaw AS, Yirdaw G, Mekonen H, Yenew C. Scoping Review on Mitigating the Silent Threat of Toxic Industrial Waste: Eco-Rituals Strategies for Remediation and Ecosystem Restoration. ENVIRONMENTAL HEALTH INSIGHTS 2025; 19:11786302251329795. [PMID: 40297656 PMCID: PMC12035000 DOI: 10.1177/11786302251329795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/09/2025] [Indexed: 04/30/2025]
Abstract
Background The problem of toxic industrial waste impacting soil and water quality remains a significant environmental threat, yet comprehensive solutions are lacking. This review addresses this gap by exploring the effects of industrial waste on ecosystems and proposing strategies for remediation. Its aim is to provide a thorough understanding of the issue and suggest actionable solutions to minimize environmental damage. Methods A comprehensive scoping review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were sourced from major academic databases, including Science Direct, Scopus, PubMed, Academic Search Premier, Springer Link, Google Scholar, and Web of Science. A total of 105 relevant articles were included based on strict eligibility criteria. The review process encompassed identification, screening, and eligibility checks, followed by data abstraction and analysis. Results The scoping review highlights the severe impact of toxic industrial waste on soil and water quality, emphasizing pollutants such as heavy metals (cadmium, lead, chromium), organic contaminants, and excess nutrients (nitrogen and phosphorus). These pollutants degrade aquatic ecosystems, causing acidification, eutrophication, and oxygen depletion, leading to biodiversity loss and the mobilization of toxic metals. Soil health is similarly compromised, with heavy metal contamination reducing fertility and disrupting microbial communities essential for nutrient cycling. Mitigation strategies, including cleaner production technologies, effluent treatment, bioremediation, and phytoremediation, offer promising solutions. These eco-friendly approaches effectively reduce pollutants, restore ecosystems, and enhance environmental sustainability, thus mitigating the long-term risks posed by industrial waste on soil and water quality. Conclusions and recommendations The findings confirm that toxic industrial waste is a critical environmental threat that impacts both aquatic ecosystems and terrestrial soils. Immediate action is necessary to address ecological degradation. Recommended strategies include banning harmful raw materials, pre-treatment of waste, riparian buffering, bioremediation, and stricter regulations to control pollution and safeguard ecosystems.
Collapse
Affiliation(s)
- Almaw Genet Yeshiwas
- Department of Environmental Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| | - Gashaw Melkie Bayeh
- Department of Environmental Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| | - Tilahun Degu Tsega
- Department of Public Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Sintayehu Simie Tsega
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Asaye Alamneh Gebeyehu
- Depatment of Public Health, College of health science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zufan Alamrie Asmare
- Department of Ophthalmology, School of Medicine and Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Rahel Mulatie Anteneh
- Depatment of Public Health, College of health science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amare Genetu Ejigu
- Department of Midwifery, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Ahmed Fentaw Ahmed
- Department of Public Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Zeamanuel Anteneh Yigzaw
- Department of Health Promotion and Behavioral Sciences, School of Public Health, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abathun Temesgen
- Department of Environmental Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| | - Anley Shiferaw Enawgaw
- Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of Environmental Health Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habitamu Mekonen
- Department of Human Nutrition, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Chalachew Yenew
- Department of Environmental Health Sciences, Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
3
|
Pang H, An L, Ding J, Wei Q, Luo J, He J, Tian Y, Liu Y, Lu J. Recyclable cation exchange resin-driven fermentation of waste activated sludge in sequential batch-parallel pattern: long-term resin/regenerant recycle stability and triple driving mechanisms. WATER RESEARCH 2025; 281:123654. [PMID: 40273601 DOI: 10.1016/j.watres.2025.123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Anaerobic acidogenic fermentation has been posited as a preferable technology for waste activated sludge management, whereas the inefficient hydrolysis, inadequate metabolism and disordered microbiota still existed as three fermentability limitations. The existing solutions addressed single limitation while consuming substantial chemicals/energy, thereby restraining technological dissemination. Innovatively, the recyclable cation exchange resin (CER) is a promising approach for synchronously overcoming these fermentability limitations and reducing chemicals/energy costs from sludge-native metal removal perspective; however, it has been rarely reported. This study pioneered a recyclable CER-driven sludge fermentation in continuous CER and regenerant reuse scene, taking comprehensive insights into long-term performance and multiple mechanisms. The CER induced speciation conversion and stepwise removal of structural metals from sludge, especially organic-binding and residual Ca&Mg, which played triple driving contributions: (1) breaking metal-bridging sites and hydrogen bonds disentangled protein molecules for raising electronegative repulsion and flocculation energy barrier, causing synergic extracellular and intracellular hydrolysis (up to 30.05 %); (2) liberating endogenous redox mediators from metal-complexations for assisting electron shuttle and extracellular respiration, which metabolic electron transfer activity by 1.58 times; (3) triggering "bacteria screening" through sensitive methanogen inhibition and tolerant acidogens growth towards maximum acidogenic eco-functions. Such fermentability breakthroughs greatly promoted short-chain fatty acids (superior carbon sources) accumulation by average 2.52 folds while declining sludge solid by 55.87 %. The NaCl regeneration thoroughly restored CER active sites and eluted pollutant blockages, with negligible capability loss ≤ 3.53 % in 18-cycle operations, which stabilized acidogenic performances during 72-day fermentation (RSD ≤ 7.88 %). The fermentative products presented as high-quality carbon sources with abundant carbon and absent nitrogen, owing to CER-mediated NH4+ exchange. Innovative batch-parallel operation was established in engineering strategy, offering 409.49 CNY/ton SS income. The findings provided mechanism framework linking sludge fermentability with native metal functions.
Collapse
Affiliation(s)
- Heliang Pang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Lei An
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiangbo Ding
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Wei
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
4
|
Teng D, Lv Z, Wang N, Wang W, Fan G, Li P, Yang W. Ligand geometry matters: Comparative study of linear and annular chelating ligands in tailored magnetic chitosan for Cu(II) removal. Int J Biol Macromol 2025; 303:140687. [PMID: 39914534 DOI: 10.1016/j.ijbiomac.2025.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The chelation between metal ions and ligands is pivotal in defining the adsorption capacity and selectivity of Cu(II) adsorbents, particularly those based on chitosan (CS). However, the influence of the spatial geometric configuration of chelating ligands on Cu(II) chelation remains poorly understood. Here, we developed two amino ligand-modified CS-based adsorbents with distinct spatial ligand configurations-linear (DA-CS) and annular (MA-CS)-to elucidate their Cu(II) chelation mechanisms. Adsorption isothermal and kinetic studies revealed that the MA-CS adsorbent exhibited an adsorption capacity and rate constant approximately double those of DA-CS under identical conditions, underscoring the superior performance of MA-CS. Density Functional Theory (DFT) calculations further demonstrated that Cu(II) ions form more stable coordination bonds with nitrogen atoms in the annular MA-CS structure than in the linear DA-CS structure, with calculated adsorption energies of -28.63 eV and - 26.98 eV, respectively. Additionally, MA-CS displayed excellent thermal stability and a rougher surface morphology, achieving Cu(II) removal rates of up to 96.2 % while maintaining structural integrity and adsorption efficiency over five reuse cycles. These results establish MA-CS, with its annular ligand structure, as a durable adsorbent and optimized CS-based adsorbent for water treatment and environmental engineering applications.
