1
|
Yang Z, Tian Y, Zhao J, Liu J, Lin X, Xi Y, Wang H, Kong F, Zhang F, Qiu X. Effect of lignin carbon material on phosphorus solubilisation performance of Bacillus megaterium. Int J Biol Macromol 2025; 290:138858. [PMID: 39706426 DOI: 10.1016/j.ijbiomac.2024.138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Secondary salinisation significantly compromises soil quality because of the over-application of chemical fertilisers. The combined application of biochar and microorganisms enhanced soil physicochemical properties and improved soil remediation efficiency. However, different types of biochar had varying effects on microbial growth and reproduction. A phosphate-solubilising bacterial agent (BM-LPC) was obtained by low-temperature carbonisation/activation lignin-based porous carbon (LPC) in situ culture/adsorption Bacillus megaterium (BM). The maximum soluble phosphorus capacity of BM-LPC was 744.29 mg/L when 1 % LPC was added. This was a 22 % increase compared with BM alone. The maximum adsorption of BM by LPC was 3.66 × 109 colony-forming units (CFU)/g. At 150 days, the viable bacterial count of BM-LPC was 2.09 × 109 CFU/g. The abundances of -OH, -COOH, -NH2, and CO groups on the surface of LPC provided a stable environment for BM, which in turn, enhanced the solubilisation of phosphorus and extended the viability of BM. The findings of this study can help increase the added value of industrial lignin and provide a theoretical basis for soil remediation research.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yihui Tian
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianzhi Zhao
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiao Liu
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuliang Lin
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuebin Xi
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Huan Wang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fangong Kong
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Li Y, Zhang S, Fu H, Sun Y, Tang S, Xu J, Li J, Gong X, Shi L. Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178302. [PMID: 39740622 DOI: 10.1016/j.scitotenv.2024.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system. In this review, we summarized (1) the bidirectional effect between Fe (oxyhydr)oxides and NOM, including preservation, decomposition, electron transfer, adsorption, reactive oxygen species production, and crystal transformation; (2) the potential roles of coupled transformation between Fe and NOM in the environmental behavior of HMs from kinetic and thermodynamic processes; (3) the primary factors affecting the remediation of sediments HMs; (4) the challenges and future development of sediment HM control based on the coupled effect between Fe and NOM from theoretical and practical perspectives. Overall, this review focused on the biogeochemical coupling cycle of Fe, NOM, and HMs, with the goal of providing guidance for HMs contamination and risk control in lake sediment.
Collapse
Affiliation(s)
- Yuanhang Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Shaokang Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Hang Fu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuheng Sun
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shoujuan Tang
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jinwen Xu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Jun Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Zhang B, Zhang S, Zhu B, Shen W, She R. Persulfate activation by nanoscale zero-valent iron supported by modified blast furnace slag for degradation of phenol wastewater. ENVIRONMENTAL RESEARCH 2024; 260:119434. [PMID: 38945515 DOI: 10.1016/j.envres.2024.119434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Nano-zero valent iron (nZVI) was anchored and dispersed on the surface of acid-modified blast furnace slag (mBFS) through the liquid phase reduction method. The synthesized nZVI@mBFS composite exhibited remarkable ability to degrade phenol when used in conjunction with persulfate (PDS), 97.8% phenol could be eliminated in 30 min. All the anions like SO42-, HCO3-, H2PO4-, and CO32- were detrimental to the phenol degradation in nZVI@mBFS system. Moreover, electron paramagnetic resonance (EPR) analysis and radical scavenging tests confirmed that SO4•-, •OH and •O2- were the principal reactive oxygen species (ROSs) generated during the reaction process. The potential degradation pathways were also deduced based on the results obtained from gas chromatograph-mass spectrometer (GC-MS) analysis. Collectively, this study holds substantial significance in regards to recycling industrial solid wastes, devising efficient persulfate-activated materials, and treating wastewater.
Collapse
Affiliation(s)
- Bo Zhang
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Shiwei Zhang
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China.
| | - Bohong Zhu
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Weili Shen
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Renjie She
- The School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| |
Collapse
|
4
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
5
|
Liu M, Chen G, Xu L, He Z, Ye Y. Environmental remediation approaches by nanoscale zero valent iron (nZVI) based on its reductivity: a review. RSC Adv 2024; 14:21118-21138. [PMID: 38966811 PMCID: PMC11223516 DOI: 10.1039/d4ra02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The fast rise of organic and metallic pollution has brought significant risks to human health and the ecological environment. Consequently, the remediation of wastewater is in extremely urgent demand and has received increasing attention. Nanoscale zero valent iron (nZVI) possesses a high specific surface area and distinctive reactive interfaces, which offer plentiful active sites for the reduction, oxidation, and adsorption of contaminants. Given these abundant functionalities of nZVI, it has undergone significant and extensive studies on environmental remediation, linking to various mechanisms, such as reduction, oxidation, surface complexation, and coprecipitation, which have shown great promise for application in wastewater treatment. Among these functionalities of nZVI, reductivity is particularly important and widely adopted in dehalogenation, and reduction of nitrate, nitro compounds, and metal ions. The following review comprises a short survey of the most recent reports on the applications of nZVI based on its reductivity. It contains five sections, an introduction to the theme, chemical reduction applications, electrolysis-assisted reduction applications, bacterium-assisted reduction applications, and conclusions about the reported research with perspectives for future developments. Review and elaboration of the recent reductivity-dependent applications of nZVI may not only facilitate the development of more effective and sustainable nZVI materials and the protocols for comprehensive utilization of nZVI, but may also promote the exploration of innovative remediation approaches based on its reductivity.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Gang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| |
Collapse
|
6
|
Peng J, Xiao Q, Wang Z, Zhou F, Yu J, Chi R, Xiao C. Mechanistic investigation of Pb 2+ adsorption on biochar modified with sodium alginate composite zeolitic imidazolate framework-8. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31605-31618. [PMID: 38637484 DOI: 10.1007/s11356-024-33320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Qian Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China.
- Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
7
|
Li Q, Yang X, Li C, He A, He S, Li X, Zhang Y, Yao T. Comparison of bio-beads combined with Pseudomonas edaphica and three phosphate materials for lead immobilization: Performance, mechanism and plant growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120797. [PMID: 38574707 DOI: 10.1016/j.jenvman.2024.120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Phosphate materials (PMs) combine with phosphate solubilizing bacteria play an essential roles in lead (Pb) immobilization, but their resulting ability to reduce Pb bioavailability may vary depending on PMs used. In this study, Pseudomonas edaphica GAU-665 and three PMs: tricalcium phosphate, calcium phytate and nano-hydroxyapatite were respectively encapsulated into bio-beads by sodium alginate, which immobilization efficiency of Pb2+ were 99.11%, 97.76% and 99.02% at initial Pb2+ concentration of 200 mg L-1, respectively. The Pb2+ immobilization performance of bio-beads under different conditions and their organic acids secreted were examined. Most Pb2+ was immobilized by bio-beads through combined functions of adsorption, precipitation, ion exchange and biomineralization, accompanied by the formation of more stable compounds such as Pb3(PO4)2, Pb5(PO4)3OH and Pb5(PO4)3Cl. Meanwhile, pot experimental results indicated that the inoculation of CPhy (calcium phytate) bio-beads with PSB have highest biomass and root growth of oat (Avena sativa L.) in Pb-stressed compared with CK, which increased the content of chlorophyll b (167.51%) in shoot. In addition, the CPhy bio-beads enhance the peroxidase, catalase activities and reduce the malondialdehyde content to alleviating lead physiological toxicity in oat, which reductions the Pb accumulation in shoot (52.06%) and root (81.04%), and increased the residual fraction of Pb by 165.80% in soil. These findings suggest the bio-beads combined with P. edaphica GAU-665 and calcium phytate is an efficient Pb immobilization material and provided feasible way to improve safety agricultural production and Pb-contaminated soil remediation.
Collapse
Affiliation(s)
- Qi Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Xiaolei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Aolei He
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Shanmu He
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Xuemei Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Ying Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
8
|
Wang W, Wu S, Sui X, Cheng S. Phytoremediation of contaminated sediment combined with biochar: Feasibility, challenges and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133135. [PMID: 38056263 DOI: 10.1016/j.jhazmat.2023.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The accumulation of contaminants in sediments is accelerated by human activities and poses a major threat to ecosystems and human health. In recent years, various remediation techniques have been developed for contaminated sediments. In this review, a bibliometric analysis of papers on sediment remediation indexed in the WOS database between 2009 and 2023 was conducted using VOSviewer. We describe the development of biochar and plants for sediment contaminant removal. However, the single processes of biochar remediation and phytoremediation can be impeded by (i) low efficiency, (ii) poor tolerance of plants towards pollutants, (iii) difficulty in biochar to degrade pollutants, and (iv) biochar aging causing secondary pollution. Fortunately, combination remediation, realized through the combination of biochar and plants, can overcome the shortcomings of their individual applications. Therefore, we suggest that the remediation of contaminants in sediments can be accomplished by combining biochar with macrophytes and considering multiple limiting factors. Here, we explore the challenges that co-remediation with biochar and macrophytes will face in achieving efficient and sustainable sediment remediation, including complex sediment environments, interaction mechanisms of biochar-macrophyte-microorganisms, emerging pollutants, and integrated life cycle assessments, which can provide references for combined biochar and plant remediation of sediments in the future.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuangqi Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueqing Sui
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Chen H, Min F, Hu X, Ma D, Huo Z. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131176. [PMID: 36948118 DOI: 10.1016/j.jhazmat.2023.131176] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms have difficulty surviving and performing remediation functions in mixed systems with high concentrations of Pb and Cd. Biochar has the potential to assist microorganism remediation as an excellent adsorbent for heavy metals. In this study, pig manure biochar (PMB) was used to assist phosphorus solubilizing bacteria (PSB) to explore the mineralization protection and biofeedback mechanism of biochar on PSB under mixed stress of 1000 mg/L Pb2+ and 500 mg/L Cd2+. The adsorption results showed that the removal of Pb2+ and Cd2+ by PMB+PSB was 148.77% and 72.27% higher than that by PSB. Meanwhile, the non-bioavailable fraction of Cd2+ and acid-soluble fraction of Pb2+ in PMB+PSB were increased by 9% and 3%, respectively. Mineralogical and microbial secretion results confirm that showed that the acidic soluble fraction and non-bioavailable fraction were mostly Pb/Cd-carbonate and Pb/Cd-phosphate. The pore adsorption and precipitation (carbonate) of biochar were able to reduce the exposure of PSB to Pb/Cd and the background stress concentration, thus stimulating the biological positive feedback effect of PSB and forming a microenvironment in the cell periphery. The vesicle detoxification and extracellular polymeric substance protection mechanism of PSB were improved under biochar protection, and the individual size and activity of PSB cells were enhanced. Besides, citric acid release from PSB (28.85% increase) accelerated the dissolution of unstable Cd-carbonate, thereby releasing a large amount of Cd2+ to compete with Pb2+ for PO43-. Thus, the protection of biochar and the positive feedback effect of PSB could reduce the biotoxicity of Cd2+ in the stress system by preferentially forming a stable Cd-phosphate. In addition, the excellent electrical conductivity and organic material adsorption of biochar increased the extracellular electron transport rate of microorganisms, which further accelerated the mineralization and immobilization of Pb2+ and Cd2+, so as to ensure the repair effect of PSB on heavy metals.