Collapse
Affiliation(s)
- Daoguang Teng
- Zhongyuan Critical Metals Laboratory (Zhengzhou University), Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luoyang Industrial Technology Institute, Luoyang 471000, China
| | - Zhifang Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Wang
- Zhongyuan Critical Metals Laboratory (Zhengzhou University), Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luoyang Industrial Technology Institute, Luoyang 471000, China
| | - Guixia Fan
- Zhongyuan Critical Metals Laboratory (Zhengzhou University), Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luoyang Industrial Technology Institute, Luoyang 471000, China
| | - Peng Li
- Zhongyuan Critical Metals Laboratory (Zhengzhou University), Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luoyang Industrial Technology Institute, Luoyang 471000, China.
| | - Wenshuai Yang
- Zhongyuan Critical Metals Laboratory (Zhengzhou University), Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China; Luoyang Industrial Technology Institute, Luoyang 471000, China.
| |
Collapse
|
5
|
Rocha F, Ratola N, Homem V. Heavy metal(loid)s and nutrients in sewage sludge in Portugal - Suitability for use in agricultural soils and assessment of potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178595. [PMID: 39848149 DOI: 10.1016/j.scitotenv.2025.178595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The presence of heavy metal(loid)s in sewage sludge is a cause of concern and an obstacle to its agricultural valorisation. This study analysed the elemental composition of sewage sludge from 42 Portuguese wastewater treatment plants (WWTPs) during summer and winter, investigating heavy metal(loid) contamination, nutrient content, and potential risks related to sludge application to agricultural soils. Levels of 8 heavy metal(loid)s were investigated, ranging from not detected (Hg) to 5120 mg kg-1 dw (Zn), decreasing in the order Zn > Cu > Cr > Ni > Pb > As>Cd > Hg. The legal requirements for agricultural use of sludge were overall met, but elevated levels of Zn and Cu, linked to industrial sources, exceeded the permitted limits in 3 WWTPs. On average, N, P, K, Mg, and Ca comprised 80 % of the sludge nutrient profile. No seasonal variations were found, but sludge composition varied with WWTP size, wastewater origin, and between thickened and digested samples. Environmental hazard indicators showed significant sludge contamination with Zn, Cu, and Cd. However, the geoaccumulation index, potential ecological risk indicators, and risk characterization ratios showed no significant risks to sludge-amended soils, assuming a single application of 5 tons ha-1. Human health risk assessment for workers handling sewage sludge identified dermal contact as the main route of exposure, with non-carcinogenic risk for Cr and carcinogenic risk for Ni and Cr at the highest reported levels. Sewage sludge produced in Portugal was considered suitable for agricultural use, provided that it is closely monitored and well-managed to meet the needs of crops and receiving soils, while mitigating environmental risks.
Collapse
Affiliation(s)
- Filipe Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Ratola
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
6
|
Zhang L, Xue W, Sun H, Sun Q, Hu Y, Wu R, Du Y, Liu S, Zou G. Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178389. [PMID: 39787648 DOI: 10.1016/j.scitotenv.2025.178389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs. The results revealed that, compared with control or chemical fertilizer treatments, continuous application of CM raised the concentrations of cadmium (Cd), chromium (Cr), copper (Cu), and zinc (Zn) in topsoil by 29 %-38 %, 15 %-16 %,11 %-14 %, and 20 %-36 %, respectively; SSC increased the concentrations of Cd, Cr, Mercury (Hg), arsenic (As), Cu, and Zn by 18 %-26 %, 8 %-9 %, 310 %-329 %, 5 %-8 %, 17 %-21 %, and 19 %-35 %, respectively; and DWC elevated the concentrations of Cd, Cr, Hg, lead (Pb), and Zn by 20 %-28 %, 8 %-9 %, 118 %-118 %, 5 %-10 %, and 3 %-17 %. The HMs concentrations in wheat grain were almost unaffected by the application of the organic fertilizers except for Hg and Pb concentrations. However, the HMs concentrations in both soil and wheat grain remained far below the limits of regulation in China. The long-term application of organic fertilizers did not cause additional noncarcinogenic and carcinogenic risks associated with exposure to HMs. In conclusion, although the long-term application of various urban and rural organic fertilizers increased the concentrations of several HMs in the soil, it almost did not cause any additional adverse effects on wheat grain or increase the health risks.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wentao Xue
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hao Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qinping Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuncai Hu
- Precision Agriculture, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rong Wu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ying Du
- Precision Agriculture, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Shanjiang Liu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
7
|
Wen T, Cheng Y, Yuan Y, Sun R. Quantitative analysis and risk assessment of heavy metal pollution in an intensive industrial and agricultural region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117634. [PMID: 39756178 DOI: 10.1016/j.ecoenv.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent decades, the study of heavy metal pollution has garnered significant attention owing to the advancement of industrialization. To explore the contamination of heavy metals in an intensive industrial and agricultural region in Shandong province, China, 101 surface soil samples and 80 samples of edible crop parts were collected from the vicinity of an industrial park. A positive matrix factorization-multilayer perceptron model (PMF-MLP) was established to identify the sources of heavy metals and quantify the complex relationships between pollution sources, crop types, and pollution status. Index and human health-risk methods were used to assess the heavy metal pollution. The results show that (1) lead (Pb) and cadmium (Cd) in the soil may originate from industrial-traffic mixed pollution sources in the surrounding industrial park, whereas copper (Cu) is derived from agricultural pollution sources in the southern farmland. (2) Pollution is primarily concentrated in the central and northern regions of the study area. The analysis of the PMF-MLP model indicates that human activities account for the majority (79.6 %) of the risk of associated with heavy metal pollution. Among them, industrial, traffic, and agricultural mixed pollution sources, agricultural pollution sources associated with northern livestock farms, and crop types contribute to 49.3, 24.5, and 5.80 % of the total risk, respectively. (3) The oral intake of heavy metals represents the primary route of entry into the human body. Cd and Cu are the most significant elements associated with adverse human health, with Cd and Cu contributing the most to carcinogenic and non-carcinogenic risks in both adults and children, respectively. The results will provide references for the formulation of control strategies to curb heavy metal pollution.
Collapse
Affiliation(s)
- Tao Wen
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yibo Cheng
- Environment Research Institute, Shandong University, Qingdao, China
| | - Yali Yuan
- Environment Research Institute, Shandong University, Qingdao, China
| | - Ruilian Sun
- Environment Research Institute, Shandong University, Qingdao, China.
| |
Collapse
|
8
|
van den Broek S, Nybom I, Hartmann M, Doetterl S, Garland G. Opportunities and challenges of using human excreta-derived fertilizers in agriculture: A review of suitability, environmental impact and societal acceptance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177306. [PMID: 39515389 DOI: 10.1016/j.scitotenv.2024.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Human excreta-derived fertilizers (HEDFs) are organic fertilizers made from human excreta sources such as urine and feces. HEDFs can contribute to a sustainable and circular agriculture by reuse of valuable nutrients that would otherwise be discarded. However, HEDFs may contain contaminants such as pharmaceuticals, persistent organic compounds, heavy metals and pathogens which can negatively affect plant, water and soil quality. Moreover, consumer prejudice, farmer hesitance and strict regulations can discourage utilization of HEDFs. Here, we conducted a thorough review of published literature to explore the opportunities and challenges of using HEDFs in agricultural systems by evaluating the suitability of human excreta as a nutrient source, their typical contaminant composition, how they affect the quality of crops, soils and water and their societal impact and acceptance. We found that HEDFs are suitable nutrient-rich fertilizers, but may contain contaminants. Processing treatments increase the fertilizer quality by reducing these contaminants, but they do not remove all contaminants completely. Regarding the environmental impacts of these fertilizers, we found overall positive effects on crop yield, soil nutrients, plant-soil-microbe interactions and plant pathogen suppression. The use of HEDFs reduces water contamination from sewage waste dumping, but nutrient leaching dependent on soil type may still affect water quality. We found no increased risks with human pathogens compared to inorganic fertilizers but identified processing treatment as well as crop and soil type significantly affect these risks. Lastly, we found that public acceptance is possible with clear regulations and outreach to inform consumers and farmers of their multi-faceted benefits and safe usage after processing treatments. In summary, this review emphasizes the great potential of HEDFs and its positive impacts on society, especially in regions where conventional fertilizers are scarce, while also stressing the need for adaptation to specific soils and crops.
Collapse
Affiliation(s)
- Sarah van den Broek
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland.
| | - Inna Nybom
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Environmental Analytics, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Sebastian Doetterl
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Gina Garland
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Soil Quality and Soil Use, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| |
Collapse
|
9
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
10
|
Zheng Q, Ni L. Analysis of the effect of intrinsic sludge properties on sludge drying characteristics from both sludge composition and type scales. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:278-289. [PMID: 38781819 DOI: 10.1016/j.wasman.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Convective drying is an effective method for reducing the moisture content of the sludge. Fewer studies have discussed the effect of sludge physicochemical properties on drying compared to air parameters. Eleven types of sludge were collected, and ultimate analysis, proximate analysis, and heat value analysis were performed. Meanwhile, the maximum drying rate (umax) of sludge convection drying at 70 °C was determined. The results showed that the cumulative variance contribution of the two extracted principal components (PCs) was 92.5 %. Then, a regression model of umax was developed based on the extracted PCs. The coefficient of determination of this model was 0.788, and the difference was statistically significant, with a negative correlation between umax and PC2. Further, the principal component score plot enabled the traceability of the integrated sludge, and based on this classification results, the drying characteristics of various types of sludge were discussed, and a high correlation (R2 = 0.9590) between the initial moisture content of sludge and umax was found. Mathematical models between sludge physicochemical properties and drying characteristics can be effectively developed from both sludge composition and type scales. This exploration deepened the knowledge of sludge drying and facilitates the prediction of drying rate.
Collapse
Affiliation(s)
- Qiushuang Zheng
- School of Architecture and Design, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin, China
| | - Long Ni
- School of Architecture and Design, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin, China.
| |
Collapse
|
11
|
Soltaninia S, Eskandaripour M, Ahmadi Z, Ahmadi S, Eslamian S. The hidden threat of heavy metal leaching in urban runoff: Investigating the long-term consequences of land use changes on human health risk exposure. ENVIRONMENTAL RESEARCH 2024; 251:118668. [PMID: 38467359 DOI: 10.1016/j.envres.2024.118668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
This study evaluated the potential effects of long-term land use and climate change on the quality of surface runoff and the health risks associated with it. The land use change projection 2030 was derived from the main changes in land use from 2009 to 2019, and rainfall data was obtained from the Long Ashton Research Station Weather Generator (LARS-WG) model. The Long-Term Hydrological Impact Assessment (L-THIA) model was then utilized to calculate the rate of runoff heavy metal (HM) pollutant loading from the urban catchment. It was found that areas with heavy development posed a significantly greater public health risk associated with runoff, with higher risks observed in high-development and traffic areas compared to industrial, residential, and commercial areas. Additionally, exposure to Lead (Pb), Mercury (Hg), and Arsenic (As) was found to contribute significantly to overall non-carcinogenic health risks for possible consumers of runoff. Carcinogenic risk values of As, Cadmium (Cd), and Pb were also observed to increase, particularly in high-development and traffic areas, by 2030. This investigation offers important insight into the health risks posed by metals present in surface runoff in urban catchment areas under different land use and climate change scenarios.