Collapse
Affiliation(s)
- Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fangfang Min
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dehua Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
10
|
Teng Z, Zhao X, Jia B, Ye L, Tian S, Guo H, Guo Y, Ji X, Li T, Li M. Bioremediation system consisted with Leclercia adecarboxylata and nZVI@Carbon/Phosphate for lead immobilization: The passivation mechanisms of chemical reaction and biological metabolism in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117888. [PMID: 37087891 DOI: 10.1016/j.jenvman.2023.117888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Bioremediation is one of the most promising strategies for heavy metal immobilization. A new remediation system was demonstrated in this research, which combined phosphate solubilizing bacteria (PSB) with nZVI@Carbon/Phosphate (nZVI@C/P) composite to remediate lead contaminated soil. Experimental results indicated that the new system (nZVI@C/P + PSB) could effectively convert the labile Pb into the stable fraction after 30 days of incubation, which increased the maximum residual fraction percentage of Pb by 70.58%. The characterization results showed that lead may exist in the forms of Pb5(PO4)3Cl, PbSO4 and 3PbCO3·2Pb(OH)2·H2O in the soil treated with nZVI@C/P + PSB. Meanwhile, soil enzyme activities and Leclercia abundance were enhanced in the treated soil compared with CK during the incubation time. In addition, the specialized functions (e.g. ABC transporters, siderophore metabolism, sulfur metabolism and phosphorus metabolism) in PSB and nZVI@C/P + PSB group were also enhanced. These phenomena proved that the key soil metabolic functions may be maintained and enhanced through the synergistic effect of incubated PSB and nZVI@C/P. The study demonstrated that this new bioremediation system provided feasible way to improve the efficacy for lead contaminated soil remediation.
Collapse
Affiliation(s)
- Zedong Teng
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Xin Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bojie Jia
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangjun Ye
- Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Shaojing Tian
- Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Huiyuan Guo
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Tinggang Li
- Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China; Ganjiang Innovation Academy, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Majumdar A, Upadhyay MK, Giri B, Karwadiya J, Bose S, Jaiswal MK. Iron oxide doped rice biochar reduces soil-plant arsenic stress, improves nutrient values: An amendment towards sustainable development goals. CHEMOSPHERE 2023; 312:137117. [PMID: 36334731 DOI: 10.1016/j.chemosphere.2022.137117] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) contamination in paddy soils and its further translocation to the rice is a serious global issue. Arsenic loading to the rice depends on soil physico-chemical parameters and agronomic practices. To minimize this natural threat, as a natural substance, rice straw was used to produce rice biochar (RBC) and doped with iron oxide (IO) nanoparticles, another eco-friendly composite. In this study, RBC was used at three different concentrations- 0.5%, 1%, and 1.5% alone as well as conjugated with fixed 20 ppm IO nanoparticles. These treatments were compared with the control soil and control plants that had only As in the setup, without any amendments. The application of these treatments was efficient in reducing soil As bioavailability by 43.9%, 60.5%, and 57.3% respectively. Experimental data proved a significant percentage of As was adsorbed onto the RBC + IO conjugate. Further, the 1% RBC + IO conjugate was found to be the best treatment in terms of making soil macro-nutrients bioavailable. Rice seedlings grown under this treatment was more stress tolerant and produced less antioxidant enzymes and stress markers compared to the control plants grown under As-stress only. Rice plants from these different growth setups were observed for internal anatomical integrity and found that the RBC alone and RBC + IO conjugate, both improved the internal vascular structure compared to the control plants. To minimize soil As stress in crops, IO-doped RBC was proven to be the best sustainable amendment for improving soil-crop quality and achieving the proposed motto of Sustainable Development Goals by the United Nations.
Collapse
Affiliation(s)
- Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Biswajit Giri
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Jayant Karwadiya
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|