Collapse
Affiliation(s)
- Shahrokh Soltaninia
- Department of Environmental Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK.
| | | | - Zahra Ahmadi
- Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sara Ahmadi
- Department of Chemistry, Islamic Azad University, Shahreza, 86481-46411, Iran
| | - Saeid Eslamian
- Department of Agricultural Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
| |
Collapse
|
12
|
Ruzi II, Ishak AR, Abdullah MA, Zain NNM, Tualeka AR, Adriyani R, Mohamed R, Edinur HA, Aziz MY. Heavy metal contamination in Sungai Petani, Malaysia: a wastewater-based epidemiology study. JOURNAL OF WATER AND HEALTH 2024; 22:953-966. [PMID: 38935448 DOI: 10.2166/wh.2024.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/09/2024] [Indexed: 06/29/2024]
Abstract
The aim of this study was to investigate the use of wastewater-based epidemiology (WBE) to estimate heavy metal exposure in Sungai Petani, Malaysia. Atomic absorption spectroscopy was used to detect copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), and cadmium (Cd) in wastewater from eight sewage treatment facilities in Sungai Petani in January 2022. The heavy metal concentrations were measured in both influent and effluent, and the mean concentrations in the wastewater were found to be in the following order: Fe > Ni > Zn > Cd > Cu, with a 100% detection frequency. The results of WBE estimation showed that Fe, Ni, and Zn had the highest estimated per population exposure levels, while Cd had the lowest. Compared to a similar study conducted in Penang, Malaysia, all metals except Cu were found to have higher concentrations in Sungai Petani, even though it is a non-industrial district. These findings highlight the importance of addressing heavy metal contamination in Sungai Petani and implementing effective risk management and prevention strategies.
Collapse
Affiliation(s)
- Iqbal Iman Ruzi
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Ahmad Razali Ishak
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Muhamad Azwat Abdullah
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Abdul Rohim Tualeka
- Department of Occupational Health and Safety, Public Health Faculty, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Retno Adriyani
- Department of Environmental Health, Faculty of Public Health, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Rafeezul Mohamed
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Yusmaidie Aziz
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia; Department of Occupational Health and Safety, Public Health Faculty, Universitas Airlangga, Surabaya, East Java 60115, Indonesia E-mail:
| |
Collapse
|
13
|
Wongkiew S, Aksorn S, Amnuaychaichana S, Polprasert C, Noophan PL, Kanokkantapong V, Koottatep T, Surendra KC, Khanal SK. Bioponic systems with biochar: Insights into nutrient recovery, heavy metal reduction, and microbial interactions in digestate-based bioponics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:267-279. [PMID: 38422680 DOI: 10.1016/j.wasman.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Bioponics is a nutrient-recovery technology that transforms nutrient-rich organic waste into plant biomass/bioproducts. Integrating biochar with digestate from anaerobic wastewater treatment process can improve resource recovery while mitigating heavy metal contamination. The overarching goal of this study was to investigate the application of biochar in digestate-based bioponics, focusing on its efficacy in nutrient recovery and heavy metal removal, while also exploring the microbial community dynamics. In this study, biochar was applied at 50 % w/w with 500 g dry weight of digestate during two 28-day crop cycles (uncontrolled pH and pH 5.5) using white stem pak choi (Brassica rapa var. chinensis) as a model crop. The results showed that the digestate provided sufficient phosphorus and nitrogen, supporting plant growth. Biochar amendment improved plant yield and phosphate solubilization and reduced nitrogen loss, especially at the pH 5.5. Furthermore, biochar reduced the heavy metal accumulation in plants, while concentrating these metals in the residual sludge. However, owing to potential non-carcinogenic and carcinogenic health risks, it is still not recommended to directly consume plants cultivated in digestate-based bioponic systems. Additionally, biochar amendment exhibited pronounced impact on the microbial community, promoting microbes responsible for nutrient solubilization and cycling (e.g., Tetrasphaera, Herpetosiphon, Hyphomicrobium, and Pseudorhodoplanes) and heavy metal stabilization (e.g., Leptolinea, Fonticella, Romboutsia, and Desulfurispora) in both the residual sludge and plants. Overall, the addition of biochar enhanced the microbial community and facilitated the metal stabilization and the cycling of nutrients within both residual sludge and root systems, thereby improving the overall efficiency of the bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Satja Aksorn
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchana Amnuaychaichana
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511, Sejong, Korea (Affiliate Faculty)
| |
Collapse
|
14
|
Liu J, Yang F, Cai Y, Lu G, Li Y, Li M, Fan L, Gao L. Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:21-29. [PMID: 38162869 PMCID: PMC10757255 DOI: 10.1016/j.eehl.2023.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024]
Abstract
The presence of trace organic pollutants in the effluent of wastewater treatment plants (WWTPs) poses considerable risks to aquatic organisms and human health. A large-scale survey of 302 trace organic pollutants in the effluent of 46 Chinese WWTPs was conducted to gain an improved understanding of their occurrence and ecological risks. The survey data showed that 216 compounds in 11 chemical classes had been detected in effluents. The sum concentrations of the trace contaminants in effluent ranged from 1,392 ng/L to 35,453 ng/L, with the maximum concentration of perfluoroalkyl substances (PFASs) recorded as the highest (30,573 ng/L), which was markedly less than the reported 185,000 ng/L for the 38 American WWTPs. The concentration of bisphenol analogs (BPs) was up to 4,422 ng/L, significantly higher than those reported in France, Germany, Japan, Korea, and the U.S. PFASs and BPs were the major pollutants, accounting for 59% of the total pollution. Additionally, a total of 119 contaminants were found to have ecological risks (RQ > 0.01). Among these, 23 contaminants (RQ > 1.0) warrant higher attention and should be prioritized for removal. This study lists valuable information for controlling contaminants with higher priority in WWTP effluent in China.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Linhua Fan
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia
| |
Collapse
|
15
|
Yang Y, Feng W, Bao L, Xian L, Lu J, Wu D, Jacobs DF, Zeng S. Effects of sewage sludge application methods on the transport of heavy metals with runoff and their mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168909. [PMID: 38029981 DOI: 10.1016/j.scitotenv.2023.168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Woodland utilization is a promising disposal method for sewage sludge (SS). However, the potential risk of heavy metals (HMs) transport with runoff must be considered. Among the various factors influencing HMs loss, SS application methods (Holing application, HA; Broadcasting and mixing application, BM; Broadcasting application, BA) are likely to cause significant effects by altering soil erosion and soil aggregates. This study aimed to determine how SS application methods affect HMs loss, soil aggregates erosion, and how they are related. Accordingly, the losses of HMs in surface runoff, interflow, and sediment were quantified during six simulated rainfalls. The results demonstrated that all methods reduced surface runoff, but BA was the most effective. Additionally, BA significantly reduced the total sediment yield and the total proportion of the <0.05 mm fraction aggregates. Moreover, BA had the smallest cumulative losses of Pb and Cd through surface runoff and Cu, Pb, and Cd through sediment. Sediment was the most important pathway for HMs loss, through which over 76.56 % of HMs were lost. In BA, the <0.05 mm fraction aggregates had the lowest HMs load, whereas in other treatments had the highest (54.33 %-80.33 %). The potential ecological risk coefficient of Cd was beyond "moderate" in all the pathways of BM and "high" in the interflow of each SS treatment. Nonetheless, when the multi-elements were evaluated collectively, the potential ecological risk index for each SS treatment was categorized as "low". Overall, BA not only reduced soil erosion but also posed no risk of HMs pollution. It should be noted that the loss of Cd in the interflow had a great impact, while the <0.05 mm fraction aggregates played a significant role in the HMs load. Thus, the current study not only provides an effective approach for the environmentally safe disposal of SS but also proposes a scientific method for the application of SS in woodlands.
Collapse
Affiliation(s)
- Yuantong Yang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Weixun Feng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li'an Bao
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xian
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Lu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061, USA.
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Qiaoyu C, Yanyan H, Yue C, Lijun Y, Benguo Z, Qing H, Lijuan W, Juan L. Accurate identification of sludge contamination sources by classification-based PMF and machine learning with consideration of sewer network distribution differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168576. [PMID: 37979854 DOI: 10.1016/j.scitotenv.2023.168576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The application of source identification such as PMF for large-scale pollution source analysis frequently produces ambiguous outcomes. In this study, we utilized a classification-based method to accurately track key pollution sources in the sludge. In the study, we categorized the wastewater treatment plants into two groups: T1 and T2, according to the pipeline network. T1 sewage treatment plants are the main sewage plants in urban areas, covering a large area and connected to industrial wastewater treatment plants for secondary treatment. T2 sewage treatment plants are typically smaller in size and usually responsible for treating sewage in rural or township areas. The PMF analysis indicates that industrial pollution sources contribute 3.4 times more to T1 sludge than to T2 sludge, making industrial pollution the primary factor causing the disparity. The application of Random Forest and Adaboost based on pollutant concentrations for classification and fitting of sludge resulted in the identification of the main pollutants: Zn, Cu, Ni, and Cyanide, which align with characteristic pollutants from the electroplating industry. The GIS analysis shows a significant correlation between the distance of wastewater treatment plants with abnormal environmental risk and electroplating industrial parks, all within a 20 km radius. Indeed, when conducting large-scale pollution source identification studies, utilizing classification-based analysis can effectively improve the accuracy of pollution source identification, leading to more valuable analysis results.
Collapse
Affiliation(s)
- Chen Qiaoyu
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China.
| | - Hu Yanyan
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| | - Chen Yue
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| | - Yang Lijun
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| | - Zhu Benguo
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| | - He Qing
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| | - Wang Lijuan
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| | - Li Juan
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, 401329 Chongqing, China
| |
Collapse
|
17
|
Feng D, Wang J, Chen D, Liang S. Experimental study on solidification/stabilization of leachate sludge by sulfoaluminate cement and MSWI by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5071-5085. [PMID: 38110687 DOI: 10.1007/s11356-023-31470-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Leachate sludge is generated from the biochemical treatment sludge tank for disposing the leachate from landfill municipal solid waste (MSW). It has the characteristics of high water content and high organic matter content. Sulfoaluminate cement (SAC) is used as the main curing agent, and municipal solid waste incineration (MSWI) by-products are used as auxiliary curing agents to solidify/stabilize the leachate sludge. The influences of SAC content and MSWI by-products content on the strength and solidification mechanism of the leachate sludge are investigated by unconfined compressive strength (UCS) test and micro-observation tests. Moreover, the leaching concentration of heavy metals of the solidified samples is analyzed by leaching toxicity test. The results show that the UCS of the solidified samples increases with an increase in cement content. When the cement content is larger than 20%, the UCS of the solidified samples satisfies the strength requirement of landfill. The enhancing effect of bottom ash on the cement-solidified samples is slight. The fly ash is a good auxiliary curing agent for improving the UCS of cement-solidified samples, and the optimal dosage of fly ash is 5% and 15% for the solidified samples with 10 ~ 30% and 40 ~ 50% cement content, respectively. Ten percent fly ash can replace 10% cement to achieve better solidification effect for the solidified samples. The leaching concentration of heavy metals in the solidified sample with 30%/40% cement and 15% fly ash/bottom ash can satisfy the strength and leaching toxicity requirements of landfill. The immobilization of heavy metal of the cement and MSWI by-products solidified samples is mainly achieved through physical adsorption, physical encapsulation, ion exchange, and chemical precipitation.
Collapse
Affiliation(s)
- Deluan Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jie Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongyao Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shihua Liang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Yuan X, Cui K, Chen Y, Zhang Y, Wu S, Xie X, Liu T, Yao H. Microbial community and gene dynamics response to high concentrations of gadolinium and sulfamethoxazole in biological nitrogen removal system. CHEMOSPHERE 2023; 342:140218. [PMID: 37734503 DOI: 10.1016/j.chemosphere.2023.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The impact of high antibiotic and heavy metal pollution levels on biological nitrogen removal in wastewater treatment plants (WWTPs) remains poorly understood, posing a global concern regarding the issue spread of antibiotic resistance induced by these contaminants. Herein, we investigated the effects of gadolinium (Gd) and sulfamethoxazole (SMX), commonly found in medical wastewater, on biological nitrogen removal systems and microbial characteristics, and the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). Our findings indicated that high SMX and Gd(III) concentrations adversely affected nitrification and denitrification, with Gd(III) exerting a strong inhibitory effect on microbial activity. Metagenomic analysis revealed that high SMX and Gd(III) concentrations could reduce microbial diversity, with Thauera and Pseudomonas emerging as dominant genera across all samples. While the relative abundance of most ARGs decreased under single Gd(III) stress, MRGs increased, and nitrification functional genes were inhibited. Conversely, combined SMX and Gd(III) pollution increased the relative abundance of intl1. Correlation analysis revealed that most genera could host ARGs and MRGs, indicating co-selection and competition between these resistance genes. However, most denitrifying functional genes exhibited a positive correlation with MRGs. Overall, our study provides novel insights into the impact of high concentrations of antibiotics and heavy metal pollution in WWTPs, and laying the groundwork for the spread and proliferation of resistance genes under combined SMX and Gd pollution.
Collapse
Affiliation(s)
- Xinrui Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shiyang Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianjin Xie
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongjia Yao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
19
|
Li M, Gan YJ, Chen ZQ, Zhang WY, Li XY, Liu HL, Wang XZ. Pollution Status and Associated Risk Assessment of Heavy Metals in Sewage Sludge in the Yangtze River Delta, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:63. [PMID: 37904061 DOI: 10.1007/s00128-023-03810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
The risk assessment of heavy metals (HMs) in sewage sludge (SS) is essential before land application. Six HMs in nineteen SS collected in the Yangtze River Delta were analyzed to assess risks to environment, ecosystem, and human health. HMs concentrations were ranked in the order of Zn > Cu > Cr > Ni > Pb > Cd, with Cu, Zn, and Ni in a total of 16% of samples exceeding the legal standard. Zn showed greatest extractability according to EDTA-extractable concentrations. HMs in 16% of SS samples posed heavy contamination to the environment with Zn as the major pollutant. HMs in 26% of samples posed ecological risk to the ecosystem and Cd was the highest risky HM. The probabilistic health risk assessment revealed that HMs posed carcinogenic risks to all populations, but non-carcinogenic risks only to children. This work will provide fundamental information for land application of SS in this area.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Yun-Jie Gan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Zi-Qi Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Wan-Ying Zhang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Xin-Yu Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Hai-Long Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China.
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, China
| |
Collapse
|
20
|
Zhu Y, Xiao K, Ou B, Liu Y, Yu W, Jian S, Hu X, Liu H, Lei P, Yang J. Behavior of organic components and the migration of heavy metals during sludge dewatering by different advanced oxidation processes via optical spectroscopy and molecular fingerprint analysis. WATER RESEARCH 2023; 243:120336. [PMID: 37454458 DOI: 10.1016/j.watres.2023.120336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
A comparative study of the different advanced oxidation processes (Fe(II)-Oxone, Fe(II)-H2O2, and Fe(II)-NaClO) was carried out herein to analyze the characteristics of organic components and the migration of heavy metals in waste activated sludge. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, sludge dewaterability was significantly improved, however, sludge dewaterability was deteriorated by the Fe(II)-NaClO treatment. The enhanced sludge dewaterability by the Fe(II)-Oxone and Fe(II)-H2O2 treatments was strongly correlated with the shifted organic components, particularly proteins, in soluble extracellular polymeric substances (S-EPS), while the deteriorated sludge dewaterability by the Fe(II)-NaClO treatment was strongly correlated with the over release of organic components from bound EPS (B-EPS) to S-EPS. For both the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the radicals preferentially attacked humic acid-like organic components over the protein-like organic components in S-EPS, while for the Fe(II)-NaClO treatment, interestingly, the radicals preferentially attacked the protein-like organic components in both S-EPS and B-EPS. The hydrophilic functional groups like phenolic OH and CO of polysaccharides may be more preferentially migrated to S-EPS of sludge by the Fe(II)-NaClO treatment compared to the other two treatments. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the proportion of aliphatic compounds as well as the much oxygenated organic components with a low desaturation and a low molecular weight increased. While with the Fe(II)-NaClO treatment, the proportion of low oxygenated organic components with a high desaturation and a high molecular weight increased. The concentration of total organic carbon, particularly the concentration of proteins, may be the key factor determining the shift of Zn and Cu from sludge solid to liquid phase, along with the high oxidation extent of organic components and close binding to CHOS and CHON compounds as indicated by density functional theory (DFT) calculation. This study systematically revealed the simultaneous sludge dewatering and migration of heavy metals when the role of organic components was factored into herein.
Collapse
Affiliation(s)
- Yuwei Zhu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China.
| | - Bei Ou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Sifeng Jian
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, Hubei 430010, China
| | - Xinli Hu
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, Hubei 430010, China
| | - Haiyan Liu
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, Hubei 430010, China
| | - Peishu Lei
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, Hubei 430010, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| |
Collapse
|
21
|
Chen S, Yu L, Zhang C, Wu Y, Li T. Environmental impact assessment of multi-source solid waste based on a life cycle assessment, principal component analysis, and random forest algorithm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117942. [PMID: 37080101 DOI: 10.1016/j.jenvman.2023.117942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a national pilot city for solid waste disposal and resource reuse, Dongguan in Guangdong Province aims to vigorously promote the high-value utilization of solid waste and contribute to the sustainable development of the Greater Bay Area. In this study, life cycle assessment (LCA) coupled with principal component analysis (PCA) and the random forest (RF) algorithm was applied to assess the environmental impact of multi-source solid waste disposal technologies to guide the environmental protection direction. In order to improve the technical efficiency and reduce pollution emissions, some advanced technologies including carbothermal reduction‒oxygen-enriched side blowing, directional depolymerization‒flocculation demulsification, anaerobic digestion and incineration power generation, were applied for treating inorganic waste, organic waste, kitchen waste and household waste in the park. Based on the improved techniques, we proposed a cyclic model for multi-source solid waste disposal. Results of the combined LCA-PCA-RF calculation indicated that the key environmental load type was human toxicity potential (HTP), came from the technical units of carbothermal reduction and oxygen-enriched side blowing. Compared to the improved one, the cyclic model was proved to reduce material and energy inputs by 66%-85% and the pollution emissions by 15%-88%. To sum up, the environmental impact assessment and systematic comparison suggest a cyclic mode for multi-source solid waste treatments in the park, which could be promoted and contributed to the green and low-carbon development of the city.
Collapse
Affiliation(s)
- Sichen Chen
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Lu Yu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| | - Chenmu Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yufeng Wu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Tianyou Li
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| |
Collapse
|
22
|
Zhang K, Chang S, Zhang Q, Bai Y, Wang E, Zhang M, Fu Q, Wei L, Yu Y. Heavy metals in influent and effluent from 146 drinking water treatment plants across China: Occurrence, explanatory factors, probabilistic health risk, and removal efficiency. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131003. [PMID: 36857822 DOI: 10.1016/j.jhazmat.2023.131003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) in drinking water have drawn worldwide attention due to their risks to public health; however, a systematic assessment of the occurrence of HMs in drinking water treatment plants (DWTPs) at a large geographical scale across China and the removal efficiency, human health risks, and the correlation with environmental factors have yet to be established. Therefore, this study characterised the occurrence patterns of nine conventional dissolved HMs in the influent and effluent water samples from 146 typical DWTPs in seven major river basins across China (which consist of the Yangtze River, the Yellow River, the Songhua River, the Pearl River, the Huaihe River, the Liaohe River and the Haihe River) for the first time and removal efficiency, probabilistic health risks, and the correlation with water quality. According to the findings, a total of eight HMs (beryllium (Be), antimony (Sb), barium (Ba), molybdenum (Mo), nickel (Ni), vanadium (V), cobalt (Co) and titanium (Ti)) were detected, with detection frequencies in influent and effluent water ranging from 2.90 (Mo) to 99.30% (Ba) and 1.40 (Ti) to 97.90% (Ba), respectively. The average concentration range was 0.41 (Be)- 77.36 (Sb) μg/L. Among them, Sb (exceeding standard rate 8%), Ba (2.89%), Ni (21.43%), and V (1.33%) were exceeded the national standard (GB5749-2022). By combining Spearman's results and redundancy analysis, our results revealed a close correlation among pH, turbidity (TURB), potassium permanganate index (CODMn), and total nitrogen (TN) along with the concentration and composition of HMs. In addition, the concentration of HMs in finished water was strongly affected by the concentration of HMs in raw water, as evidenced by the fact that HMs in surface water poses a risk to the quality of finished water. Metal concentration was the primary factor in assessing the health risk of a single metal, and the carcinogenic risk of Ba, Mo, Ni, and Sb should be paid attention to. In DWTPs, the removal efficiencies of various HMs also vary greatly, with an average removal rate ranging from 16.30% to 95.64%. In summary, our findings provide insights into the water quality and health risks caused by HMs in drinking water.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qi Zhang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Yunsong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Enrui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Moli Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanling Yu
- Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
23
|
Li Y, Ye Z, Yu Y, Li Y, Jiang J, Wang L, Wang G, Zhang H, Li N, Xie X, Cheng X, Liu K, Liu M. A combined method for human health risk area identification of heavy metals in urban environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131067. [PMID: 36827727 DOI: 10.1016/j.jhazmat.2023.131067] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Multi-medium heavy metals pollution is a crucial pathway to destroy the urban environmental resources cycle. In this study, Nanjing of China, a typical mega city, was taken as the study area. Compared with other cities or countries, Cr, Cu and Zn in human nails and hair in the study area have higher concentration characteristics, while Cd and Pb have lower concentration characteristics. By combining the health risk status of heavy metals in soil and dustfall, the spatial clustering characteristics of heavy metals in soil dustfall and the concentration information of heavy metals in humans in the study area, a potential toxic risk area identification method based on soil-dustfall-human (SDB-HR) was established. Through Monte Carlo analysis, it's found that the risk of Zn and Cr in soil-dustfall to human health is relatively high, with the probability of carcinogenesis reaching 51.2 % and 50.2 %, respectively. By the proposed method, different levels of heavy metal risk areas in urban environments can be more reasonably and effectively identified, which will provide important technical and theoretical support for the precise management of heavy metals in urban environments.
Collapse
Affiliation(s)
- Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security,Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Zi Ye
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Yu
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Liangjie Wang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Genmei Wang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Huanchao Zhang
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ning Li
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xuefeng Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security,Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinyu Cheng
- Collaborative Innovation Center of Sustainable Forestry, College of forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ke Liu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China; School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Yuan J, E S, Che Z, Cao K. Temporal variation of heavy metals in sewage sludge in typical cities in Gansu Province, northwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:453. [PMID: 36892665 DOI: 10.1007/s10661-023-11091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To investigate the temporal behaviors of heavy metals in sewage sludge in typical cities of industrial, industrial-agricultural, agricultural, or energy focused. Samples were collected every 10 days for a period of 1 year in four types of cities of Lanzhou, Tianshui, Qingyang, and Zhangye. The average annual values for all four cities were Cd (1.59-3.16 mg/kg), Pb (41.9-55.1 mg/kg), Cr (63.8-92.0 mg/kg), Cu (75.7-92.6 mg/kg), Zn (498-612 mg/kg), and Ni (3.66-4.25 mg/kg). The highest values were observed in June for Cd, Cr, and Zn, at Lanzhou and Tianshui. At Qingyang and Zhangye, the Cd, Cr, and Zn contents were stable throughout the year. There was a similar monthly change among the four cities regarding the levels of Ni content, and it was far below the background value. The monthly fluctuations in Cd, Pb, Cr, and Zn are mainly due to street dust effect. For cities with a developed industry, the impact of street dust during the first rains of the year on sewage sludge's heavy metal content must be highlighted as being of particular importance.
Collapse
Affiliation(s)
- Jinhua Yuan
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
- Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture, Lanzhou, 730070, China.
| | - Shengzhe E
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture, Lanzhou, 730070, China
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
- Gansu Scientific Observing and Experimental Station of Agro-Environment and Arable Land Conservation, Ministry of Agriculture, Lanzhou, 730070, China
| | - Kun Cao
- Qingyang Wozhong Agricultural Technology Corporation Limited, Qingyang, 74500, China
| |
Collapse
|
25
|
Chen Q, Zhao B, Zhang Y, Zhu F, Wang H, Wang J, Fu X. The function of "Cambi® thermal hydrolysis + anaerobic digestion" on heavy metal behavior and risks in a full-scale sludge treatment plant based on four seasons investigation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130579. [PMID: 37055984 DOI: 10.1016/j.jhazmat.2022.130579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
The environmental risk of heavy metals in sewage sludge from a full-scale "Cambi® thermal hydrolysis + anaerobic digestion" sludge treatment plant was discussed based on four seasons' data. Results showed that the order of heavy metal concentration in sludge was Zn > Cu > Cr > Ni > As > Pb > Hg > Cd, which all increased significantly due to the "enrichment effect" caused by the degradation of organics. Nevertheless, the mass of heavy metals except for Cd decreased. Chemical fractions of different heavy metals in raw sludge varied greatly. The proportion of their residual fraction all increased slightly after treatment. Thermal hydrolysis and anaerobic digestion led to the transformation of some heavy metal fractions. Deep dehydration process reduced the mass of heavy metals from sludge (less than 10%). Potential ecological risk of heavy metals was low (RI <150) when sludge is applied 0.75 kg/m2 to soil according to GB 4284-2018, in which the risk of Hg and Cd was highest. Furthermore, the accumulation amounts of heavy metals in test soil and rural soil with the annual sludge application amount of 0.75 kg/m2 for 15 years were calculated, which did not exceed GB 36600-2018 and GB 15618-2018 respectively.
Collapse
Affiliation(s)
- Qian Chen
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Bing Zhao
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuhui Zhang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Fenfen Zhu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Huan Wang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jiawei Wang
- Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xingmin Fu
- Beijing Drainage Group Co. Ltd., Beijing 100124, China
| |
Collapse
|
26
|
Zhang B, Zhou X, Ren X, Hu X, Ji B. Recent Research on Municipal Sludge as Soil Fertilizer in China: a Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:119. [PMID: 36776548 PMCID: PMC9906581 DOI: 10.1007/s11270-023-06142-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Due to the annual increase in wastewater treatment in most Chinese cities, a major environmental issue has arisen: safe treatment, disposal, and recycling of municipal sludge. Municipal sludge has a high content of carbon and essential nutrients for plant growth; hence, it has gained interest among researchers as a soil fertilizer. This study discusses the potential usage of municipal sludge as soil fertilizer (indicators include nitrogen (N), phosphorus (P), and trace elements) along with its shortcomings and drawbacks (potentially toxic elements (PTEs), organic matter (OM), pathogens, etc.) as well as reviews the latest reports on the role of municipal sludge in land use. The use of municipal sludge as a soil fertilizer is a sustainable management practice and a single application of sludge does not harm the environment. However, repeated use of sludge may result in the accumulation of harmful chemicals and pathogens that can enter the food chain and endanger human health. Therefore, long-term field studies are needed to develop ways to eliminate these adverse effects and make municipal sludge available for agricultural use.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xingxing Zhou
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan, 753000 People’s Republic of China
| | - Xupicheng Ren
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Xiaomin Hu
- Key Laboratory of Ministry of Education On Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819 People’s Republic of China
| | - Borui Ji
- Liaoning Inspection, Examination & Certification Centre, Liaoning Province Product Quality Supervision and Inspection Institute, Shenyang, 110014 People’s Republic of China
- National Quality Supervision & Testing Center of Petroleum Products, Shenyang, 110014 People’s Republic of China
| |
Collapse
|
27
|
Chen X, Feng J, Mou H, Liang Z, Ding T, Chen S, Li F. Utilization of Indole Acetic Acid with Leucadendron rubrum and Rhododendron pulchrum for the Phytoremediation of Heavy Metals in the Artificial Soil Made of Municipal Sewage Sludge. TOXICS 2022; 11:toxics11010043. [PMID: 36668769 PMCID: PMC9864706 DOI: 10.3390/toxics11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/06/2023]
Abstract
The development of phytoremediation by garden plants is an effective way to deal with the dilemma of municipal sewage sludge disposal. In this study, two ornamental plants were used as phytoremediation plants to rehabilitate heavy-metal-contaminated municipal sewage sludge in field experiments, and the role of exogenous phytohormone IAA was also tested. Ornamental plants Loropetalum chinense var. rubrum (L. rubrum) and Rhododendron pulchrum (R. pulchrum) adapted well to the artificial soil made of municipal sewage sludge, and the concentrations of Cu, Zn, Pb, and Ni were decreased by 7.29, 261, 20.2, and 11.9 mg kg−1, respectively, in the soil planted with L. rubrum, and 7.60, 308, 50.1, and 17.7 mg kg−1, respectively, in the soil planted with R. pulchrum, accounted for 11−37% of the total amounts and reached significant levels (p < 0.05), except Cd. The concentration of Pb in all parts of the two ornamental plants was increased, as well as most heavy metals in L. rubrum root. As a result, three months after transplant, the phyto-extraction amounts in L. rubrum were 397, 10.9, and 1330 μg for Ni, Cd, and Pb, respectively, increased by 233% to 279%. The phyto-extraction amount in R. pulchrum were 1510, 250, and 237 μg for Zn, Pb, and Cu, respectively, increased by 143% to 193%. These results indicated a potential to remediate heavy metals of the two ornamental plants, especially L. rubrum. The results of correlation analysis implied that the interaction of heavy metals in the plant itself played an important role in the uptake of heavy metals. This seemed to explain why applying IAA in the experiment had little effect on plant growth and phytoremediation of heavy metals. This study provided a green and feasible idea for the proper disposal of municipal sewage sludge.
Collapse
Affiliation(s)
- Xiaoling Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianru Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huaqian Mou
- Jinhua Water Treatment Co., Ltd., Jinhua 321016, China
| | - Zheng Liang
- Shaoxing Institute of Energy Testing, Shaoxing 312000, China
| | - Tianzheng Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiyu Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence:
| |
Collapse
|
28
|
Zhang Z, Huang Y, Zhu Z, Yu M, Gu L, Wang X, Liu Y, Wang R. Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120024. [PMID: 36029905 DOI: 10.1016/j.envpol.2022.120024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Serious pollution is caused by heavy metals (HMs) emission during sludge combustion treatment, but the addition of minerals has the ability to alleviate the migration of HMs to the gaseous state. In this study, HMs (As, Cr, Zn and Cu) behavior, speciation, and environmental risk during sludge combustion with CaO and montmorillonite (MMT) additive was investigated in the lab-scale tube furnace. The results showed that the sludge combustion was mainly determined by volatile matter. In general, CaO inhibited the volatilization of Cr, Zn, and Cu, but promoted As volatilization. MMT inhibited the volatilization of HMs, but the effect was not obvious at high temperatures. Besides, the improvement of retention effect was not found for Cr and Cu with the increase of CaO at 1000 °C, there might exist threshold value for CaO on HMs retention process. Meanwhile, CaO increased acid-soluble fraction of As significantly at high temperatures, decreased residual fraction of Cr by oxidation, converted Zn and Cu to residual fraction. MMT increased the acid-soluble fraction of As and residual fraction of Cr. In view of the HMs environmental risk in ash, the combustion temperature of sludge was necessary to control under 1000 °C and minerals additive amount was needed to manage above 1000 °C.
Collapse
Affiliation(s)
- Zhenrong Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Huaneng Hunan Corporation, Changsha, Hunan, 410000, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zhicheng Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Mengzhu Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Liqun Gu
- Baoshan Iron and Steel Ltd: Shanghai Baosteel Group Corp, Shanghai, 201900, China
| | - Xinyu Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yang Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ruyi Wang
- Baoshan Iron and Steel Ltd: Shanghai Baosteel Group Corp, Shanghai, 201900, China
| |
Collapse
|
29
|
Zhang C, Yang X, Tan X, Wan C, Liu X. Sewage sludge treatment technology under the requirement of carbon neutrality: Recent progress and perspectives. BIORESOURCE TECHNOLOGY 2022; 362:127853. [PMID: 36037839 DOI: 10.1016/j.biortech.2022.127853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate policies that advocate carbon neutrality, carbon emission reduction provides a new restriction in evaluating the waste activated sludge (WAS) treatment technologies and procedures. This review provides an overview of current researches and development efforts in WAS treatment, focusing on the dual attributes of WAS as contaminants and resources. Firstly, the improved technical requirements posed by heavy metals, micro(nano) plastics, or other emerging plastics in WAS are studied. Furthermore, in terms of carbon emission reduction, the applications and limitations of widely deployed WAS treatment technologies are discussed. Based on carbon neutrality requirements, the anaerobic co-digestion and co-pyrolysis technologies are comprehensively discussed from the views of pollutants removing efficiencies, enhancement methods, carbon emissions, and resource recovery. Finally, a workable new route for WAS treatment is proposed for future technological advancement and engineering innovation.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xue Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|